MathObject.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <linusg@serenityos.org>
  4. * Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/Function.h>
  9. #include <AK/Random.h>
  10. #include <LibJS/Runtime/GlobalObject.h>
  11. #include <LibJS/Runtime/MathObject.h>
  12. #include <math.h>
  13. namespace JS {
  14. MathObject::MathObject(GlobalObject& global_object)
  15. : Object(*global_object.object_prototype())
  16. {
  17. }
  18. void MathObject::initialize(GlobalObject& global_object)
  19. {
  20. auto& vm = this->vm();
  21. Object::initialize(global_object);
  22. u8 attr = Attribute::Writable | Attribute::Configurable;
  23. define_native_function(vm.names.abs, abs, 1, attr);
  24. define_native_function(vm.names.random, random, 0, attr);
  25. define_native_function(vm.names.sqrt, sqrt, 1, attr);
  26. define_native_function(vm.names.floor, floor, 1, attr);
  27. define_native_function(vm.names.ceil, ceil, 1, attr);
  28. define_native_function(vm.names.round, round, 1, attr);
  29. define_native_function(vm.names.max, max, 2, attr);
  30. define_native_function(vm.names.min, min, 2, attr);
  31. define_native_function(vm.names.trunc, trunc, 1, attr);
  32. define_native_function(vm.names.sin, sin, 1, attr);
  33. define_native_function(vm.names.cos, cos, 1, attr);
  34. define_native_function(vm.names.tan, tan, 1, attr);
  35. define_native_function(vm.names.pow, pow, 2, attr);
  36. define_native_function(vm.names.exp, exp, 1, attr);
  37. define_native_function(vm.names.expm1, expm1, 1, attr);
  38. define_native_function(vm.names.sign, sign, 1, attr);
  39. define_native_function(vm.names.clz32, clz32, 1, attr);
  40. define_native_function(vm.names.acos, acos, 1, attr);
  41. define_native_function(vm.names.acosh, acosh, 1, attr);
  42. define_native_function(vm.names.asin, asin, 1, attr);
  43. define_native_function(vm.names.asinh, asinh, 1, attr);
  44. define_native_function(vm.names.atan, atan, 1, attr);
  45. define_native_function(vm.names.atanh, atanh, 1, attr);
  46. define_native_function(vm.names.log1p, log1p, 1, attr);
  47. define_native_function(vm.names.cbrt, cbrt, 1, attr);
  48. define_native_function(vm.names.atan2, atan2, 2, attr);
  49. define_native_function(vm.names.fround, fround, 1, attr);
  50. define_native_function(vm.names.hypot, hypot, 2, attr);
  51. define_native_function(vm.names.imul, imul, 2, attr);
  52. define_native_function(vm.names.log, log, 1, attr);
  53. define_native_function(vm.names.log2, log2, 1, attr);
  54. define_native_function(vm.names.log10, log10, 1, attr);
  55. define_native_function(vm.names.sinh, sinh, 1, attr);
  56. define_native_function(vm.names.cosh, cosh, 1, attr);
  57. define_native_function(vm.names.tanh, tanh, 1, attr);
  58. define_property(vm.names.E, Value(M_E), 0);
  59. define_property(vm.names.LN2, Value(M_LN2), 0);
  60. define_property(vm.names.LN10, Value(M_LN10), 0);
  61. define_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
  62. define_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
  63. define_property(vm.names.PI, Value(M_PI), 0);
  64. define_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
  65. define_property(vm.names.SQRT2, Value(M_SQRT2), 0);
  66. define_property(vm.well_known_symbol_to_string_tag(), js_string(vm.heap(), "Math"), Attribute::Configurable);
  67. }
  68. MathObject::~MathObject()
  69. {
  70. }
  71. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  72. {
  73. auto number = vm.argument(0).to_number(global_object);
  74. if (vm.exception())
  75. return {};
  76. if (number.is_nan())
  77. return js_nan();
  78. if (number.is_negative_zero())
  79. return Value(0);
  80. if (number.is_negative_infinity())
  81. return js_infinity();
  82. return Value(number.as_double() < 0 ? -number.as_double() : number.as_double());
  83. }
  84. JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
  85. {
  86. #ifdef __serenity__
  87. double r = (double)get_random<u32>() / (double)UINT32_MAX;
  88. #else
  89. double r = (double)rand() / (double)RAND_MAX;
  90. #endif
  91. return Value(r);
  92. }
  93. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  94. {
  95. auto number = vm.argument(0).to_number(global_object);
  96. if (vm.exception())
  97. return {};
  98. if (number.is_nan())
  99. return js_nan();
  100. return Value(::sqrt(number.as_double()));
  101. }
  102. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  103. {
  104. auto number = vm.argument(0).to_number(global_object);
  105. if (vm.exception())
  106. return {};
  107. if (number.is_nan())
  108. return js_nan();
  109. return Value(::floor(number.as_double()));
  110. }
  111. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  112. {
  113. auto number = vm.argument(0).to_number(global_object);
  114. if (vm.exception())
  115. return {};
  116. if (number.is_nan())
  117. return js_nan();
  118. auto number_double = number.as_double();
  119. if (number_double < 0 && number_double > -1)
  120. return Value(-0.f);
  121. return Value(::ceil(number.as_double()));
  122. }
  123. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  124. {
  125. auto number = vm.argument(0).to_number(global_object);
  126. if (vm.exception())
  127. return {};
  128. if (number.is_nan())
  129. return js_nan();
  130. double intpart = 0;
  131. double frac = modf(number.as_double(), &intpart);
  132. if (intpart >= 0) {
  133. if (frac >= 0.5)
  134. intpart += 1.0;
  135. } else {
  136. if (frac < -0.5)
  137. intpart -= 1.0;
  138. }
  139. return Value(intpart);
  140. }
  141. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  142. {
  143. Vector<Value> coerced;
  144. for (size_t i = 0; i < vm.argument_count(); ++i) {
  145. auto number = vm.argument(i).to_number(global_object);
  146. if (vm.exception())
  147. return {};
  148. coerced.append(number);
  149. }
  150. auto highest = js_negative_infinity();
  151. for (auto& number : coerced) {
  152. if (number.is_nan())
  153. return js_nan();
  154. if ((number.is_positive_zero() && highest.is_negative_zero()) || number.as_double() > highest.as_double())
  155. highest = number;
  156. }
  157. return highest;
  158. }
  159. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  160. {
  161. Vector<Value> coerced;
  162. for (size_t i = 0; i < vm.argument_count(); ++i) {
  163. auto number = vm.argument(i).to_number(global_object);
  164. if (vm.exception())
  165. return {};
  166. coerced.append(number);
  167. }
  168. auto lowest = js_infinity();
  169. for (auto& number : coerced) {
  170. if (number.is_nan())
  171. return js_nan();
  172. if ((number.is_negative_zero() && lowest.is_positive_zero()) || number.as_double() < lowest.as_double())
  173. lowest = number;
  174. }
  175. return lowest;
  176. }
  177. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  178. {
  179. auto number = vm.argument(0).to_number(global_object);
  180. if (vm.exception())
  181. return {};
  182. if (number.is_nan())
  183. return js_nan();
  184. if (number.as_double() < 0)
  185. return MathObject::ceil(vm, global_object);
  186. return MathObject::floor(vm, global_object);
  187. }
  188. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  189. {
  190. auto number = vm.argument(0).to_number(global_object);
  191. if (vm.exception())
  192. return {};
  193. if (number.is_nan())
  194. return js_nan();
  195. return Value(::sin(number.as_double()));
  196. }
  197. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  198. {
  199. auto number = vm.argument(0).to_number(global_object);
  200. if (vm.exception())
  201. return {};
  202. if (number.is_nan())
  203. return js_nan();
  204. return Value(::cos(number.as_double()));
  205. }
  206. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  207. {
  208. auto number = vm.argument(0).to_number(global_object);
  209. if (vm.exception())
  210. return {};
  211. if (number.is_nan())
  212. return js_nan();
  213. return Value(::tan(number.as_double()));
  214. }
  215. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  216. {
  217. auto base = vm.argument(0).to_number(global_object);
  218. if (vm.exception())
  219. return {};
  220. auto exponent = vm.argument(1).to_number(global_object);
  221. if (vm.exception())
  222. return {};
  223. if (exponent.is_nan())
  224. return js_nan();
  225. if (exponent.is_positive_zero() || exponent.is_negative_zero())
  226. return Value(1);
  227. if (base.is_nan())
  228. return js_nan();
  229. if (base.is_positive_infinity())
  230. return exponent.as_double() > 0 ? js_infinity() : Value(0);
  231. if (base.is_negative_infinity()) {
  232. auto is_odd_integral_number = exponent.is_integer() && (exponent.as_i32() % 2 != 0);
  233. if (exponent.as_double() > 0)
  234. return is_odd_integral_number ? js_negative_infinity() : js_infinity();
  235. else
  236. return is_odd_integral_number ? Value(-0.0) : Value(0);
  237. }
  238. if (base.is_positive_zero())
  239. return exponent.as_double() > 0 ? Value(0) : js_infinity();
  240. if (base.is_negative_zero()) {
  241. auto is_odd_integral_number = exponent.is_integer() && (exponent.as_i32() % 2 != 0);
  242. if (exponent.as_double() > 0)
  243. return is_odd_integral_number ? Value(-0.0) : Value(0);
  244. else
  245. return is_odd_integral_number ? js_negative_infinity() : js_infinity();
  246. }
  247. VERIFY(base.is_finite_number() && !base.is_positive_zero() && !base.is_negative_zero());
  248. if (exponent.is_positive_infinity()) {
  249. auto absolute_base = fabs(base.as_double());
  250. if (absolute_base > 1)
  251. return js_infinity();
  252. else if (absolute_base == 1)
  253. return js_nan();
  254. else if (absolute_base < 1)
  255. return Value(0);
  256. }
  257. if (exponent.is_negative_infinity()) {
  258. auto absolute_base = fabs(base.as_double());
  259. if (absolute_base > 1)
  260. return Value(0);
  261. else if (absolute_base == 1)
  262. return js_nan();
  263. else if (absolute_base < 1)
  264. return js_infinity();
  265. }
  266. VERIFY(exponent.is_finite_number() && !exponent.is_positive_zero() && !exponent.is_negative_zero());
  267. if (base.as_double() < 0 && !exponent.is_integer())
  268. return js_nan();
  269. return Value(::pow(base.as_double(), exponent.as_double()));
  270. }
  271. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  272. {
  273. auto number = vm.argument(0).to_number(global_object);
  274. if (vm.exception())
  275. return {};
  276. if (number.is_nan())
  277. return js_nan();
  278. return Value(::exp(number.as_double()));
  279. }
  280. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  281. {
  282. auto number = vm.argument(0).to_number(global_object);
  283. if (vm.exception())
  284. return {};
  285. if (number.is_nan())
  286. return js_nan();
  287. return Value(::expm1(number.as_double()));
  288. }
  289. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  290. {
  291. auto number = vm.argument(0).to_number(global_object);
  292. if (vm.exception())
  293. return {};
  294. if (number.is_positive_zero())
  295. return Value(0);
  296. if (number.is_negative_zero())
  297. return Value(-0.0);
  298. if (number.as_double() > 0)
  299. return Value(1);
  300. if (number.as_double() < 0)
  301. return Value(-1);
  302. return js_nan();
  303. }
  304. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  305. {
  306. auto number = vm.argument(0).to_number(global_object);
  307. if (vm.exception())
  308. return {};
  309. if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
  310. return Value(32);
  311. return Value(__builtin_clz((unsigned)number.as_double()));
  312. }
  313. JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
  314. {
  315. auto number = vm.argument(0).to_number(global_object);
  316. if (vm.exception())
  317. return {};
  318. if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
  319. return js_nan();
  320. if (number.as_double() == 1)
  321. return Value(0);
  322. return Value(::acos(number.as_double()));
  323. }
  324. JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
  325. {
  326. auto number = vm.argument(0).to_number(global_object);
  327. if (vm.exception())
  328. return {};
  329. if (number.as_double() < 1)
  330. return js_nan();
  331. return Value(::acosh(number.as_double()));
  332. }
  333. JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
  334. {
  335. auto number = vm.argument(0).to_number(global_object);
  336. if (vm.exception())
  337. return {};
  338. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  339. return number;
  340. return Value(::asin(number.as_double()));
  341. }
  342. JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
  343. {
  344. auto number = vm.argument(0).to_number(global_object);
  345. if (vm.exception())
  346. return {};
  347. return Value(::asinh(number.as_double()));
  348. }
  349. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
  350. {
  351. auto number = vm.argument(0).to_number(global_object);
  352. if (vm.exception())
  353. return {};
  354. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  355. return number;
  356. if (number.is_positive_infinity())
  357. return Value(M_PI_2);
  358. if (number.is_negative_infinity())
  359. return Value(-M_PI_2);
  360. return Value(::atan(number.as_double()));
  361. }
  362. JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
  363. {
  364. auto number = vm.argument(0).to_number(global_object);
  365. if (vm.exception())
  366. return {};
  367. if (number.as_double() > 1 || number.as_double() < -1)
  368. return js_nan();
  369. return Value(::atanh(number.as_double()));
  370. }
  371. JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
  372. {
  373. auto number = vm.argument(0).to_number(global_object);
  374. if (vm.exception())
  375. return {};
  376. if (number.as_double() < -1)
  377. return js_nan();
  378. return Value(::log1p(number.as_double()));
  379. }
  380. JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
  381. {
  382. auto number = vm.argument(0).to_number(global_object);
  383. if (vm.exception())
  384. return {};
  385. return Value(::cbrt(number.as_double()));
  386. }
  387. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
  388. {
  389. auto constexpr three_quarters_pi = M_PI_4 + M_PI_2;
  390. auto y = vm.argument(0).to_number(global_object);
  391. if (vm.exception())
  392. return {};
  393. auto x = vm.argument(1).to_number(global_object);
  394. if (vm.exception())
  395. return {};
  396. if (y.is_nan() || x.is_nan())
  397. return js_nan();
  398. if (y.is_positive_infinity()) {
  399. if (x.is_positive_infinity())
  400. return Value(M_PI_4);
  401. else if (x.is_negative_infinity())
  402. return Value(three_quarters_pi);
  403. else
  404. return Value(M_PI_2);
  405. }
  406. if (y.is_negative_infinity()) {
  407. if (x.is_positive_infinity())
  408. return Value(-M_PI_4);
  409. else if (x.is_negative_infinity())
  410. return Value(-three_quarters_pi);
  411. else
  412. return Value(-M_PI_2);
  413. }
  414. if (y.is_positive_zero()) {
  415. if (x.as_double() > 0 || x.is_positive_zero())
  416. return Value(0.0);
  417. else
  418. return Value(M_PI);
  419. }
  420. if (y.is_negative_zero()) {
  421. if (x.as_double() > 0 || x.is_positive_zero())
  422. return Value(-0.0);
  423. else
  424. return Value(-M_PI);
  425. }
  426. VERIFY(y.is_finite_number() && !y.is_positive_zero() && !y.is_negative_zero());
  427. if (y.as_double() > 0) {
  428. if (x.is_positive_infinity())
  429. return Value(0);
  430. else if (x.is_negative_infinity())
  431. return Value(M_PI);
  432. else if (x.is_positive_zero() || x.is_negative_zero())
  433. return Value(M_PI_2);
  434. }
  435. if (y.as_double() < 0) {
  436. if (x.is_positive_infinity())
  437. return Value(-0.0);
  438. else if (x.is_negative_infinity())
  439. return Value(-M_PI);
  440. else if (x.is_positive_zero() || x.is_negative_zero())
  441. return Value(-M_PI_2);
  442. }
  443. VERIFY(x.is_finite_number() && !x.is_positive_zero() && !x.is_negative_zero());
  444. return Value(::atan2(y.as_double(), x.as_double()));
  445. }
  446. JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
  447. {
  448. auto number = vm.argument(0).to_number(global_object);
  449. if (vm.exception())
  450. return {};
  451. if (number.is_nan())
  452. return js_nan();
  453. return Value((float)number.as_double());
  454. }
  455. JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
  456. {
  457. Vector<Value> coerced;
  458. for (size_t i = 0; i < vm.argument_count(); ++i) {
  459. auto number = vm.argument(i).to_number(global_object);
  460. if (vm.exception())
  461. return {};
  462. coerced.append(number);
  463. }
  464. for (auto& number : coerced) {
  465. if (number.is_positive_infinity() || number.is_negative_infinity())
  466. return js_infinity();
  467. }
  468. auto only_zero = true;
  469. double sum_of_squares = 0;
  470. for (auto& number : coerced) {
  471. if (number.is_nan() || number.is_positive_infinity())
  472. return number;
  473. if (number.is_negative_infinity())
  474. return js_infinity();
  475. if (!number.is_positive_zero() && !number.is_negative_zero())
  476. only_zero = false;
  477. sum_of_squares += number.as_double() * number.as_double();
  478. }
  479. if (only_zero)
  480. return Value(0);
  481. return Value(::sqrt(sum_of_squares));
  482. }
  483. JS_DEFINE_NATIVE_FUNCTION(MathObject::imul)
  484. {
  485. auto a = vm.argument(0).to_u32(global_object);
  486. if (vm.exception())
  487. return {};
  488. auto b = vm.argument(1).to_u32(global_object);
  489. if (vm.exception())
  490. return {};
  491. return Value(static_cast<i32>(a * b));
  492. }
  493. JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
  494. {
  495. auto number = vm.argument(0).to_number(global_object);
  496. if (vm.exception())
  497. return {};
  498. if (number.as_double() < 0)
  499. return js_nan();
  500. return Value(::log(number.as_double()));
  501. }
  502. JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
  503. {
  504. auto number = vm.argument(0).to_number(global_object);
  505. if (vm.exception())
  506. return {};
  507. if (number.as_double() < 0)
  508. return js_nan();
  509. return Value(::log2(number.as_double()));
  510. }
  511. JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
  512. {
  513. auto number = vm.argument(0).to_number(global_object);
  514. if (vm.exception())
  515. return {};
  516. if (number.as_double() < 0)
  517. return js_nan();
  518. return Value(::log10(number.as_double()));
  519. }
  520. JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
  521. {
  522. auto number = vm.argument(0).to_number(global_object);
  523. if (vm.exception())
  524. return {};
  525. if (number.is_nan())
  526. return js_nan();
  527. return Value(::sinh(number.as_double()));
  528. }
  529. JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
  530. {
  531. auto number = vm.argument(0).to_number(global_object);
  532. if (vm.exception())
  533. return {};
  534. if (number.is_nan())
  535. return js_nan();
  536. return Value(::cosh(number.as_double()));
  537. }
  538. JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
  539. {
  540. auto number = vm.argument(0).to_number(global_object);
  541. if (vm.exception())
  542. return {};
  543. if (number.is_nan())
  544. return js_nan();
  545. if (number.is_positive_infinity())
  546. return Value(1);
  547. if (number.is_negative_infinity())
  548. return Value(-1);
  549. return Value(::tanh(number.as_double()));
  550. }
  551. }