MathObject.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
  4. * All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without
  7. * modification, are permitted provided that the following conditions are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright notice, this
  10. * list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form must reproduce the above copyright notice,
  13. * this list of conditions and the following disclaimer in the documentation
  14. * and/or other materials provided with the distribution.
  15. *
  16. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  19. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  20. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  25. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. */
  27. #include <AK/FlyString.h>
  28. #include <AK/Function.h>
  29. #include <LibJS/Runtime/GlobalObject.h>
  30. #include <LibJS/Runtime/MathObject.h>
  31. #include <math.h>
  32. namespace JS {
  33. MathObject::MathObject(GlobalObject& global_object)
  34. : Object(*global_object.object_prototype())
  35. {
  36. }
  37. void MathObject::initialize(GlobalObject& global_object)
  38. {
  39. auto& vm = this->vm();
  40. Object::initialize(global_object);
  41. u8 attr = Attribute::Writable | Attribute::Configurable;
  42. define_native_function(vm.names.abs, abs, 1, attr);
  43. define_native_function(vm.names.random, random, 0, attr);
  44. define_native_function(vm.names.sqrt, sqrt, 1, attr);
  45. define_native_function(vm.names.floor, floor, 1, attr);
  46. define_native_function(vm.names.ceil, ceil, 1, attr);
  47. define_native_function(vm.names.round, round, 1, attr);
  48. define_native_function(vm.names.max, max, 2, attr);
  49. define_native_function(vm.names.min, min, 2, attr);
  50. define_native_function(vm.names.trunc, trunc, 1, attr);
  51. define_native_function(vm.names.sin, sin, 1, attr);
  52. define_native_function(vm.names.cos, cos, 1, attr);
  53. define_native_function(vm.names.tan, tan, 1, attr);
  54. define_native_function(vm.names.pow, pow, 2, attr);
  55. define_native_function(vm.names.exp, exp, 1, attr);
  56. define_native_function(vm.names.expm1, expm1, 1, attr);
  57. define_native_function(vm.names.sign, sign, 1, attr);
  58. define_native_function(vm.names.clz32, clz32, 1, attr);
  59. define_native_function(vm.names.acos, acos, 1, attr);
  60. define_native_function(vm.names.acosh, acosh, 1, attr);
  61. define_native_function(vm.names.asin, asin, 1, attr);
  62. define_native_function(vm.names.asinh, asinh, 1, attr);
  63. define_native_function(vm.names.atan, atan, 1, attr);
  64. define_native_function(vm.names.atanh, atanh, 1, attr);
  65. define_native_function(vm.names.log1p, log1p, 1, attr);
  66. define_native_function(vm.names.cbrt, cbrt, 1, attr);
  67. define_property(vm.names.E, Value(M_E), 0);
  68. define_property(vm.names.LN2, Value(M_LN2), 0);
  69. define_property(vm.names.LN10, Value(M_LN10), 0);
  70. define_property(vm.names.LOG2E, Value(log2(M_E)), 0);
  71. define_property(vm.names.LOG10E, Value(log10(M_E)), 0);
  72. define_property(vm.names.PI, Value(M_PI), 0);
  73. define_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
  74. define_property(vm.names.SQRT2, Value(M_SQRT2), 0);
  75. define_property(vm.well_known_symbol_to_string_tag(), js_string(vm.heap(), "Math"), Attribute::Configurable);
  76. }
  77. MathObject::~MathObject()
  78. {
  79. }
  80. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  81. {
  82. auto number = vm.argument(0).to_number(global_object);
  83. if (vm.exception())
  84. return {};
  85. if (number.is_nan())
  86. return js_nan();
  87. return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
  88. }
  89. JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
  90. {
  91. #ifdef __serenity__
  92. double r = (double)arc4random() / (double)UINT32_MAX;
  93. #else
  94. double r = (double)rand() / (double)RAND_MAX;
  95. #endif
  96. return Value(r);
  97. }
  98. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  99. {
  100. auto number = vm.argument(0).to_number(global_object);
  101. if (vm.exception())
  102. return {};
  103. if (number.is_nan())
  104. return js_nan();
  105. return Value(::sqrt(number.as_double()));
  106. }
  107. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  108. {
  109. auto number = vm.argument(0).to_number(global_object);
  110. if (vm.exception())
  111. return {};
  112. if (number.is_nan())
  113. return js_nan();
  114. return Value(::floor(number.as_double()));
  115. }
  116. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  117. {
  118. auto number = vm.argument(0).to_number(global_object);
  119. if (vm.exception())
  120. return {};
  121. if (number.is_nan())
  122. return js_nan();
  123. auto number_double = number.as_double();
  124. if (number_double < 0 && number_double > -1)
  125. return Value(-0.f);
  126. return Value(::ceil(number.as_double()));
  127. }
  128. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  129. {
  130. auto number = vm.argument(0).to_number(global_object);
  131. if (vm.exception())
  132. return {};
  133. if (number.is_nan())
  134. return js_nan();
  135. return Value(::round(number.as_double()));
  136. }
  137. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  138. {
  139. if (!vm.argument_count())
  140. return js_negative_infinity();
  141. auto max = vm.argument(0).to_number(global_object);
  142. if (vm.exception())
  143. return {};
  144. for (size_t i = 1; i < vm.argument_count(); ++i) {
  145. auto cur = vm.argument(i).to_number(global_object);
  146. if (vm.exception())
  147. return {};
  148. max = Value(cur.as_double() > max.as_double() ? cur : max);
  149. }
  150. return max;
  151. }
  152. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  153. {
  154. if (!vm.argument_count())
  155. return js_infinity();
  156. auto min = vm.argument(0).to_number(global_object);
  157. if (vm.exception())
  158. return {};
  159. for (size_t i = 1; i < vm.argument_count(); ++i) {
  160. auto cur = vm.argument(i).to_number(global_object);
  161. if (vm.exception())
  162. return {};
  163. min = Value(cur.as_double() < min.as_double() ? cur : min);
  164. }
  165. return min;
  166. }
  167. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  168. {
  169. auto number = vm.argument(0).to_number(global_object);
  170. if (vm.exception())
  171. return {};
  172. if (number.is_nan())
  173. return js_nan();
  174. if (number.as_double() < 0)
  175. return MathObject::ceil(vm, global_object);
  176. return MathObject::floor(vm, global_object);
  177. }
  178. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  179. {
  180. auto number = vm.argument(0).to_number(global_object);
  181. if (vm.exception())
  182. return {};
  183. if (number.is_nan())
  184. return js_nan();
  185. return Value(::sin(number.as_double()));
  186. }
  187. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  188. {
  189. auto number = vm.argument(0).to_number(global_object);
  190. if (vm.exception())
  191. return {};
  192. if (number.is_nan())
  193. return js_nan();
  194. return Value(::cos(number.as_double()));
  195. }
  196. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  197. {
  198. auto number = vm.argument(0).to_number(global_object);
  199. if (vm.exception())
  200. return {};
  201. if (number.is_nan())
  202. return js_nan();
  203. return Value(::tan(number.as_double()));
  204. }
  205. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  206. {
  207. return JS::exp(global_object, vm.argument(0), vm.argument(1));
  208. }
  209. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  210. {
  211. auto number = vm.argument(0).to_number(global_object);
  212. if (vm.exception())
  213. return {};
  214. if (number.is_nan())
  215. return js_nan();
  216. return Value(::exp(number.as_double()));
  217. }
  218. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  219. {
  220. auto number = vm.argument(0).to_number(global_object);
  221. if (vm.exception())
  222. return {};
  223. if (number.is_nan())
  224. return js_nan();
  225. return Value(::expm1(number.as_double()));
  226. }
  227. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  228. {
  229. auto number = vm.argument(0).to_number(global_object);
  230. if (vm.exception())
  231. return {};
  232. if (number.is_positive_zero())
  233. return Value(0);
  234. if (number.is_negative_zero())
  235. return Value(-0.0);
  236. if (number.as_double() > 0)
  237. return Value(1);
  238. if (number.as_double() < 0)
  239. return Value(-1);
  240. return js_nan();
  241. }
  242. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  243. {
  244. auto number = vm.argument(0).to_number(global_object);
  245. if (vm.exception())
  246. return {};
  247. if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
  248. return Value(32);
  249. return Value(__builtin_clz((unsigned)number.as_double()));
  250. }
  251. JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
  252. {
  253. auto number = vm.argument(0).to_number(global_object);
  254. if (vm.exception())
  255. return {};
  256. if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
  257. return js_nan();
  258. if (number.as_double() == 1)
  259. return Value(0);
  260. return Value(::acos(number.as_double()));
  261. }
  262. JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
  263. {
  264. auto number = vm.argument(0).to_number(global_object);
  265. if (vm.exception())
  266. return {};
  267. if (number.as_double() < 1)
  268. return JS::js_nan();
  269. return Value(::acosh(number.as_double()));
  270. }
  271. JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
  272. {
  273. auto number = vm.argument(0).to_number(global_object);
  274. if (vm.exception())
  275. return {};
  276. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  277. return number;
  278. return Value(::asin(number.as_double()));
  279. }
  280. JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
  281. {
  282. auto number = vm.argument(0).to_number(global_object);
  283. if (vm.exception())
  284. return {};
  285. return Value(::asinh(number.as_double()));
  286. }
  287. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
  288. {
  289. auto number = vm.argument(0).to_number(global_object);
  290. if (vm.exception())
  291. return {};
  292. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  293. return number;
  294. if (number.is_positive_infinity())
  295. return Value(M_PI_2);
  296. if (number.is_negative_infinity())
  297. return Value(-M_PI_2);
  298. return Value(::atan(number.as_double()));
  299. }
  300. JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
  301. {
  302. auto number = vm.argument(0).to_number(global_object);
  303. if (vm.exception())
  304. return {};
  305. if (number.as_double() > 1 || number.as_double() < -1)
  306. return JS::js_nan();
  307. return Value(::atanh(number.as_double()));
  308. }
  309. JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
  310. {
  311. auto number = vm.argument(0).to_number(global_object);
  312. if (vm.exception())
  313. return {};
  314. if (number.as_double() < -1)
  315. return JS::js_nan();
  316. return Value(::log1p(number.as_double()));
  317. }
  318. JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
  319. {
  320. auto number = vm.argument(0).to_number(global_object);
  321. if (vm.exception())
  322. return {};
  323. return Value(::cbrt(number.as_double()));
  324. }
  325. }