Parser.cpp 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402
  1. /*
  2. * Copyright (c) 2021, Hunter Salyer <thefalsehonesty@gmail.com>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include "Parser.h"
  7. #include "Decoder.h"
  8. #include "Utilities.h"
  9. namespace Video::VP9 {
  10. #define RESERVED_ZERO \
  11. if (m_bit_stream->read_bit() != 0) \
  12. return false
  13. Parser::Parser(Decoder& decoder)
  14. : m_probability_tables(make<ProbabilityTables>())
  15. , m_tree_parser(make<TreeParser>(*this))
  16. , m_decoder(decoder)
  17. {
  18. }
  19. Parser::~Parser()
  20. {
  21. cleanup_tile_allocations();
  22. free(m_prev_segment_ids);
  23. }
  24. void Parser::cleanup_tile_allocations()
  25. {
  26. free(m_skips);
  27. free(m_tx_sizes);
  28. free(m_mi_sizes);
  29. free(m_y_modes);
  30. free(m_segment_ids);
  31. free(m_ref_frames);
  32. free(m_interp_filters);
  33. free(m_mvs);
  34. free(m_sub_mvs);
  35. free(m_sub_modes);
  36. }
  37. /* (6.1) */
  38. bool Parser::parse_frame(ByteBuffer const& frame_data)
  39. {
  40. m_bit_stream = make<BitStream>(frame_data.data(), frame_data.size());
  41. m_syntax_element_counter = make<SyntaxElementCounter>();
  42. SAFE_CALL(uncompressed_header());
  43. dbgln("Finished reading uncompressed header");
  44. SAFE_CALL(trailing_bits());
  45. if (m_header_size_in_bytes == 0) {
  46. dbgln("No header");
  47. return true;
  48. }
  49. m_probability_tables->load_probs(m_frame_context_idx);
  50. m_probability_tables->load_probs2(m_frame_context_idx);
  51. m_syntax_element_counter->clear_counts();
  52. SAFE_CALL(m_bit_stream->init_bool(m_header_size_in_bytes));
  53. dbgln("Reading compressed header");
  54. SAFE_CALL(compressed_header());
  55. dbgln("Finished reading compressed header");
  56. SAFE_CALL(m_bit_stream->exit_bool());
  57. SAFE_CALL(decode_tiles());
  58. SAFE_CALL(refresh_probs());
  59. dbgln("Finished reading frame!");
  60. return true;
  61. }
  62. bool Parser::trailing_bits()
  63. {
  64. while (m_bit_stream->get_position() & 7u)
  65. RESERVED_ZERO;
  66. return true;
  67. }
  68. bool Parser::refresh_probs()
  69. {
  70. if (!m_error_resilient_mode && !m_frame_parallel_decoding_mode) {
  71. m_probability_tables->load_probs(m_frame_context_idx);
  72. SAFE_CALL(m_decoder.adapt_coef_probs());
  73. if (!m_frame_is_intra) {
  74. m_probability_tables->load_probs2(m_frame_context_idx);
  75. SAFE_CALL(m_decoder.adapt_non_coef_probs());
  76. }
  77. }
  78. if (m_refresh_frame_context)
  79. m_probability_tables->save_probs(m_frame_context_idx);
  80. return true;
  81. }
  82. /* (6.2) */
  83. bool Parser::uncompressed_header()
  84. {
  85. auto frame_marker = m_bit_stream->read_f(2);
  86. if (frame_marker != 2)
  87. return false;
  88. auto profile_low_bit = m_bit_stream->read_bit();
  89. auto profile_high_bit = m_bit_stream->read_bit();
  90. m_profile = (profile_high_bit << 1u) + profile_low_bit;
  91. if (m_profile == 3)
  92. RESERVED_ZERO;
  93. auto show_existing_frame = m_bit_stream->read_bit();
  94. if (show_existing_frame) {
  95. m_frame_to_show_map_index = m_bit_stream->read_f(3);
  96. m_header_size_in_bytes = 0;
  97. m_refresh_frame_flags = 0;
  98. m_loop_filter_level = 0;
  99. return true;
  100. }
  101. m_last_frame_type = m_frame_type;
  102. m_frame_type = read_frame_type();
  103. m_show_frame = m_bit_stream->read_bit();
  104. m_error_resilient_mode = m_bit_stream->read_bit();
  105. if (m_frame_type == KeyFrame) {
  106. SAFE_CALL(frame_sync_code());
  107. SAFE_CALL(color_config());
  108. SAFE_CALL(frame_size());
  109. SAFE_CALL(render_size());
  110. m_refresh_frame_flags = 0xFF;
  111. m_frame_is_intra = true;
  112. } else {
  113. m_frame_is_intra = !m_show_frame && m_bit_stream->read_bit();
  114. if (!m_error_resilient_mode) {
  115. m_reset_frame_context = m_bit_stream->read_f(2);
  116. } else {
  117. m_reset_frame_context = 0;
  118. }
  119. if (m_frame_is_intra) {
  120. SAFE_CALL(frame_sync_code());
  121. if (m_profile > 0) {
  122. SAFE_CALL(color_config());
  123. } else {
  124. m_color_space = Bt601;
  125. m_subsampling_x = true;
  126. m_subsampling_y = true;
  127. m_bit_depth = 8;
  128. }
  129. m_refresh_frame_flags = m_bit_stream->read_f8();
  130. SAFE_CALL(frame_size());
  131. SAFE_CALL(render_size());
  132. } else {
  133. m_refresh_frame_flags = m_bit_stream->read_f8();
  134. for (auto i = 0; i < 3; i++) {
  135. m_ref_frame_idx[i] = m_bit_stream->read_f(3);
  136. m_ref_frame_sign_bias[LastFrame + i] = m_bit_stream->read_bit();
  137. }
  138. SAFE_CALL(frame_size_with_refs());
  139. m_allow_high_precision_mv = m_bit_stream->read_bit();
  140. SAFE_CALL(read_interpolation_filter());
  141. }
  142. }
  143. if (!m_error_resilient_mode) {
  144. m_refresh_frame_context = m_bit_stream->read_bit();
  145. m_frame_parallel_decoding_mode = m_bit_stream->read_bit();
  146. } else {
  147. m_refresh_frame_context = false;
  148. m_frame_parallel_decoding_mode = true;
  149. }
  150. m_frame_context_idx = m_bit_stream->read_f(2);
  151. if (m_frame_is_intra || m_error_resilient_mode) {
  152. SAFE_CALL(setup_past_independence());
  153. if (m_frame_type == KeyFrame || m_error_resilient_mode || m_reset_frame_context == 3) {
  154. for (auto i = 0; i < 4; i++) {
  155. m_probability_tables->save_probs(i);
  156. }
  157. } else if (m_reset_frame_context == 2) {
  158. m_probability_tables->save_probs(m_frame_context_idx);
  159. }
  160. m_frame_context_idx = 0;
  161. }
  162. SAFE_CALL(loop_filter_params());
  163. SAFE_CALL(quantization_params());
  164. SAFE_CALL(segmentation_params());
  165. SAFE_CALL(tile_info());
  166. m_header_size_in_bytes = m_bit_stream->read_f16();
  167. return true;
  168. }
  169. bool Parser::frame_sync_code()
  170. {
  171. if (m_bit_stream->read_byte() != 0x49)
  172. return false;
  173. if (m_bit_stream->read_byte() != 0x83)
  174. return false;
  175. return m_bit_stream->read_byte() == 0x42;
  176. }
  177. bool Parser::color_config()
  178. {
  179. if (m_profile >= 2) {
  180. m_bit_depth = m_bit_stream->read_bit() ? 12 : 10;
  181. } else {
  182. m_bit_depth = 8;
  183. }
  184. auto color_space = m_bit_stream->read_f(3);
  185. if (color_space > RGB)
  186. return false;
  187. m_color_space = static_cast<ColorSpace>(color_space);
  188. if (color_space != RGB) {
  189. m_color_range = read_color_range();
  190. if (m_profile == 1 || m_profile == 3) {
  191. m_subsampling_x = m_bit_stream->read_bit();
  192. m_subsampling_y = m_bit_stream->read_bit();
  193. RESERVED_ZERO;
  194. } else {
  195. m_subsampling_x = true;
  196. m_subsampling_y = true;
  197. }
  198. } else {
  199. m_color_range = FullSwing;
  200. if (m_profile == 1 || m_profile == 3) {
  201. m_subsampling_x = false;
  202. m_subsampling_y = false;
  203. RESERVED_ZERO;
  204. }
  205. }
  206. return true;
  207. }
  208. bool Parser::frame_size()
  209. {
  210. m_frame_width = m_bit_stream->read_f16() + 1;
  211. m_frame_height = m_bit_stream->read_f16() + 1;
  212. SAFE_CALL(compute_image_size());
  213. return true;
  214. }
  215. bool Parser::render_size()
  216. {
  217. if (m_bit_stream->read_bit()) {
  218. m_render_width = m_bit_stream->read_f16() + 1;
  219. m_render_height = m_bit_stream->read_f16() + 1;
  220. } else {
  221. m_render_width = m_frame_width;
  222. m_render_height = m_frame_height;
  223. }
  224. return true;
  225. }
  226. bool Parser::frame_size_with_refs()
  227. {
  228. bool found_ref;
  229. for (auto frame_index : m_ref_frame_idx) {
  230. found_ref = m_bit_stream->read_bit();
  231. if (found_ref) {
  232. dbgln("Reading size from ref frame {}", frame_index);
  233. m_frame_width = m_ref_frame_width[frame_index];
  234. m_frame_height = m_ref_frame_height[frame_index];
  235. break;
  236. }
  237. }
  238. if (!found_ref) {
  239. SAFE_CALL(frame_size());
  240. } else {
  241. SAFE_CALL(compute_image_size());
  242. }
  243. SAFE_CALL(render_size());
  244. return true;
  245. }
  246. bool Parser::compute_image_size()
  247. {
  248. m_mi_cols = (m_frame_width + 7u) >> 3u;
  249. m_mi_rows = (m_frame_height + 7u) >> 3u;
  250. m_sb64_cols = (m_mi_cols + 7u) >> 3u;
  251. m_sb64_rows = (m_mi_rows + 7u) >> 3u;
  252. return true;
  253. }
  254. bool Parser::read_interpolation_filter()
  255. {
  256. if (m_bit_stream->read_bit()) {
  257. m_interpolation_filter = Switchable;
  258. } else {
  259. m_interpolation_filter = literal_to_type[m_bit_stream->read_f(2)];
  260. }
  261. return true;
  262. }
  263. bool Parser::loop_filter_params()
  264. {
  265. m_loop_filter_level = m_bit_stream->read_f(6);
  266. m_loop_filter_sharpness = m_bit_stream->read_f(3);
  267. m_loop_filter_delta_enabled = m_bit_stream->read_bit();
  268. if (m_loop_filter_delta_enabled) {
  269. if (m_bit_stream->read_bit()) {
  270. for (auto& loop_filter_ref_delta : m_loop_filter_ref_deltas) {
  271. if (m_bit_stream->read_bit())
  272. loop_filter_ref_delta = m_bit_stream->read_s(6);
  273. }
  274. for (auto& loop_filter_mode_delta : m_loop_filter_mode_deltas) {
  275. if (m_bit_stream->read_bit())
  276. loop_filter_mode_delta = m_bit_stream->read_s(6);
  277. }
  278. }
  279. }
  280. return true;
  281. }
  282. bool Parser::quantization_params()
  283. {
  284. auto base_q_idx = m_bit_stream->read_byte();
  285. auto delta_q_y_dc = read_delta_q();
  286. auto delta_q_uv_dc = read_delta_q();
  287. auto delta_q_uv_ac = read_delta_q();
  288. m_lossless = base_q_idx == 0 && delta_q_y_dc == 0 && delta_q_uv_dc == 0 && delta_q_uv_ac == 0;
  289. return true;
  290. }
  291. i8 Parser::read_delta_q()
  292. {
  293. if (m_bit_stream->read_bit())
  294. return m_bit_stream->read_s(4);
  295. return 0;
  296. }
  297. bool Parser::segmentation_params()
  298. {
  299. m_segmentation_enabled = m_bit_stream->read_bit();
  300. if (!m_segmentation_enabled)
  301. return true;
  302. m_segmentation_update_map = m_bit_stream->read_bit();
  303. if (m_segmentation_update_map) {
  304. for (auto& segmentation_tree_prob : m_segmentation_tree_probs)
  305. segmentation_tree_prob = read_prob();
  306. m_segmentation_temporal_update = m_bit_stream->read_bit();
  307. for (auto& segmentation_pred_prob : m_segmentation_pred_prob)
  308. segmentation_pred_prob = m_segmentation_temporal_update ? read_prob() : 255;
  309. }
  310. SAFE_CALL(m_bit_stream->read_bit());
  311. m_segmentation_abs_or_delta_update = m_bit_stream->read_bit();
  312. for (auto i = 0; i < MAX_SEGMENTS; i++) {
  313. for (auto j = 0; j < SEG_LVL_MAX; j++) {
  314. auto feature_value = 0;
  315. auto feature_enabled = m_bit_stream->read_bit();
  316. m_feature_enabled[i][j] = feature_enabled;
  317. if (feature_enabled) {
  318. auto bits_to_read = segmentation_feature_bits[j];
  319. feature_value = m_bit_stream->read_f(bits_to_read);
  320. if (segmentation_feature_signed[j]) {
  321. if (m_bit_stream->read_bit())
  322. feature_value = -feature_value;
  323. }
  324. }
  325. m_feature_data[i][j] = feature_value;
  326. }
  327. }
  328. return true;
  329. }
  330. u8 Parser::read_prob()
  331. {
  332. if (m_bit_stream->read_bit())
  333. return m_bit_stream->read_byte();
  334. return 255;
  335. }
  336. bool Parser::tile_info()
  337. {
  338. auto min_log2_tile_cols = calc_min_log2_tile_cols();
  339. auto max_log2_tile_cols = calc_max_log2_tile_cols();
  340. m_tile_cols_log2 = min_log2_tile_cols;
  341. while (m_tile_cols_log2 < max_log2_tile_cols) {
  342. if (m_bit_stream->read_bit())
  343. m_tile_cols_log2++;
  344. else
  345. break;
  346. }
  347. m_tile_rows_log2 = m_bit_stream->read_bit();
  348. if (m_tile_rows_log2) {
  349. m_tile_rows_log2 += m_bit_stream->read_bit();
  350. }
  351. return true;
  352. }
  353. u16 Parser::calc_min_log2_tile_cols()
  354. {
  355. auto min_log_2 = 0u;
  356. while ((u32)(MAX_TILE_WIDTH_B64 << min_log_2) < m_sb64_cols)
  357. min_log_2++;
  358. return min_log_2;
  359. }
  360. u16 Parser::calc_max_log2_tile_cols()
  361. {
  362. u16 max_log_2 = 1;
  363. while ((m_sb64_cols >> max_log_2) >= MIN_TILE_WIDTH_B64)
  364. max_log_2++;
  365. return max_log_2 - 1;
  366. }
  367. bool Parser::setup_past_independence()
  368. {
  369. for (auto i = 0; i < 8; i++) {
  370. for (auto j = 0; j < 4; j++) {
  371. m_feature_data[i][j] = 0;
  372. m_feature_enabled[i][j] = false;
  373. }
  374. }
  375. m_segmentation_abs_or_delta_update = false;
  376. if (m_prev_segment_ids)
  377. free(m_prev_segment_ids);
  378. m_prev_segment_ids = static_cast<u8*>(kmalloc_array(m_mi_rows, m_mi_cols));
  379. m_loop_filter_delta_enabled = true;
  380. m_loop_filter_ref_deltas[IntraFrame] = 1;
  381. m_loop_filter_ref_deltas[LastFrame] = 0;
  382. m_loop_filter_ref_deltas[GoldenFrame] = -1;
  383. m_loop_filter_ref_deltas[AltRefFrame] = -1;
  384. for (auto& loop_filter_mode_delta : m_loop_filter_mode_deltas)
  385. loop_filter_mode_delta = 0;
  386. m_probability_tables->reset_probs();
  387. return true;
  388. }
  389. bool Parser::compressed_header()
  390. {
  391. SAFE_CALL(read_tx_mode());
  392. if (m_tx_mode == TXModeSelect)
  393. SAFE_CALL(tx_mode_probs());
  394. SAFE_CALL(read_coef_probs());
  395. SAFE_CALL(read_skip_prob());
  396. if (!m_frame_is_intra) {
  397. SAFE_CALL(read_inter_mode_probs());
  398. if (m_interpolation_filter == Switchable)
  399. SAFE_CALL(read_interp_filter_probs());
  400. SAFE_CALL(read_is_inter_probs());
  401. SAFE_CALL(frame_reference_mode());
  402. SAFE_CALL(frame_reference_mode_probs());
  403. SAFE_CALL(read_y_mode_probs());
  404. SAFE_CALL(read_partition_probs());
  405. SAFE_CALL(mv_probs());
  406. }
  407. return true;
  408. }
  409. bool Parser::read_tx_mode()
  410. {
  411. if (m_lossless) {
  412. m_tx_mode = Only_4x4;
  413. } else {
  414. auto tx_mode = m_bit_stream->read_literal(2);
  415. if (tx_mode == Allow_32x32)
  416. tx_mode += m_bit_stream->read_literal(1);
  417. m_tx_mode = static_cast<TXMode>(tx_mode);
  418. }
  419. return true;
  420. }
  421. bool Parser::tx_mode_probs()
  422. {
  423. auto& tx_probs = m_probability_tables->tx_probs();
  424. for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
  425. for (auto j = 0; j < TX_SIZES - 3; j++)
  426. tx_probs[TX_8x8][i][j] = diff_update_prob(tx_probs[TX_8x8][i][j]);
  427. }
  428. for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
  429. for (auto j = 0; j < TX_SIZES - 2; j++)
  430. tx_probs[TX_16x16][i][j] = diff_update_prob(tx_probs[TX_16x16][i][j]);
  431. }
  432. for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
  433. for (auto j = 0; j < TX_SIZES - 1; j++)
  434. tx_probs[TX_32x32][i][j] = diff_update_prob(tx_probs[TX_32x32][i][j]);
  435. }
  436. return true;
  437. }
  438. u8 Parser::diff_update_prob(u8 prob)
  439. {
  440. if (m_bit_stream->read_bool(252)) {
  441. auto delta_prob = decode_term_subexp();
  442. prob = inv_remap_prob(delta_prob, prob);
  443. }
  444. return prob;
  445. }
  446. u8 Parser::decode_term_subexp()
  447. {
  448. if (m_bit_stream->read_literal(1) == 0)
  449. return m_bit_stream->read_literal(4);
  450. if (m_bit_stream->read_literal(1) == 0)
  451. return m_bit_stream->read_literal(4) + 16;
  452. if (m_bit_stream->read_literal(1) == 0)
  453. return m_bit_stream->read_literal(4) + 32;
  454. auto v = m_bit_stream->read_literal(7);
  455. if (v < 65)
  456. return v + 64;
  457. return (v << 1u) - 1 + m_bit_stream->read_literal(1);
  458. }
  459. u8 Parser::inv_remap_prob(u8 delta_prob, u8 prob)
  460. {
  461. u8 m = prob - 1;
  462. auto v = inv_map_table[delta_prob];
  463. if ((m << 1u) <= 255)
  464. return 1 + inv_recenter_nonneg(v, m);
  465. return 255 - inv_recenter_nonneg(v, 254 - m);
  466. }
  467. u8 Parser::inv_recenter_nonneg(u8 v, u8 m)
  468. {
  469. if (v > 2 * m)
  470. return v;
  471. if (v & 1u)
  472. return m - ((v + 1u) >> 1u);
  473. return m + (v >> 1u);
  474. }
  475. bool Parser::read_coef_probs()
  476. {
  477. m_max_tx_size = tx_mode_to_biggest_tx_size[m_tx_mode];
  478. for (auto tx_size = TX_4x4; tx_size <= m_max_tx_size; tx_size = static_cast<TXSize>(static_cast<int>(tx_size) + 1)) {
  479. auto update_probs = m_bit_stream->read_literal(1);
  480. if (update_probs == 1) {
  481. for (auto i = 0; i < 2; i++) {
  482. for (auto j = 0; j < 2; j++) {
  483. for (auto k = 0; k < 6; k++) {
  484. auto max_l = (k == 0) ? 3 : 6;
  485. for (auto l = 0; l < max_l; l++) {
  486. for (auto m = 0; m < 3; m++) {
  487. auto& coef_probs = m_probability_tables->coef_probs()[tx_size];
  488. coef_probs[i][j][k][l][m] = diff_update_prob(coef_probs[i][j][k][l][m]);
  489. }
  490. }
  491. }
  492. }
  493. }
  494. }
  495. }
  496. return true;
  497. }
  498. bool Parser::read_skip_prob()
  499. {
  500. for (auto i = 0; i < SKIP_CONTEXTS; i++)
  501. m_probability_tables->skip_prob()[i] = diff_update_prob(m_probability_tables->skip_prob()[i]);
  502. return true;
  503. }
  504. bool Parser::read_inter_mode_probs()
  505. {
  506. for (auto i = 0; i < INTER_MODE_CONTEXTS; i++) {
  507. for (auto j = 0; j < INTER_MODES - 1; j++)
  508. m_probability_tables->inter_mode_probs()[i][j] = diff_update_prob(m_probability_tables->inter_mode_probs()[i][j]);
  509. }
  510. return true;
  511. }
  512. bool Parser::read_interp_filter_probs()
  513. {
  514. for (auto i = 0; i < INTERP_FILTER_CONTEXTS; i++) {
  515. for (auto j = 0; j < SWITCHABLE_FILTERS - 1; j++)
  516. m_probability_tables->interp_filter_probs()[i][j] = diff_update_prob(m_probability_tables->interp_filter_probs()[i][j]);
  517. }
  518. return true;
  519. }
  520. bool Parser::read_is_inter_probs()
  521. {
  522. for (auto i = 0; i < IS_INTER_CONTEXTS; i++)
  523. m_probability_tables->is_inter_prob()[i] = diff_update_prob(m_probability_tables->is_inter_prob()[i]);
  524. return true;
  525. }
  526. bool Parser::frame_reference_mode()
  527. {
  528. auto compound_reference_allowed = false;
  529. for (size_t i = 2; i <= REFS_PER_FRAME; i++) {
  530. if (m_ref_frame_sign_bias[i] != m_ref_frame_sign_bias[1])
  531. compound_reference_allowed = true;
  532. }
  533. if (compound_reference_allowed) {
  534. auto non_single_reference = m_bit_stream->read_literal(1);
  535. if (non_single_reference == 0) {
  536. m_reference_mode = SingleReference;
  537. } else {
  538. auto reference_select = m_bit_stream->read_literal(1);
  539. if (reference_select == 0)
  540. m_reference_mode = CompoundReference;
  541. else
  542. m_reference_mode = ReferenceModeSelect;
  543. SAFE_CALL(setup_compound_reference_mode());
  544. }
  545. } else {
  546. m_reference_mode = SingleReference;
  547. }
  548. return true;
  549. }
  550. bool Parser::frame_reference_mode_probs()
  551. {
  552. if (m_reference_mode == ReferenceModeSelect) {
  553. for (auto i = 0; i < COMP_MODE_CONTEXTS; i++) {
  554. auto& comp_mode_prob = m_probability_tables->comp_mode_prob();
  555. comp_mode_prob[i] = diff_update_prob(comp_mode_prob[i]);
  556. }
  557. }
  558. if (m_reference_mode != CompoundReference) {
  559. for (auto i = 0; i < REF_CONTEXTS; i++) {
  560. auto& single_ref_prob = m_probability_tables->single_ref_prob();
  561. single_ref_prob[i][0] = diff_update_prob(single_ref_prob[i][0]);
  562. single_ref_prob[i][1] = diff_update_prob(single_ref_prob[i][1]);
  563. }
  564. }
  565. if (m_reference_mode != SingleReference) {
  566. for (auto i = 0; i < REF_CONTEXTS; i++) {
  567. auto& comp_ref_prob = m_probability_tables->comp_ref_prob();
  568. comp_ref_prob[i] = diff_update_prob(comp_ref_prob[i]);
  569. }
  570. }
  571. return true;
  572. }
  573. bool Parser::read_y_mode_probs()
  574. {
  575. for (auto i = 0; i < BLOCK_SIZE_GROUPS; i++) {
  576. for (auto j = 0; j < INTRA_MODES - 1; j++) {
  577. auto& y_mode_probs = m_probability_tables->y_mode_probs();
  578. y_mode_probs[i][j] = diff_update_prob(y_mode_probs[i][j]);
  579. }
  580. }
  581. return true;
  582. }
  583. bool Parser::read_partition_probs()
  584. {
  585. for (auto i = 0; i < PARTITION_CONTEXTS; i++) {
  586. for (auto j = 0; j < PARTITION_TYPES - 1; j++) {
  587. auto& partition_probs = m_probability_tables->partition_probs();
  588. partition_probs[i][j] = diff_update_prob(partition_probs[i][j]);
  589. }
  590. }
  591. return true;
  592. }
  593. bool Parser::mv_probs()
  594. {
  595. for (auto j = 0; j < MV_JOINTS - 1; j++) {
  596. auto& mv_joint_probs = m_probability_tables->mv_joint_probs();
  597. mv_joint_probs[j] = update_mv_prob(mv_joint_probs[j]);
  598. }
  599. for (auto i = 0; i < 2; i++) {
  600. auto& mv_sign_prob = m_probability_tables->mv_sign_prob();
  601. mv_sign_prob[i] = update_mv_prob(mv_sign_prob[i]);
  602. for (auto j = 0; j < MV_CLASSES - 1; j++) {
  603. auto& mv_class_probs = m_probability_tables->mv_class_probs();
  604. mv_class_probs[i][j] = update_mv_prob(mv_class_probs[i][j]);
  605. }
  606. auto& mv_class0_bit_prob = m_probability_tables->mv_class0_bit_prob();
  607. mv_class0_bit_prob[i] = update_mv_prob(mv_class0_bit_prob[i]);
  608. for (auto j = 0; j < MV_OFFSET_BITS; j++) {
  609. auto& mv_bits_prob = m_probability_tables->mv_bits_prob();
  610. mv_bits_prob[i][j] = update_mv_prob(mv_bits_prob[i][j]);
  611. }
  612. }
  613. for (auto i = 0; i < 2; i++) {
  614. for (auto j = 0; j < CLASS0_SIZE; j++) {
  615. for (auto k = 0; k < MV_FR_SIZE - 1; k++) {
  616. auto& mv_class0_fr_probs = m_probability_tables->mv_class0_fr_probs();
  617. mv_class0_fr_probs[i][j][k] = update_mv_prob(mv_class0_fr_probs[i][j][k]);
  618. }
  619. }
  620. for (auto k = 0; k < MV_FR_SIZE - 1; k++) {
  621. auto& mv_fr_probs = m_probability_tables->mv_fr_probs();
  622. mv_fr_probs[i][k] = update_mv_prob(mv_fr_probs[i][k]);
  623. }
  624. }
  625. if (m_allow_high_precision_mv) {
  626. for (auto i = 0; i < 2; i++) {
  627. auto& mv_class0_hp_prob = m_probability_tables->mv_class0_hp_prob();
  628. auto& mv_hp_prob = m_probability_tables->mv_hp_prob();
  629. mv_class0_hp_prob[i] = update_mv_prob(mv_class0_hp_prob[i]);
  630. mv_hp_prob[i] = update_mv_prob(mv_hp_prob[i]);
  631. }
  632. }
  633. return true;
  634. }
  635. u8 Parser::update_mv_prob(u8 prob)
  636. {
  637. if (m_bit_stream->read_bool(252)) {
  638. return (m_bit_stream->read_literal(7) << 1u) | 1u;
  639. }
  640. return prob;
  641. }
  642. bool Parser::setup_compound_reference_mode()
  643. {
  644. if (m_ref_frame_sign_bias[LastFrame] == m_ref_frame_sign_bias[GoldenFrame]) {
  645. m_comp_fixed_ref = AltRefFrame;
  646. m_comp_var_ref[0] = LastFrame;
  647. m_comp_var_ref[1] = GoldenFrame;
  648. } else if (m_ref_frame_sign_bias[LastFrame] == m_ref_frame_sign_bias[AltRefFrame]) {
  649. m_comp_fixed_ref = GoldenFrame;
  650. m_comp_var_ref[0] = LastFrame;
  651. m_comp_var_ref[1] = AltRefFrame;
  652. } else {
  653. m_comp_fixed_ref = LastFrame;
  654. m_comp_var_ref[0] = GoldenFrame;
  655. m_comp_var_ref[1] = AltRefFrame;
  656. }
  657. return true;
  658. }
  659. void Parser::allocate_tile_data()
  660. {
  661. auto dimensions = m_mi_rows * m_mi_cols;
  662. if (dimensions == m_allocated_dimensions)
  663. return;
  664. cleanup_tile_allocations();
  665. m_skips = static_cast<bool*>(kmalloc_array(dimensions, sizeof(bool)));
  666. m_tx_sizes = static_cast<TXSize*>(kmalloc_array(dimensions, sizeof(TXSize)));
  667. m_mi_sizes = static_cast<u32*>(kmalloc_array(dimensions, sizeof(u32)));
  668. m_y_modes = static_cast<u8*>(kmalloc_array(dimensions, sizeof(u8)));
  669. m_segment_ids = static_cast<u8*>(kmalloc_array(dimensions, sizeof(u8)));
  670. m_ref_frames = static_cast<ReferenceFrame*>(kmalloc_array(dimensions, 2, sizeof(ReferenceFrame)));
  671. m_interp_filters = static_cast<InterpolationFilter*>(kmalloc_array(dimensions, sizeof(InterpolationFilter)));
  672. m_mvs = static_cast<MV*>(kmalloc_array(dimensions, 2, sizeof(MV)));
  673. m_sub_mvs = static_cast<MV*>(kmalloc_array(dimensions, 8, sizeof(MV)));
  674. m_sub_modes = static_cast<IntraMode*>(kmalloc_array(dimensions, 4, sizeof(IntraMode)));
  675. m_allocated_dimensions = dimensions;
  676. }
  677. bool Parser::decode_tiles()
  678. {
  679. auto tile_cols = 1 << m_tile_cols_log2;
  680. auto tile_rows = 1 << m_tile_rows_log2;
  681. allocate_tile_data();
  682. SAFE_CALL(clear_above_context());
  683. for (auto tile_row = 0; tile_row < tile_rows; tile_row++) {
  684. for (auto tile_col = 0; tile_col < tile_cols; tile_col++) {
  685. auto last_tile = (tile_row == tile_rows - 1) && (tile_col == tile_cols - 1);
  686. auto tile_size = last_tile ? m_bit_stream->bytes_remaining() : m_bit_stream->read_f(32);
  687. m_mi_row_start = get_tile_offset(tile_row, m_mi_rows, m_tile_rows_log2);
  688. m_mi_row_end = get_tile_offset(tile_row + 1, m_mi_rows, m_tile_rows_log2);
  689. m_mi_col_start = get_tile_offset(tile_col, m_mi_cols, m_tile_cols_log2);
  690. m_mi_col_end = get_tile_offset(tile_col + 1, m_mi_cols, m_tile_cols_log2);
  691. SAFE_CALL(m_bit_stream->init_bool(tile_size));
  692. SAFE_CALL(decode_tile());
  693. SAFE_CALL(m_bit_stream->exit_bool());
  694. }
  695. }
  696. return true;
  697. }
  698. void Parser::clear_context(Vector<u8>& context, size_t size)
  699. {
  700. context.resize_and_keep_capacity(size);
  701. __builtin_memset(context.data(), 0, sizeof(u8) * size);
  702. }
  703. void Parser::clear_context(Vector<Vector<u8>>& context, size_t outer_size, size_t inner_size)
  704. {
  705. if (context.size() < outer_size)
  706. context.resize(outer_size);
  707. for (auto& sub_vector : context)
  708. clear_context(sub_vector, inner_size);
  709. }
  710. bool Parser::clear_above_context()
  711. {
  712. clear_context(m_above_nonzero_context, 3, 2 * m_mi_cols);
  713. clear_context(m_above_seg_pred_context, m_mi_cols);
  714. clear_context(m_above_partition_context, m_sb64_cols * 8);
  715. return true;
  716. }
  717. u32 Parser::get_tile_offset(u32 tile_num, u32 mis, u32 tile_size_log2)
  718. {
  719. u32 super_blocks = (mis + 7) >> 3u;
  720. u32 offset = ((tile_num * super_blocks) >> tile_size_log2) << 3u;
  721. return min(offset, mis);
  722. }
  723. bool Parser::decode_tile()
  724. {
  725. for (auto row = m_mi_row_start; row < m_mi_row_end; row += 8) {
  726. SAFE_CALL(clear_left_context());
  727. m_row = row;
  728. for (auto col = m_mi_col_start; col < m_mi_col_end; col += 8) {
  729. m_col = col;
  730. SAFE_CALL(decode_partition(row, col, Block_64x64));
  731. }
  732. }
  733. return true;
  734. }
  735. bool Parser::clear_left_context()
  736. {
  737. clear_context(m_left_nonzero_context, 3, 2 * m_mi_rows);
  738. clear_context(m_left_seg_pred_context, m_mi_rows);
  739. clear_context(m_left_partition_context, m_sb64_rows * 8);
  740. return true;
  741. }
  742. bool Parser::decode_partition(u32 row, u32 col, u8 block_subsize)
  743. {
  744. if (row >= m_mi_rows || col >= m_mi_cols)
  745. return false;
  746. m_block_subsize = block_subsize;
  747. m_num_8x8 = num_8x8_blocks_wide_lookup[block_subsize];
  748. auto half_block_8x8 = m_num_8x8 >> 1;
  749. m_has_rows = (row + half_block_8x8) < m_mi_rows;
  750. m_has_cols = (col + half_block_8x8) < m_mi_cols;
  751. auto partition = m_tree_parser->parse_tree(SyntaxElementType::Partition);
  752. auto subsize = subsize_lookup[partition][block_subsize];
  753. if (subsize < Block_8x8 || partition == PartitionNone) {
  754. SAFE_CALL(decode_block(row, col, subsize));
  755. } else if (partition == PartitionHorizontal) {
  756. SAFE_CALL(decode_block(row, col, subsize));
  757. if (m_has_rows)
  758. SAFE_CALL(decode_block(row + half_block_8x8, col, subsize));
  759. } else if (partition == PartitionVertical) {
  760. SAFE_CALL(decode_block(row, col, subsize));
  761. if (m_has_cols)
  762. SAFE_CALL(decode_block(row, col + half_block_8x8, subsize));
  763. } else {
  764. SAFE_CALL(decode_partition(row, col, subsize));
  765. SAFE_CALL(decode_partition(row, col + half_block_8x8, subsize));
  766. SAFE_CALL(decode_partition(row + half_block_8x8, col, subsize));
  767. SAFE_CALL(decode_partition(row + half_block_8x8, col + half_block_8x8, subsize));
  768. }
  769. if (block_subsize == Block_8x8 || partition != PartitionSplit) {
  770. for (size_t i = 0; i < m_num_8x8; i++) {
  771. m_above_partition_context[col + i] = 15 >> b_width_log2_lookup[subsize];
  772. m_left_partition_context[row + i] = 15 >> b_width_log2_lookup[subsize];
  773. }
  774. }
  775. return true;
  776. }
  777. bool Parser::decode_block(u32 row, u32 col, u8 subsize)
  778. {
  779. m_mi_row = row;
  780. m_mi_col = col;
  781. m_mi_size = subsize;
  782. m_available_u = row > 0;
  783. m_available_l = col > m_mi_col_start;
  784. SAFE_CALL(mode_info());
  785. m_eob_total = 0;
  786. SAFE_CALL(residual());
  787. if (m_is_inter && subsize >= Block_8x8 && m_eob_total == 0)
  788. m_skip = true;
  789. for (size_t y = 0; y < num_8x8_blocks_high_lookup[subsize]; y++) {
  790. for (size_t x = 0; x < num_8x8_blocks_wide_lookup[subsize]; x++) {
  791. auto pos = (row + y) * m_mi_cols + (col + x);
  792. m_skips[pos] = m_skip;
  793. m_tx_sizes[pos] = m_tx_size;
  794. m_mi_sizes[pos] = m_mi_size;
  795. m_y_modes[pos] = m_y_mode;
  796. m_segment_ids[pos] = m_segment_id;
  797. for (size_t ref_list = 0; ref_list < 2; ref_list++)
  798. m_ref_frames[(pos * 2) + ref_list] = m_ref_frame[ref_list];
  799. if (m_is_inter) {
  800. m_interp_filters[pos] = m_interp_filter;
  801. for (size_t ref_list = 0; ref_list < 2; ref_list++) {
  802. auto pos_with_ref_list = (pos * 2 + ref_list) * sizeof(MV);
  803. m_mvs[pos_with_ref_list] = m_block_mvs[ref_list][3];
  804. for (size_t b = 0; b < 4; b++)
  805. m_sub_mvs[pos_with_ref_list * 4 + b * sizeof(MV)] = m_block_mvs[ref_list][b];
  806. }
  807. } else {
  808. for (size_t b = 0; b < 4; b++)
  809. m_sub_modes[pos * 4 + b] = static_cast<IntraMode>(m_block_sub_modes[b]);
  810. }
  811. }
  812. }
  813. return true;
  814. }
  815. bool Parser::mode_info()
  816. {
  817. if (m_frame_is_intra)
  818. return intra_frame_mode_info();
  819. return inter_frame_mode_info();
  820. }
  821. bool Parser::intra_frame_mode_info()
  822. {
  823. SAFE_CALL(intra_segment_id());
  824. SAFE_CALL(read_skip());
  825. SAFE_CALL(read_tx_size(true));
  826. m_ref_frame[0] = IntraFrame;
  827. m_ref_frame[1] = None;
  828. m_is_inter = false;
  829. if (m_mi_size >= Block_8x8) {
  830. m_default_intra_mode = m_tree_parser->parse_tree<IntraMode>(SyntaxElementType::DefaultIntraMode);
  831. m_y_mode = m_default_intra_mode;
  832. for (auto& block_sub_mode : m_block_sub_modes)
  833. block_sub_mode = m_y_mode;
  834. } else {
  835. m_num_4x4_w = num_4x4_blocks_wide_lookup[m_mi_size];
  836. m_num_4x4_h = num_4x4_blocks_high_lookup[m_mi_size];
  837. for (auto idy = 0; idy < 2; idy += m_num_4x4_h) {
  838. for (auto idx = 0; idx < 2; idx += m_num_4x4_w) {
  839. m_tree_parser->set_default_intra_mode_variables(idx, idy);
  840. m_default_intra_mode = m_tree_parser->parse_tree<IntraMode>(SyntaxElementType::DefaultIntraMode);
  841. for (auto y = 0; y < m_num_4x4_h; y++) {
  842. for (auto x = 0; x < m_num_4x4_w; x++) {
  843. auto index = (idy + y) * 2 + idx + x;
  844. if (index > 3)
  845. dbgln("Trying to access index {} on m_sub_modes", index);
  846. m_block_sub_modes[index] = m_default_intra_mode;
  847. }
  848. }
  849. }
  850. }
  851. m_y_mode = m_default_intra_mode;
  852. }
  853. m_uv_mode = m_tree_parser->parse_tree<u8>(SyntaxElementType::DefaultUVMode);
  854. return true;
  855. }
  856. bool Parser::intra_segment_id()
  857. {
  858. if (m_segmentation_enabled && m_segmentation_update_map)
  859. m_segment_id = m_tree_parser->parse_tree<u8>(SyntaxElementType::SegmentID);
  860. else
  861. m_segment_id = 0;
  862. return true;
  863. }
  864. bool Parser::read_skip()
  865. {
  866. if (seg_feature_active(SEG_LVL_SKIP))
  867. m_skip = true;
  868. else
  869. m_skip = m_tree_parser->parse_tree<bool>(SyntaxElementType::Skip);
  870. return true;
  871. }
  872. bool Parser::seg_feature_active(u8 feature)
  873. {
  874. return m_segmentation_enabled && m_feature_enabled[m_segment_id][feature];
  875. }
  876. bool Parser::read_tx_size(bool allow_select)
  877. {
  878. m_max_tx_size = max_txsize_lookup[m_mi_size];
  879. if (allow_select && m_tx_mode == TXModeSelect && m_mi_size >= Block_8x8)
  880. m_tx_size = m_tree_parser->parse_tree<TXSize>(SyntaxElementType::TXSize);
  881. else
  882. m_tx_size = min(m_max_tx_size, tx_mode_to_biggest_tx_size[m_tx_mode]);
  883. return true;
  884. }
  885. bool Parser::inter_frame_mode_info()
  886. {
  887. m_left_ref_frame[0] = m_available_l ? m_ref_frames[m_mi_row * m_mi_cols + (m_mi_col - 1)] : IntraFrame;
  888. m_above_ref_frame[0] = m_available_u ? m_ref_frames[(m_mi_row - 1) * m_mi_cols + m_mi_col] : IntraFrame;
  889. m_left_ref_frame[1] = m_available_l ? m_ref_frames[m_mi_row * m_mi_cols + (m_mi_col - 1) + 1] : None;
  890. m_above_ref_frame[1] = m_available_u ? m_ref_frames[(m_mi_row - 1) * m_mi_cols + m_mi_col + 1] : None;
  891. m_left_intra = m_left_ref_frame[0] <= IntraFrame;
  892. m_above_intra = m_above_ref_frame[0] <= IntraFrame;
  893. m_left_single = m_left_ref_frame[1] <= None;
  894. m_above_single = m_above_ref_frame[1] <= None;
  895. SAFE_CALL(inter_segment_id());
  896. SAFE_CALL(read_skip());
  897. SAFE_CALL(read_is_inter());
  898. SAFE_CALL(read_tx_size(!m_skip || !m_is_inter));
  899. if (m_is_inter) {
  900. SAFE_CALL(inter_block_mode_info());
  901. } else {
  902. SAFE_CALL(intra_block_mode_info());
  903. }
  904. return true;
  905. }
  906. bool Parser::inter_segment_id()
  907. {
  908. if (!m_segmentation_enabled) {
  909. m_segment_id = 0;
  910. return true;
  911. }
  912. auto predicted_segment_id = get_segment_id();
  913. if (!m_segmentation_update_map) {
  914. m_segment_id = predicted_segment_id;
  915. return true;
  916. }
  917. if (!m_segmentation_temporal_update) {
  918. m_segment_id = m_tree_parser->parse_tree<u8>(SyntaxElementType::SegmentID);
  919. return true;
  920. }
  921. auto seg_id_predicted = m_tree_parser->parse_tree<bool>(SyntaxElementType::SegIDPredicted);
  922. if (seg_id_predicted)
  923. m_segment_id = predicted_segment_id;
  924. else
  925. m_segment_id = m_tree_parser->parse_tree<u8>(SyntaxElementType::SegmentID);
  926. for (size_t i = 0; i < num_8x8_blocks_wide_lookup[m_mi_size]; i++)
  927. m_above_seg_pred_context[m_mi_col + i] = seg_id_predicted;
  928. for (size_t i = 0; i < num_8x8_blocks_high_lookup[m_mi_size]; i++)
  929. m_left_seg_pred_context[m_mi_row + i] = seg_id_predicted;
  930. return true;
  931. }
  932. u8 Parser::get_segment_id()
  933. {
  934. auto bw = num_8x8_blocks_wide_lookup[m_mi_size];
  935. auto bh = num_8x8_blocks_high_lookup[m_mi_size];
  936. auto xmis = min(m_mi_cols - m_mi_col, (u32)bw);
  937. auto ymis = min(m_mi_rows - m_mi_row, (u32)bh);
  938. u8 segment = 7;
  939. for (size_t y = 0; y < ymis; y++) {
  940. for (size_t x = 0; x < xmis; x++) {
  941. segment = min(segment, m_prev_segment_ids[(m_mi_row + y) + (m_mi_col + x)]);
  942. }
  943. }
  944. return segment;
  945. }
  946. bool Parser::read_is_inter()
  947. {
  948. if (seg_feature_active(SEG_LVL_REF_FRAME))
  949. m_is_inter = m_feature_data[m_segment_id][SEG_LVL_REF_FRAME] != IntraFrame;
  950. else
  951. m_is_inter = m_tree_parser->parse_tree<bool>(SyntaxElementType::IsInter);
  952. return true;
  953. }
  954. bool Parser::intra_block_mode_info()
  955. {
  956. m_ref_frame[0] = IntraFrame;
  957. m_ref_frame[1] = None;
  958. if (m_mi_size >= Block_8x8) {
  959. m_y_mode = m_tree_parser->parse_tree<u8>(SyntaxElementType::IntraMode);
  960. for (auto& block_sub_mode : m_block_sub_modes)
  961. block_sub_mode = m_y_mode;
  962. } else {
  963. m_num_4x4_w = num_4x4_blocks_wide_lookup[m_mi_size];
  964. m_num_4x4_h = num_4x4_blocks_high_lookup[m_mi_size];
  965. u8 sub_intra_mode;
  966. for (auto idy = 0; idy < 2; idy += m_num_4x4_h) {
  967. for (auto idx = 0; idx < 2; idx += m_num_4x4_w) {
  968. sub_intra_mode = m_tree_parser->parse_tree<u8>(SyntaxElementType::SubIntraMode);
  969. for (auto y = 0; y < m_num_4x4_h; y++) {
  970. for (auto x = 0; x < m_num_4x4_w; x++)
  971. m_block_sub_modes[(idy + y) * 2 + idx + x] = sub_intra_mode;
  972. }
  973. }
  974. }
  975. m_y_mode = sub_intra_mode;
  976. }
  977. m_uv_mode = m_tree_parser->parse_tree<u8>(SyntaxElementType::UVMode);
  978. return true;
  979. }
  980. bool Parser::inter_block_mode_info()
  981. {
  982. SAFE_CALL(read_ref_frames());
  983. for (auto j = 0; j < 2; j++) {
  984. if (m_ref_frame[j] > IntraFrame) {
  985. SAFE_CALL(find_mv_refs(m_ref_frame[j], -1));
  986. SAFE_CALL(find_best_ref_mvs(j));
  987. }
  988. }
  989. auto is_compound = m_ref_frame[1] > IntraFrame;
  990. if (seg_feature_active(SEG_LVL_SKIP)) {
  991. m_y_mode = ZeroMv;
  992. } else if (m_mi_size >= Block_8x8) {
  993. auto inter_mode = m_tree_parser->parse_tree(SyntaxElementType::InterMode);
  994. m_y_mode = NearestMv + inter_mode;
  995. }
  996. if (m_interpolation_filter == Switchable)
  997. m_interp_filter = m_tree_parser->parse_tree<InterpolationFilter>(SyntaxElementType::InterpFilter);
  998. else
  999. m_interp_filter = m_interpolation_filter;
  1000. if (m_mi_size < Block_8x8) {
  1001. m_num_4x4_w = num_4x4_blocks_wide_lookup[m_mi_size];
  1002. m_num_4x4_h = num_4x4_blocks_high_lookup[m_mi_size];
  1003. for (auto idy = 0; idy < 2; idy += m_num_4x4_h) {
  1004. for (auto idx = 0; idx < 2; idx += m_num_4x4_w) {
  1005. auto inter_mode = m_tree_parser->parse_tree(SyntaxElementType::InterMode);
  1006. m_y_mode = NearestMv + inter_mode;
  1007. if (m_y_mode == NearestMv || m_y_mode == NearMv) {
  1008. for (auto j = 0; j < 1 + is_compound; j++)
  1009. SAFE_CALL(append_sub8x8_mvs(idy * 2 + idx, j));
  1010. }
  1011. SAFE_CALL(assign_mv(is_compound));
  1012. for (auto y = 0; y < m_num_4x4_h; y++) {
  1013. for (auto x = 0; x < m_num_4x4_w; x++) {
  1014. auto block = (idy + y) * 2 + idx + x;
  1015. for (auto ref_list = 0; ref_list < 1 + is_compound; ref_list++) {
  1016. m_block_mvs[ref_list][block] = m_mv[ref_list];
  1017. }
  1018. }
  1019. }
  1020. }
  1021. }
  1022. return true;
  1023. }
  1024. SAFE_CALL(assign_mv(is_compound));
  1025. for (auto ref_list = 0; ref_list < 1 + is_compound; ref_list++) {
  1026. for (auto block = 0; block < 4; block++) {
  1027. m_block_mvs[ref_list][block] = m_mv[ref_list];
  1028. }
  1029. }
  1030. return true;
  1031. }
  1032. bool Parser::read_ref_frames()
  1033. {
  1034. if (seg_feature_active(SEG_LVL_REF_FRAME)) {
  1035. m_ref_frame[0] = static_cast<ReferenceFrame>(m_feature_data[m_segment_id][SEG_LVL_REF_FRAME]);
  1036. m_ref_frame[1] = None;
  1037. return true;
  1038. }
  1039. ReferenceMode comp_mode;
  1040. if (m_reference_mode == ReferenceModeSelect)
  1041. comp_mode = m_tree_parser->parse_tree<ReferenceMode>(SyntaxElementType::CompMode);
  1042. else
  1043. comp_mode = m_reference_mode;
  1044. if (comp_mode == CompoundReference) {
  1045. auto idx = m_ref_frame_sign_bias[m_comp_fixed_ref];
  1046. auto comp_ref = m_tree_parser->parse_tree(SyntaxElementType::CompRef);
  1047. m_ref_frame[idx] = m_comp_fixed_ref;
  1048. m_ref_frame[!idx] = m_comp_var_ref[comp_ref];
  1049. return true;
  1050. }
  1051. auto single_ref_p1 = m_tree_parser->parse_tree<bool>(SyntaxElementType::SingleRefP1);
  1052. if (single_ref_p1) {
  1053. auto single_ref_p2 = m_tree_parser->parse_tree<bool>(SyntaxElementType::SingleRefP2);
  1054. m_ref_frame[0] = single_ref_p2 ? AltRefFrame : GoldenFrame;
  1055. } else {
  1056. m_ref_frame[0] = LastFrame;
  1057. }
  1058. m_ref_frame[1] = None;
  1059. return true;
  1060. }
  1061. bool Parser::assign_mv(bool is_compound)
  1062. {
  1063. m_mv[1] = 0;
  1064. for (auto i = 0; i < 1 + is_compound; i++) {
  1065. if (m_y_mode == NewMv) {
  1066. SAFE_CALL(read_mv(i));
  1067. } else if (m_y_mode == NearestMv) {
  1068. m_mv[i] = m_nearest_mv[i];
  1069. } else if (m_y_mode == NearMv) {
  1070. m_mv[i] = m_near_mv[i];
  1071. } else {
  1072. m_mv[i] = 0;
  1073. }
  1074. }
  1075. return true;
  1076. }
  1077. bool Parser::read_mv(u8 ref)
  1078. {
  1079. m_use_hp = m_allow_high_precision_mv && use_mv_hp(m_best_mv[ref]);
  1080. MV diff_mv;
  1081. auto mv_joint = m_tree_parser->parse_tree<MvJoint>(SyntaxElementType::MVJoint);
  1082. if (mv_joint == MvJointHzvnz || mv_joint == MvJointHnzvnz)
  1083. diff_mv.set_row(read_mv_component(0));
  1084. if (mv_joint == MvJointHnzvz || mv_joint == MvJointHnzvnz)
  1085. diff_mv.set_col(read_mv_component(1));
  1086. m_mv[ref] = m_best_mv[ref] + diff_mv;
  1087. return true;
  1088. }
  1089. i32 Parser::read_mv_component(u8)
  1090. {
  1091. auto mv_sign = m_tree_parser->parse_tree<bool>(SyntaxElementType::MVSign);
  1092. auto mv_class = m_tree_parser->parse_tree<MvClass>(SyntaxElementType::MVClass);
  1093. u32 mag;
  1094. if (mv_class == MvClass0) {
  1095. auto mv_class0_bit = m_tree_parser->parse_tree<u32>(SyntaxElementType::MVClass0Bit);
  1096. auto mv_class0_fr = m_tree_parser->parse_tree<u32>(SyntaxElementType::MVClass0FR);
  1097. auto mv_class0_hp = m_tree_parser->parse_tree<u32>(SyntaxElementType::MVClass0HP);
  1098. mag = ((mv_class0_bit << 3) | (mv_class0_fr << 1) | mv_class0_hp) + 1;
  1099. } else {
  1100. auto d = 0;
  1101. for (size_t i = 0; i < mv_class; i++) {
  1102. auto mv_bit = m_tree_parser->parse_tree<bool>(SyntaxElementType::MVBit);
  1103. d |= mv_bit << i;
  1104. }
  1105. mag = CLASS0_SIZE << (mv_class + 2);
  1106. auto mv_fr = m_tree_parser->parse_tree<u32>(SyntaxElementType::MVFR);
  1107. auto mv_hp = m_tree_parser->parse_tree<u32>(SyntaxElementType::MVHP);
  1108. mag += ((d << 3) | (mv_fr << 1) | mv_hp) + 1;
  1109. }
  1110. return mv_sign ? -static_cast<i32>(mag) : static_cast<i32>(mag);
  1111. }
  1112. bool Parser::residual()
  1113. {
  1114. auto block_size = m_mi_size < Block_8x8 ? Block_8x8 : static_cast<BlockSubsize>(m_mi_size);
  1115. for (size_t plane = 0; plane < 3; plane++) {
  1116. auto tx_size = (plane > 0) ? get_uv_tx_size() : m_tx_size;
  1117. auto step = 1 << tx_size;
  1118. auto plane_size = get_plane_block_size(block_size, plane);
  1119. auto num_4x4_w = num_4x4_blocks_wide_lookup[plane_size];
  1120. auto num_4x4_h = num_4x4_blocks_high_lookup[plane_size];
  1121. auto sub_x = (plane > 0) ? m_subsampling_x : 0;
  1122. auto sub_y = (plane > 0) ? m_subsampling_y : 0;
  1123. auto base_x = (m_mi_col * 8) >> sub_x;
  1124. auto base_y = (m_mi_row * 8) >> sub_y;
  1125. if (m_is_inter) {
  1126. if (m_mi_size < Block_8x8) {
  1127. for (auto y = 0; y < num_4x4_h; y++) {
  1128. for (auto x = 0; x < num_4x4_w; x++) {
  1129. SAFE_CALL(m_decoder.predict_inter(plane, base_x + (4 * x), base_y + (4 * y), 4, 4, (y * num_4x4_w) + x));
  1130. }
  1131. }
  1132. } else {
  1133. SAFE_CALL(m_decoder.predict_inter(plane, base_x, base_y, num_4x4_w * 4, num_4x4_h * 4, 0));
  1134. }
  1135. }
  1136. auto max_x = (m_mi_cols * 8) >> sub_x;
  1137. auto max_y = (m_mi_rows * 8) >> sub_y;
  1138. auto block_index = 0;
  1139. for (auto y = 0; y < num_4x4_h; y += step) {
  1140. for (auto x = 0; x < num_4x4_w; x += step) {
  1141. auto start_x = base_x + (4 * x);
  1142. auto start_y = base_y + (4 * y);
  1143. auto non_zero = false;
  1144. if (start_x < max_x && start_y < max_y) {
  1145. if (!m_is_inter)
  1146. SAFE_CALL(m_decoder.predict_intra(plane, start_x, start_y, m_available_l || x > 0, m_available_u || y > 0, (x + step) < num_4x4_w, tx_size, block_index));
  1147. if (!m_skip) {
  1148. non_zero = tokens(plane, start_x, start_y, tx_size, block_index);
  1149. SAFE_CALL(m_decoder.reconstruct(plane, start_x, start_y, tx_size));
  1150. }
  1151. }
  1152. auto above_sub_context = m_above_nonzero_context[plane];
  1153. auto left_sub_context = m_left_nonzero_context[plane];
  1154. above_sub_context.resize_and_keep_capacity((start_x >> 2) + step);
  1155. left_sub_context.resize_and_keep_capacity((start_y >> 2) + step);
  1156. for (auto i = 0; i < step; i++) {
  1157. above_sub_context[(start_x >> 2) + i] = non_zero;
  1158. left_sub_context[(start_y >> 2) + i] = non_zero;
  1159. }
  1160. block_index++;
  1161. }
  1162. }
  1163. }
  1164. return true;
  1165. }
  1166. TXSize Parser::get_uv_tx_size()
  1167. {
  1168. if (m_mi_size < Block_8x8)
  1169. return TX_4x4;
  1170. return min(m_tx_size, max_txsize_lookup[get_plane_block_size(m_mi_size, 1)]);
  1171. }
  1172. BlockSubsize Parser::get_plane_block_size(u32 subsize, u8 plane)
  1173. {
  1174. auto sub_x = (plane > 0) ? m_subsampling_x : 0;
  1175. auto sub_y = (plane > 0) ? m_subsampling_y : 0;
  1176. return ss_size_lookup[subsize][sub_x][sub_y];
  1177. }
  1178. bool Parser::tokens(size_t plane, u32 start_x, u32 start_y, TXSize tx_size, u32 block_index)
  1179. {
  1180. m_tree_parser->set_start_x_and_y(start_x, start_y);
  1181. size_t segment_eob = 16 << (tx_size << 1);
  1182. auto scan = get_scan(plane, tx_size, block_index);
  1183. auto check_eob = true;
  1184. size_t c = 0;
  1185. for (; c < segment_eob; c++) {
  1186. auto pos = scan[c];
  1187. auto band = (tx_size == TX_4x4) ? coefband_4x4[c] : coefband_8x8plus[c];
  1188. m_tree_parser->set_tokens_variables(band, c, plane, tx_size, pos);
  1189. if (check_eob) {
  1190. auto more_coefs = m_tree_parser->parse_tree<bool>(SyntaxElementType::MoreCoefs);
  1191. if (!more_coefs)
  1192. break;
  1193. }
  1194. auto token = m_tree_parser->parse_tree<Token>(SyntaxElementType::Token);
  1195. m_token_cache[pos] = energy_class[token];
  1196. if (token == ZeroToken) {
  1197. m_tokens[pos] = 0;
  1198. check_eob = false;
  1199. } else {
  1200. i32 coef = static_cast<i32>(read_coef(token));
  1201. auto sign_bit = m_bit_stream->read_literal(1);
  1202. m_tokens[pos] = sign_bit ? -coef : coef;
  1203. check_eob = true;
  1204. }
  1205. }
  1206. auto non_zero = c > 0;
  1207. m_eob_total += non_zero;
  1208. for (size_t i = c; i < segment_eob; i++)
  1209. m_tokens[scan[i]] = 0;
  1210. return non_zero;
  1211. }
  1212. u32 const* Parser::get_scan(size_t plane, TXSize tx_size, u32 block_index)
  1213. {
  1214. if (plane > 0 || tx_size == TX_32x32) {
  1215. m_tx_type = DCT_DCT;
  1216. } else if (tx_size == TX_4x4) {
  1217. if (m_lossless || m_is_inter)
  1218. m_tx_type = DCT_DCT;
  1219. else
  1220. m_tx_type = mode_to_txfm_map[m_mi_size < Block_8x8 ? m_block_sub_modes[block_index] : m_y_mode];
  1221. } else {
  1222. m_tx_type = mode_to_txfm_map[m_y_mode];
  1223. }
  1224. if (tx_size == TX_4x4) {
  1225. if (m_tx_type == ADST_DCT)
  1226. return row_scan_4x4;
  1227. if (m_tx_type == DCT_ADST)
  1228. return col_scan_4x4;
  1229. return default_scan_4x4;
  1230. }
  1231. if (tx_size == TX_8x8) {
  1232. if (m_tx_type == ADST_DCT)
  1233. return row_scan_8x8;
  1234. if (m_tx_type == DCT_ADST)
  1235. return col_scan_8x8;
  1236. return default_scan_8x8;
  1237. }
  1238. if (tx_size == TX_16x16) {
  1239. if (m_tx_type == ADST_DCT)
  1240. return row_scan_16x16;
  1241. if (m_tx_type == DCT_ADST)
  1242. return col_scan_16x16;
  1243. return default_scan_16x16;
  1244. }
  1245. return default_scan_32x32;
  1246. }
  1247. u32 Parser::read_coef(Token token)
  1248. {
  1249. auto cat = extra_bits[token][0];
  1250. auto num_extra = extra_bits[token][1];
  1251. auto coef = extra_bits[token][2];
  1252. if (token == DctValCat6) {
  1253. for (size_t e = 0; e < (u8)(m_bit_depth - 8); e++) {
  1254. auto high_bit = m_bit_stream->read_bool(255);
  1255. coef += high_bit << (5 + m_bit_depth - e);
  1256. }
  1257. }
  1258. for (size_t e = 0; e < num_extra; e++) {
  1259. auto coef_bit = m_bit_stream->read_bool(cat_probs[cat][e]);
  1260. coef += coef_bit << (num_extra - 1 - e);
  1261. }
  1262. return coef;
  1263. }
  1264. bool Parser::find_mv_refs(ReferenceFrame, int)
  1265. {
  1266. // TODO: Implement
  1267. return true;
  1268. }
  1269. bool Parser::find_best_ref_mvs(int)
  1270. {
  1271. // TODO: Implement
  1272. return true;
  1273. }
  1274. bool Parser::append_sub8x8_mvs(u8, u8)
  1275. {
  1276. // TODO: Implement
  1277. return true;
  1278. }
  1279. bool Parser::use_mv_hp(const MV&)
  1280. {
  1281. // TODO: Implement
  1282. return true;
  1283. }
  1284. void Parser::dump_info()
  1285. {
  1286. outln("Frame dimensions: {}x{}", m_frame_width, m_frame_height);
  1287. outln("Render dimensions: {}x{}", m_render_width, m_render_height);
  1288. outln("Bit depth: {}", m_bit_depth);
  1289. outln("Interpolation filter: {}", (u8)m_interpolation_filter);
  1290. }
  1291. }