malloc.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/Bitmap.h>
  27. #include <AK/InlineLinkedList.h>
  28. #include <AK/ScopedValueRollback.h>
  29. #include <AK/Vector.h>
  30. #include <LibThread/Lock.h>
  31. #include <assert.h>
  32. #include <mallocdefs.h>
  33. #include <serenity.h>
  34. #include <stdio.h>
  35. #include <stdlib.h>
  36. #include <sys/mman.h>
  37. // FIXME: Thread safety.
  38. //#define MALLOC_DEBUG
  39. #define RECYCLE_BIG_ALLOCATIONS
  40. #define MAGIC_PAGE_HEADER 0x42657274
  41. #define MAGIC_BIGALLOC_HEADER 0x42697267
  42. #define PAGE_ROUND_UP(x) ((((size_t)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1)))
  43. static LibThread::Lock& malloc_lock()
  44. {
  45. static u32 lock_storage[sizeof(LibThread::Lock) / sizeof(u32)];
  46. return *reinterpret_cast<LibThread::Lock*>(&lock_storage);
  47. }
  48. constexpr int number_of_chunked_blocks_to_keep_around_per_size_class = 4;
  49. constexpr int number_of_big_blocks_to_keep_around_per_size_class = 8;
  50. static bool s_log_malloc = false;
  51. static bool s_scrub_malloc = true;
  52. static bool s_scrub_free = true;
  53. static bool s_profiling = false;
  54. static unsigned short size_classes[] = { 8, 16, 32, 64, 128, 252, 508, 1016, 2036, 4090, 8188, 16376, 32756, 0 };
  55. static constexpr size_t num_size_classes = sizeof(size_classes) / sizeof(unsigned short);
  56. constexpr size_t block_size = 64 * KB;
  57. constexpr size_t block_mask = ~(block_size - 1);
  58. struct CommonHeader {
  59. size_t m_magic;
  60. size_t m_size;
  61. };
  62. struct BigAllocationBlock : public CommonHeader {
  63. BigAllocationBlock(size_t size)
  64. {
  65. m_magic = MAGIC_BIGALLOC_HEADER;
  66. m_size = size;
  67. }
  68. unsigned char* m_slot[0];
  69. };
  70. struct FreelistEntry {
  71. FreelistEntry* next;
  72. };
  73. struct ChunkedBlock
  74. : public CommonHeader
  75. , public InlineLinkedListNode<ChunkedBlock> {
  76. ChunkedBlock(size_t bytes_per_chunk)
  77. {
  78. m_magic = MAGIC_PAGE_HEADER;
  79. m_size = bytes_per_chunk;
  80. m_free_chunks = chunk_capacity();
  81. m_freelist = (FreelistEntry*)chunk(0);
  82. for (size_t i = 0; i < chunk_capacity(); ++i) {
  83. auto* entry = (FreelistEntry*)chunk(i);
  84. if (i != chunk_capacity() - 1)
  85. entry->next = (FreelistEntry*)chunk(i + 1);
  86. else
  87. entry->next = nullptr;
  88. }
  89. }
  90. ChunkedBlock* m_prev { nullptr };
  91. ChunkedBlock* m_next { nullptr };
  92. FreelistEntry* m_freelist { nullptr };
  93. unsigned short m_free_chunks { 0 };
  94. unsigned char m_slot[0];
  95. void* chunk(int index)
  96. {
  97. return &m_slot[index * m_size];
  98. }
  99. bool is_full() const { return m_free_chunks == 0; }
  100. size_t bytes_per_chunk() const { return m_size; }
  101. size_t free_chunks() const { return m_free_chunks; }
  102. size_t used_chunks() const { return chunk_capacity() - m_free_chunks; }
  103. size_t chunk_capacity() const { return (block_size - sizeof(ChunkedBlock)) / m_size; }
  104. };
  105. struct Allocator {
  106. size_t size { 0 };
  107. size_t block_count { 0 };
  108. size_t empty_block_count { 0 };
  109. ChunkedBlock* empty_blocks[number_of_chunked_blocks_to_keep_around_per_size_class] { nullptr };
  110. InlineLinkedList<ChunkedBlock> usable_blocks;
  111. InlineLinkedList<ChunkedBlock> full_blocks;
  112. };
  113. struct BigAllocator {
  114. Vector<BigAllocationBlock*, number_of_big_blocks_to_keep_around_per_size_class> blocks;
  115. };
  116. // Allocators will be initialized in __malloc_init.
  117. // We can not rely on global constructors to initialize them,
  118. // because they must be initialized before other global constructors
  119. // are run. Similarly, we can not allow global destructors to destruct
  120. // them. We could have used AK::NeverDestoyed to prevent the latter,
  121. // but it would have not helped with the former.
  122. static u8 g_allocators_storage[sizeof(Allocator) * num_size_classes];
  123. static u8 g_big_allocators_storage[sizeof(BigAllocator)];
  124. static inline Allocator (&allocators())[num_size_classes]
  125. {
  126. return reinterpret_cast<Allocator(&)[num_size_classes]>(g_allocators_storage);
  127. }
  128. static inline BigAllocator (&big_allocators())[1]
  129. {
  130. return reinterpret_cast<BigAllocator(&)[1]>(g_big_allocators_storage);
  131. }
  132. static Allocator* allocator_for_size(size_t size, size_t& good_size)
  133. {
  134. for (int i = 0; size_classes[i]; ++i) {
  135. if (size <= size_classes[i]) {
  136. good_size = size_classes[i];
  137. return &allocators()[i];
  138. }
  139. }
  140. good_size = PAGE_ROUND_UP(size);
  141. return nullptr;
  142. }
  143. static BigAllocator* big_allocator_for_size(size_t size)
  144. {
  145. if (size == 65536)
  146. return &big_allocators()[0];
  147. return nullptr;
  148. }
  149. extern "C" {
  150. size_t malloc_good_size(size_t size)
  151. {
  152. for (int i = 0; size_classes[i]; ++i) {
  153. if (size < size_classes[i])
  154. return size_classes[i];
  155. }
  156. return PAGE_ROUND_UP(size);
  157. }
  158. static void* os_alloc(size_t size, const char* name)
  159. {
  160. auto* ptr = serenity_mmap(nullptr, size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE | MAP_PURGEABLE, 0, 0, block_size, name);
  161. ASSERT(ptr != MAP_FAILED);
  162. return ptr;
  163. }
  164. static void os_free(void* ptr, size_t size)
  165. {
  166. int rc = munmap(ptr, size);
  167. assert(rc == 0);
  168. }
  169. static void* malloc_impl(size_t size)
  170. {
  171. LOCKER(malloc_lock());
  172. if (s_log_malloc)
  173. dbgprintf("LibC: malloc(%zu)\n", size);
  174. if (!size)
  175. return nullptr;
  176. size_t good_size;
  177. auto* allocator = allocator_for_size(size, good_size);
  178. if (!allocator) {
  179. size_t real_size = round_up_to_power_of_two(sizeof(BigAllocationBlock) + size, block_size);
  180. #ifdef RECYCLE_BIG_ALLOCATIONS
  181. if (auto* allocator = big_allocator_for_size(real_size)) {
  182. if (!allocator->blocks.is_empty()) {
  183. auto* block = allocator->blocks.take_last();
  184. int rc = madvise(block, real_size, MADV_SET_NONVOLATILE);
  185. bool this_block_was_purged = rc == 1;
  186. if (rc < 0) {
  187. perror("madvise");
  188. ASSERT_NOT_REACHED();
  189. }
  190. if (mprotect(block, real_size, PROT_READ | PROT_WRITE) < 0) {
  191. perror("mprotect");
  192. ASSERT_NOT_REACHED();
  193. }
  194. if (this_block_was_purged)
  195. new (block) BigAllocationBlock(real_size);
  196. return &block->m_slot[0];
  197. }
  198. }
  199. #endif
  200. auto* block = (BigAllocationBlock*)os_alloc(real_size, "malloc: BigAllocationBlock");
  201. new (block) BigAllocationBlock(real_size);
  202. return &block->m_slot[0];
  203. }
  204. ChunkedBlock* block = nullptr;
  205. for (block = allocator->usable_blocks.head(); block; block = block->next()) {
  206. if (block->free_chunks())
  207. break;
  208. }
  209. if (!block && allocator->empty_block_count) {
  210. block = allocator->empty_blocks[--allocator->empty_block_count];
  211. int rc = madvise(block, block_size, MADV_SET_NONVOLATILE);
  212. bool this_block_was_purged = rc == 1;
  213. if (rc < 0) {
  214. perror("madvise");
  215. ASSERT_NOT_REACHED();
  216. }
  217. rc = mprotect(block, block_size, PROT_READ | PROT_WRITE);
  218. if (rc < 0) {
  219. perror("mprotect");
  220. ASSERT_NOT_REACHED();
  221. }
  222. if (this_block_was_purged)
  223. new (block) ChunkedBlock(good_size);
  224. allocator->usable_blocks.append(block);
  225. }
  226. if (!block) {
  227. char buffer[64];
  228. snprintf(buffer, sizeof(buffer), "malloc: ChunkedBlock(%zu)", good_size);
  229. block = (ChunkedBlock*)os_alloc(block_size, buffer);
  230. new (block) ChunkedBlock(good_size);
  231. allocator->usable_blocks.append(block);
  232. ++allocator->block_count;
  233. }
  234. --block->m_free_chunks;
  235. void* ptr = block->m_freelist;
  236. block->m_freelist = block->m_freelist->next;
  237. if (block->is_full()) {
  238. #ifdef MALLOC_DEBUG
  239. dbgprintf("Block %p is now full in size class %zu\n", block, good_size);
  240. #endif
  241. allocator->usable_blocks.remove(block);
  242. allocator->full_blocks.append(block);
  243. }
  244. #ifdef MALLOC_DEBUG
  245. dbgprintf("LibC: allocated %p (chunk in block %p, size %zu)\n", ptr, block, block->bytes_per_chunk());
  246. #endif
  247. if (s_scrub_malloc)
  248. memset(ptr, MALLOC_SCRUB_BYTE, block->m_size);
  249. return ptr;
  250. }
  251. static void free_impl(void* ptr)
  252. {
  253. ScopedValueRollback rollback(errno);
  254. if (!ptr)
  255. return;
  256. LOCKER(malloc_lock());
  257. void* block_base = (void*)((uintptr_t)ptr & block_mask);
  258. size_t magic = *(size_t*)block_base;
  259. if (magic == MAGIC_BIGALLOC_HEADER) {
  260. auto* block = (BigAllocationBlock*)block_base;
  261. #ifdef RECYCLE_BIG_ALLOCATIONS
  262. if (auto* allocator = big_allocator_for_size(block->m_size)) {
  263. if (allocator->blocks.size() < number_of_big_blocks_to_keep_around_per_size_class) {
  264. allocator->blocks.append(block);
  265. if (mprotect(block, block->m_size, PROT_NONE) < 0) {
  266. perror("mprotect");
  267. ASSERT_NOT_REACHED();
  268. }
  269. if (madvise(block, block->m_size, MADV_SET_VOLATILE) != 0) {
  270. perror("madvise");
  271. ASSERT_NOT_REACHED();
  272. }
  273. return;
  274. }
  275. }
  276. #endif
  277. os_free(block, block->m_size);
  278. return;
  279. }
  280. assert(magic == MAGIC_PAGE_HEADER);
  281. auto* block = (ChunkedBlock*)block_base;
  282. #ifdef MALLOC_DEBUG
  283. dbgprintf("LibC: freeing %p in allocator %p (size=%u, used=%u)\n", ptr, block, block->bytes_per_chunk(), block->used_chunks());
  284. #endif
  285. if (s_scrub_free)
  286. memset(ptr, FREE_SCRUB_BYTE, block->bytes_per_chunk());
  287. auto* entry = (FreelistEntry*)ptr;
  288. entry->next = block->m_freelist;
  289. block->m_freelist = entry;
  290. if (block->is_full()) {
  291. size_t good_size;
  292. auto* allocator = allocator_for_size(block->m_size, good_size);
  293. #ifdef MALLOC_DEBUG
  294. dbgprintf("Block %p no longer full in size class %u\n", block, good_size);
  295. #endif
  296. allocator->full_blocks.remove(block);
  297. allocator->usable_blocks.prepend(block);
  298. }
  299. ++block->m_free_chunks;
  300. if (!block->used_chunks()) {
  301. size_t good_size;
  302. auto* allocator = allocator_for_size(block->m_size, good_size);
  303. if (allocator->block_count < number_of_chunked_blocks_to_keep_around_per_size_class) {
  304. #ifdef MALLOC_DEBUG
  305. dbgprintf("Keeping block %p around for size class %u\n", block, good_size);
  306. #endif
  307. allocator->usable_blocks.remove(block);
  308. allocator->empty_blocks[allocator->empty_block_count++] = block;
  309. mprotect(block, block_size, PROT_NONE);
  310. madvise(block, block_size, MADV_SET_VOLATILE);
  311. return;
  312. }
  313. #ifdef MALLOC_DEBUG
  314. dbgprintf("Releasing block %p for size class %u\n", block, good_size);
  315. #endif
  316. allocator->usable_blocks.remove(block);
  317. --allocator->block_count;
  318. os_free(block, block_size);
  319. }
  320. }
  321. void* malloc(size_t size)
  322. {
  323. void* ptr = malloc_impl(size);
  324. if (s_profiling)
  325. perf_event(PERF_EVENT_MALLOC, size, reinterpret_cast<uintptr_t>(ptr));
  326. return ptr;
  327. }
  328. void free(void* ptr)
  329. {
  330. if (s_profiling)
  331. perf_event(PERF_EVENT_FREE, reinterpret_cast<uintptr_t>(ptr), 0);
  332. free_impl(ptr);
  333. }
  334. void* calloc(size_t count, size_t size)
  335. {
  336. size_t new_size = count * size;
  337. auto* ptr = malloc(new_size);
  338. memset(ptr, 0, new_size);
  339. return ptr;
  340. }
  341. size_t malloc_size(void* ptr)
  342. {
  343. if (!ptr)
  344. return 0;
  345. LOCKER(malloc_lock());
  346. void* page_base = (void*)((uintptr_t)ptr & block_mask);
  347. auto* header = (const CommonHeader*)page_base;
  348. auto size = header->m_size;
  349. if (header->m_magic == MAGIC_BIGALLOC_HEADER)
  350. size -= sizeof(CommonHeader);
  351. return size;
  352. }
  353. void* realloc(void* ptr, size_t size)
  354. {
  355. if (!ptr)
  356. return malloc(size);
  357. LOCKER(malloc_lock());
  358. auto existing_allocation_size = malloc_size(ptr);
  359. if (size <= existing_allocation_size)
  360. return ptr;
  361. auto* new_ptr = malloc(size);
  362. memcpy(new_ptr, ptr, min(existing_allocation_size, size));
  363. free(ptr);
  364. return new_ptr;
  365. }
  366. void __malloc_init()
  367. {
  368. new (&malloc_lock()) LibThread::Lock();
  369. if (getenv("LIBC_NOSCRUB_MALLOC"))
  370. s_scrub_malloc = false;
  371. if (getenv("LIBC_NOSCRUB_FREE"))
  372. s_scrub_free = false;
  373. if (getenv("LIBC_LOG_MALLOC"))
  374. s_log_malloc = true;
  375. if (getenv("LIBC_PROFILE_MALLOC"))
  376. s_profiling = true;
  377. for (size_t i = 0; i < num_size_classes; ++i) {
  378. new (&allocators()[i]) Allocator();
  379. allocators()[i].size = size_classes[i];
  380. }
  381. new (&big_allocators()[0])(BigAllocator);
  382. }
  383. }