X25519.cpp 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364
  1. /*
  2. * Copyright (c) 2022, stelar7 <dudedbz@gmail.com>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/ByteReader.h>
  7. #include <AK/Endian.h>
  8. #include <AK/Random.h>
  9. #include <LibCrypto/Curves/X25519.h>
  10. namespace Crypto::Curves {
  11. static constexpr u8 BITS = 255;
  12. static constexpr u8 BYTES = 32;
  13. static constexpr u8 WORDS = 8;
  14. static constexpr u32 A24 = 121666;
  15. static void import_state(u32* state, ReadonlyBytes data)
  16. {
  17. for (auto i = 0; i < WORDS; i++) {
  18. u32 value = ByteReader::load32(data.offset_pointer(sizeof(u32) * i));
  19. state[i] = AK::convert_between_host_and_little_endian(value);
  20. }
  21. }
  22. static ErrorOr<ByteBuffer> export_state(u32* data)
  23. {
  24. auto buffer = TRY(ByteBuffer::create_uninitialized(BYTES));
  25. for (auto i = 0; i < WORDS; i++) {
  26. u32 value = AK::convert_between_host_and_little_endian(data[i]);
  27. ByteReader::store(buffer.offset_pointer(sizeof(u32) * i), value);
  28. }
  29. return buffer;
  30. }
  31. static void select(u32* state, u32* a, u32* b, u32 condition)
  32. {
  33. // If B < (2^255 - 19) then R = B, else R = A
  34. u32 mask = condition - 1;
  35. for (auto i = 0; i < WORDS; i++) {
  36. state[i] = (a[i] & mask) | (b[i] & ~mask);
  37. }
  38. }
  39. static void set(u32* state, u32 value)
  40. {
  41. state[0] = value;
  42. for (auto i = 1; i < WORDS; i++) {
  43. state[i] = 0;
  44. }
  45. }
  46. static void copy(u32* state, u32* value)
  47. {
  48. for (auto i = 0; i < WORDS; i++) {
  49. state[i] = value[i];
  50. }
  51. }
  52. static void conditional_swap(u32* first, u32* second, u32 condition)
  53. {
  54. u32 mask = ~condition + 1;
  55. for (auto i = 0; i < WORDS; i++) {
  56. u32 temp = mask & (first[i] ^ second[i]);
  57. first[i] ^= temp;
  58. second[i] ^= temp;
  59. }
  60. }
  61. static void modular_reduce(u32* state, u32* data)
  62. {
  63. // R = A mod p
  64. u64 temp = 19;
  65. u32 other[WORDS];
  66. for (auto i = 0; i < WORDS; i++) {
  67. temp += data[i];
  68. other[i] = temp & 0xFFFFFFFF;
  69. temp >>= 32;
  70. }
  71. // Compute B = A - (2^255 - 19)
  72. other[7] -= 0x80000000;
  73. u32 mask = (other[7] & 0x80000000) >> 31;
  74. select(state, other, data, mask);
  75. }
  76. static void modular_multiply_single(u32* state, u32* first, u32 second)
  77. {
  78. // Compute R = (A * B) mod p
  79. u64 temp = 0;
  80. u32 output[WORDS];
  81. for (auto i = 0; i < WORDS; i++) {
  82. temp += (u64)first[i] * second;
  83. output[i] = temp & 0xFFFFFFFF;
  84. temp >>= 32;
  85. }
  86. // Reduce bit 256 (2^256 = 38 mod p)
  87. temp *= 38;
  88. // Reduce bit 255 (2^255 = 19 mod p)
  89. temp += (output[7] >> 31) * 19;
  90. // Mask the most significant bit
  91. output[7] &= 0x7FFFFFFF;
  92. // Fast modular reduction
  93. for (auto i = 0; i < WORDS; i++) {
  94. temp += output[i];
  95. output[i] = temp & 0xFFFFFFFF;
  96. temp >>= 32;
  97. }
  98. modular_reduce(state, output);
  99. }
  100. static void modular_multiply(u32* state, u32* first, u32* second)
  101. {
  102. // Compute R = (A * B) mod p
  103. u64 temp = 0;
  104. u64 carry = 0;
  105. u32 output[WORDS * 2];
  106. // Comba's method
  107. for (auto i = 0; i < 16; i++) {
  108. if (i < WORDS) {
  109. for (auto j = 0; j <= i; j++) {
  110. temp += (u64)first[j] * second[i - j];
  111. carry += temp >> 32;
  112. temp &= 0xFFFFFFFF;
  113. }
  114. } else {
  115. for (auto j = i - 7; j < WORDS; j++) {
  116. temp += (u64)first[j] * second[i - j];
  117. carry += temp >> 32;
  118. temp &= 0xFFFFFFFF;
  119. }
  120. }
  121. output[i] = temp & 0xFFFFFFFF;
  122. temp = carry & 0xFFFFFFFF;
  123. carry >>= 32;
  124. }
  125. // Reduce bit 255 (2^255 = 19 mod p)
  126. temp = (output[7] >> 31) * 19;
  127. // Mask the most significant bit
  128. output[7] &= 0x7FFFFFFF;
  129. // Fast modular reduction 1st pass
  130. for (auto i = 0; i < WORDS; i++) {
  131. temp += output[i];
  132. temp += (u64)output[i + 8] * 38;
  133. output[i] = temp & 0xFFFFFFFF;
  134. temp >>= 32;
  135. }
  136. // Reduce bit 256 (2^256 = 38 mod p)
  137. temp *= 38;
  138. // Reduce bit 255 (2^255 = 19 mod p)
  139. temp += (output[7] >> 31) * 19;
  140. // Mask the most significant bit
  141. output[7] &= 0x7FFFFFFF;
  142. // Fast modular reduction 2nd pass
  143. for (auto i = 0; i < WORDS; i++) {
  144. temp += output[i];
  145. output[i] = temp & 0xFFFFFFFF;
  146. temp >>= 32;
  147. }
  148. modular_reduce(state, output);
  149. }
  150. static void modular_square(u32* state, u32* value)
  151. {
  152. // Compute R = (A ^ 2) mod p
  153. modular_multiply(state, value, value);
  154. }
  155. static void modular_add(u32* state, u32* first, u32* second)
  156. {
  157. // R = (A + B) mod p
  158. u64 temp = 0;
  159. for (auto i = 0; i < WORDS; i++) {
  160. temp += first[i];
  161. temp += second[i];
  162. state[i] = temp & 0xFFFFFFFF;
  163. temp >>= 32;
  164. }
  165. modular_reduce(state, state);
  166. }
  167. static void modular_subtract(u32* state, u32* first, u32* second)
  168. {
  169. // R = (A - B) mod p
  170. i64 temp = -19;
  171. for (auto i = 0; i < WORDS; i++) {
  172. temp += first[i];
  173. temp -= second[i];
  174. state[i] = temp & 0xFFFFFFFF;
  175. temp >>= 32;
  176. }
  177. // Compute R = A + (2^255 - 19) - B
  178. state[7] += 0x80000000;
  179. modular_reduce(state, state);
  180. }
  181. static void to_power_of_2n(u32* state, u32* value, u8 n)
  182. {
  183. // compute R = (A ^ (2^n)) mod p
  184. modular_square(state, value);
  185. for (auto i = 1; i < n; i++) {
  186. modular_square(state, state);
  187. }
  188. }
  189. static void modular_multiply_inverse(u32* state, u32* value)
  190. {
  191. // Compute R = A^-1 mod p
  192. u32 u[WORDS];
  193. u32 v[WORDS];
  194. // Fermat's little theorem
  195. modular_square(u, value);
  196. modular_multiply(u, u, value);
  197. modular_square(u, u);
  198. modular_multiply(v, u, value);
  199. to_power_of_2n(u, v, 3);
  200. modular_multiply(u, u, v);
  201. modular_square(u, u);
  202. modular_multiply(v, u, value);
  203. to_power_of_2n(u, v, 7);
  204. modular_multiply(u, u, v);
  205. modular_square(u, u);
  206. modular_multiply(v, u, value);
  207. to_power_of_2n(u, v, 15);
  208. modular_multiply(u, u, v);
  209. modular_square(u, u);
  210. modular_multiply(v, u, value);
  211. to_power_of_2n(u, v, 31);
  212. modular_multiply(v, u, v);
  213. to_power_of_2n(u, v, 62);
  214. modular_multiply(u, u, v);
  215. modular_square(u, u);
  216. modular_multiply(v, u, value);
  217. to_power_of_2n(u, v, 125);
  218. modular_multiply(u, u, v);
  219. modular_square(u, u);
  220. modular_square(u, u);
  221. modular_multiply(u, u, value);
  222. modular_square(u, u);
  223. modular_square(u, u);
  224. modular_multiply(u, u, value);
  225. modular_square(u, u);
  226. modular_multiply(state, u, value);
  227. }
  228. ErrorOr<ByteBuffer> X25519::generate_private_key()
  229. {
  230. auto buffer = TRY(ByteBuffer::create_uninitialized(BYTES));
  231. fill_with_random(buffer.data(), buffer.size());
  232. return buffer;
  233. }
  234. ErrorOr<ByteBuffer> X25519::generate_public_key(ReadonlyBytes a)
  235. {
  236. u8 generator[BYTES] { 9 };
  237. return compute_coordinate(a, { generator, BYTES });
  238. }
  239. // https://datatracker.ietf.org/doc/html/rfc7748#section-5
  240. ErrorOr<ByteBuffer> X25519::compute_coordinate(ReadonlyBytes input_k, ReadonlyBytes input_u)
  241. {
  242. u32 k[WORDS] {};
  243. u32 u[WORDS] {};
  244. u32 x1[WORDS] {};
  245. u32 x2[WORDS] {};
  246. u32 z1[WORDS] {};
  247. u32 z2[WORDS] {};
  248. u32 t1[WORDS] {};
  249. u32 t2[WORDS] {};
  250. // Copy input to internal state
  251. import_state(k, input_k);
  252. // Set the three least significant bits of the first byte and the most significant bit of the last to zero,
  253. // set the second most significant bit of the last byte to 1
  254. k[0] &= 0xFFFFFFF8;
  255. k[7] &= 0x7FFFFFFF;
  256. k[7] |= 0x40000000;
  257. // Copy coordinate to internal state
  258. import_state(u, input_u);
  259. // mask the most significant bit in the final byte.
  260. u[7] &= 0x7FFFFFFF;
  261. // Implementations MUST accept non-canonical values and process them as
  262. // if they had been reduced modulo the field prime.
  263. modular_reduce(u, u);
  264. set(x1, 1);
  265. set(z1, 0);
  266. copy(x2, u);
  267. set(z2, 1);
  268. // Montgomery ladder
  269. u32 swap = 0;
  270. for (auto i = BITS - 1; i >= 0; i--) {
  271. u32 b = (k[i / BYTES] >> (i % BYTES)) & 1;
  272. conditional_swap(x1, x2, swap ^ b);
  273. conditional_swap(z1, z2, swap ^ b);
  274. swap = b;
  275. modular_add(t1, x2, z2);
  276. modular_subtract(x2, x2, z2);
  277. modular_add(z2, x1, z1);
  278. modular_subtract(x1, x1, z1);
  279. modular_multiply(t1, t1, x1);
  280. modular_multiply(x2, x2, z2);
  281. modular_square(z2, z2);
  282. modular_square(x1, x1);
  283. modular_subtract(t2, z2, x1);
  284. modular_multiply_single(z1, t2, A24);
  285. modular_add(z1, z1, x1);
  286. modular_multiply(z1, z1, t2);
  287. modular_multiply(x1, x1, z2);
  288. modular_subtract(z2, t1, x2);
  289. modular_square(z2, z2);
  290. modular_multiply(z2, z2, u);
  291. modular_add(x2, x2, t1);
  292. modular_square(x2, x2);
  293. }
  294. conditional_swap(x1, x2, swap);
  295. conditional_swap(z1, z2, swap);
  296. // Retrieve affine representation
  297. modular_multiply_inverse(u, z1);
  298. modular_multiply(u, u, x1);
  299. // Encode state for export
  300. return export_state(u);
  301. }
  302. ErrorOr<ByteBuffer> X25519::derive_premaster_key(ReadonlyBytes shared_point)
  303. {
  304. VERIFY(shared_point.size() == BYTES);
  305. ByteBuffer premaster_key = TRY(ByteBuffer::copy(shared_point));
  306. return premaster_key;
  307. }
  308. }