EventLoop.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2022, kleines Filmröllchen <malu.bertsch@gmail.com>
  4. * Copyright (c) 2022, the SerenityOS developers.
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/Assertions.h>
  9. #include <AK/Badge.h>
  10. #include <AK/Debug.h>
  11. #include <AK/Format.h>
  12. #include <AK/IDAllocator.h>
  13. #include <AK/JsonObject.h>
  14. #include <AK/JsonValue.h>
  15. #include <AK/NeverDestroyed.h>
  16. #include <AK/Singleton.h>
  17. #include <AK/TemporaryChange.h>
  18. #include <AK/Time.h>
  19. #include <LibCore/Event.h>
  20. #include <LibCore/EventLoop.h>
  21. #include <LibCore/LocalServer.h>
  22. #include <LibCore/Notifier.h>
  23. #include <LibCore/Object.h>
  24. #include <LibThreading/Mutex.h>
  25. #include <LibThreading/MutexProtected.h>
  26. #include <errno.h>
  27. #include <fcntl.h>
  28. #include <signal.h>
  29. #include <stdio.h>
  30. #include <string.h>
  31. #include <sys/select.h>
  32. #include <sys/socket.h>
  33. #include <sys/time.h>
  34. #include <time.h>
  35. #include <unistd.h>
  36. #ifdef __serenity__
  37. extern bool s_global_initializers_ran;
  38. #endif
  39. namespace Core {
  40. class InspectorServerConnection;
  41. [[maybe_unused]] static bool connect_to_inspector_server();
  42. struct EventLoopTimer {
  43. int timer_id { 0 };
  44. Time interval;
  45. Time fire_time;
  46. bool should_reload { false };
  47. TimerShouldFireWhenNotVisible fire_when_not_visible { TimerShouldFireWhenNotVisible::No };
  48. WeakPtr<Object> owner;
  49. void reload(Time const& now);
  50. bool has_expired(Time const& now) const;
  51. };
  52. struct EventLoop::Private {
  53. Threading::Mutex lock;
  54. };
  55. // The main event loop is global to the program, so it may be accessed from multiple threads.
  56. Threading::MutexProtected<EventLoop*> s_main_event_loop;
  57. static Threading::MutexProtected<NeverDestroyed<IDAllocator>> s_id_allocator;
  58. static Threading::MutexProtected<RefPtr<InspectorServerConnection>> s_inspector_server_connection;
  59. // Each thread has its own event loop stack, its own timers, notifiers and a wake pipe.
  60. static thread_local Vector<EventLoop&>* s_event_loop_stack;
  61. static thread_local HashMap<int, NonnullOwnPtr<EventLoopTimer>>* s_timers;
  62. static thread_local HashTable<Notifier*>* s_notifiers;
  63. thread_local int EventLoop::s_wake_pipe_fds[2];
  64. thread_local bool EventLoop::s_wake_pipe_initialized { false };
  65. void EventLoop::initialize_wake_pipes()
  66. {
  67. if (!s_wake_pipe_initialized) {
  68. #if defined(SOCK_NONBLOCK)
  69. int rc = pipe2(s_wake_pipe_fds, O_CLOEXEC);
  70. #else
  71. int rc = pipe(s_wake_pipe_fds);
  72. fcntl(s_wake_pipe_fds[0], F_SETFD, FD_CLOEXEC);
  73. fcntl(s_wake_pipe_fds[1], F_SETFD, FD_CLOEXEC);
  74. #endif
  75. VERIFY(rc == 0);
  76. s_wake_pipe_initialized = true;
  77. }
  78. }
  79. bool EventLoop::has_been_instantiated()
  80. {
  81. return s_event_loop_stack != nullptr && !s_event_loop_stack->is_empty();
  82. }
  83. class SignalHandlers : public RefCounted<SignalHandlers> {
  84. AK_MAKE_NONCOPYABLE(SignalHandlers);
  85. AK_MAKE_NONMOVABLE(SignalHandlers);
  86. public:
  87. SignalHandlers(int signo, void (*handle_signal)(int));
  88. ~SignalHandlers();
  89. void dispatch();
  90. int add(Function<void(int)>&& handler);
  91. bool remove(int handler_id);
  92. bool is_empty() const
  93. {
  94. if (m_calling_handlers) {
  95. for (auto& handler : m_handlers_pending) {
  96. if (handler.value)
  97. return false; // an add is pending
  98. }
  99. }
  100. return m_handlers.is_empty();
  101. }
  102. bool have(int handler_id) const
  103. {
  104. if (m_calling_handlers) {
  105. auto it = m_handlers_pending.find(handler_id);
  106. if (it != m_handlers_pending.end()) {
  107. if (!it->value)
  108. return false; // a deletion is pending
  109. }
  110. }
  111. return m_handlers.contains(handler_id);
  112. }
  113. int m_signo;
  114. void (*m_original_handler)(int); // TODO: can't use sighandler_t?
  115. HashMap<int, Function<void(int)>> m_handlers;
  116. HashMap<int, Function<void(int)>> m_handlers_pending;
  117. bool m_calling_handlers { false };
  118. };
  119. struct SignalHandlersInfo {
  120. HashMap<int, NonnullRefPtr<SignalHandlers>> signal_handlers;
  121. int next_signal_id { 0 };
  122. };
  123. static Singleton<SignalHandlersInfo> s_signals;
  124. template<bool create_if_null = true>
  125. inline SignalHandlersInfo* signals_info()
  126. {
  127. return s_signals.ptr();
  128. }
  129. pid_t EventLoop::s_pid;
  130. class InspectorServerConnection : public Object {
  131. C_OBJECT(InspectorServerConnection)
  132. private:
  133. explicit InspectorServerConnection(NonnullOwnPtr<Stream::LocalSocket> socket)
  134. : m_socket(move(socket))
  135. , m_client_id(s_id_allocator.with_locked([](auto& allocator) {
  136. return allocator->allocate();
  137. }))
  138. {
  139. #ifdef __serenity__
  140. m_socket->on_ready_to_read = [this] {
  141. u32 length;
  142. auto maybe_bytes_read = m_socket->read({ (u8*)&length, sizeof(length) });
  143. if (maybe_bytes_read.is_error()) {
  144. dbgln("InspectorServerConnection: Failed to read message length from inspector server connection: {}", maybe_bytes_read.error());
  145. shutdown();
  146. return;
  147. }
  148. auto bytes_read = maybe_bytes_read.release_value();
  149. if (bytes_read.is_empty()) {
  150. dbgln_if(EVENTLOOP_DEBUG, "RPC client disconnected");
  151. shutdown();
  152. return;
  153. }
  154. VERIFY(bytes_read.size() == sizeof(length));
  155. auto request_buffer = ByteBuffer::create_uninitialized(length).release_value();
  156. maybe_bytes_read = m_socket->read(request_buffer.bytes());
  157. if (maybe_bytes_read.is_error()) {
  158. dbgln("InspectorServerConnection: Failed to read message content from inspector server connection: {}", maybe_bytes_read.error());
  159. shutdown();
  160. return;
  161. }
  162. bytes_read = maybe_bytes_read.release_value();
  163. auto request_json = JsonValue::from_string(request_buffer);
  164. if (request_json.is_error() || !request_json.value().is_object()) {
  165. dbgln("RPC client sent invalid request");
  166. shutdown();
  167. return;
  168. }
  169. handle_request(request_json.value().as_object());
  170. };
  171. #else
  172. warnln("RPC Client constructed outside serenity, this is very likely a bug!");
  173. #endif
  174. }
  175. virtual ~InspectorServerConnection() override
  176. {
  177. if (auto inspected_object = m_inspected_object.strong_ref())
  178. inspected_object->decrement_inspector_count({});
  179. }
  180. public:
  181. void send_response(JsonObject const& response)
  182. {
  183. auto serialized = response.to_string();
  184. u32 length = serialized.length();
  185. // FIXME: Propagate errors
  186. MUST(m_socket->write({ (u8 const*)&length, sizeof(length) }));
  187. MUST(m_socket->write(serialized.bytes()));
  188. }
  189. void handle_request(JsonObject const& request)
  190. {
  191. auto type = request.get("type").as_string_or({});
  192. if (type.is_null()) {
  193. dbgln("RPC client sent request without type field");
  194. return;
  195. }
  196. if (type == "Identify") {
  197. JsonObject response;
  198. response.set("type", type);
  199. response.set("pid", getpid());
  200. #ifdef __serenity__
  201. char buffer[1024];
  202. if (get_process_name(buffer, sizeof(buffer)) >= 0) {
  203. response.set("process_name", buffer);
  204. } else {
  205. response.set("process_name", JsonValue());
  206. }
  207. #endif
  208. send_response(response);
  209. return;
  210. }
  211. if (type == "GetAllObjects") {
  212. JsonObject response;
  213. response.set("type", type);
  214. JsonArray objects;
  215. for (auto& object : Object::all_objects()) {
  216. JsonObject json_object;
  217. object.save_to(json_object);
  218. objects.append(move(json_object));
  219. }
  220. response.set("objects", move(objects));
  221. send_response(response);
  222. return;
  223. }
  224. if (type == "SetInspectedObject") {
  225. auto address = request.get("address").to_number<FlatPtr>();
  226. for (auto& object : Object::all_objects()) {
  227. if ((FlatPtr)&object == address) {
  228. if (auto inspected_object = m_inspected_object.strong_ref())
  229. inspected_object->decrement_inspector_count({});
  230. m_inspected_object = object;
  231. object.increment_inspector_count({});
  232. break;
  233. }
  234. }
  235. return;
  236. }
  237. if (type == "SetProperty") {
  238. auto address = request.get("address").to_number<FlatPtr>();
  239. for (auto& object : Object::all_objects()) {
  240. if ((FlatPtr)&object == address) {
  241. bool success = object.set_property(request.get("name").to_string(), request.get("value"));
  242. JsonObject response;
  243. response.set("type", "SetProperty");
  244. response.set("success", success);
  245. send_response(response);
  246. break;
  247. }
  248. }
  249. return;
  250. }
  251. if (type == "Disconnect") {
  252. shutdown();
  253. return;
  254. }
  255. }
  256. void shutdown()
  257. {
  258. s_id_allocator.with_locked([this](auto& allocator) { allocator->deallocate(m_client_id); });
  259. }
  260. private:
  261. NonnullOwnPtr<Stream::LocalSocket> m_socket;
  262. WeakPtr<Object> m_inspected_object;
  263. int m_client_id { -1 };
  264. };
  265. EventLoop::EventLoop([[maybe_unused]] MakeInspectable make_inspectable)
  266. : m_wake_pipe_fds(&s_wake_pipe_fds)
  267. , m_private(make<Private>())
  268. {
  269. #ifdef __serenity__
  270. if (!s_global_initializers_ran) {
  271. // NOTE: Trying to have an event loop as a global variable will lead to initialization-order fiascos,
  272. // as the event loop constructor accesses and/or sets other global variables.
  273. // Therefore, we crash the program before ASAN catches us.
  274. // If you came here because of the assertion failure, please redesign your program to not have global event loops.
  275. // The common practice is to initialize the main event loop in the main function, and if necessary,
  276. // pass event loop references around or access them with EventLoop::with_main_locked() and EventLoop::current().
  277. VERIFY_NOT_REACHED();
  278. }
  279. #endif
  280. if (!s_event_loop_stack) {
  281. s_event_loop_stack = new Vector<EventLoop&>;
  282. s_timers = new HashMap<int, NonnullOwnPtr<EventLoopTimer>>;
  283. s_notifiers = new HashTable<Notifier*>;
  284. }
  285. s_main_event_loop.with_locked([&, this](auto*& main_event_loop) {
  286. if (main_event_loop == nullptr) {
  287. main_event_loop = this;
  288. s_pid = getpid();
  289. s_event_loop_stack->append(*this);
  290. #ifdef __serenity__
  291. if (getuid() != 0) {
  292. if (getenv("MAKE_INSPECTABLE") == "1"sv)
  293. make_inspectable = Core::EventLoop::MakeInspectable::Yes;
  294. if (make_inspectable == MakeInspectable::Yes
  295. // FIXME: Deadlock potential; though the main loop and inspector server connection are rarely used in conjunction
  296. && !s_inspector_server_connection.with_locked([](auto inspector_server_connection) { return inspector_server_connection; })) {
  297. if (!connect_to_inspector_server())
  298. dbgln("Core::EventLoop: Failed to connect to InspectorServer");
  299. }
  300. }
  301. #endif
  302. }
  303. });
  304. initialize_wake_pipes();
  305. dbgln_if(EVENTLOOP_DEBUG, "{} Core::EventLoop constructed :)", getpid());
  306. }
  307. EventLoop::~EventLoop()
  308. {
  309. // NOTE: Pop the main event loop off of the stack when destroyed.
  310. s_main_event_loop.with_locked([this](auto*& main_event_loop) {
  311. if (this == main_event_loop) {
  312. s_event_loop_stack->take_last();
  313. main_event_loop = nullptr;
  314. }
  315. });
  316. }
  317. bool connect_to_inspector_server()
  318. {
  319. #ifdef __serenity__
  320. auto maybe_socket = Core::Stream::LocalSocket::connect("/tmp/portal/inspectables");
  321. if (maybe_socket.is_error()) {
  322. dbgln("connect_to_inspector_server: Failed to connect: {}", maybe_socket.error());
  323. return false;
  324. }
  325. s_inspector_server_connection.with_locked([&](auto& inspector_server_connection) {
  326. inspector_server_connection = InspectorServerConnection::construct(maybe_socket.release_value());
  327. });
  328. return true;
  329. #else
  330. VERIFY_NOT_REACHED();
  331. #endif
  332. }
  333. #define VERIFY_EVENT_LOOP_INITIALIZED() \
  334. do { \
  335. if (!s_event_loop_stack) { \
  336. warnln("EventLoop static API was called without prior EventLoop init!"); \
  337. VERIFY_NOT_REACHED(); \
  338. } \
  339. } while (0)
  340. EventLoop& EventLoop::current()
  341. {
  342. VERIFY_EVENT_LOOP_INITIALIZED();
  343. return s_event_loop_stack->last();
  344. }
  345. void EventLoop::quit(int code)
  346. {
  347. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop::quit({})", code);
  348. m_exit_requested = true;
  349. m_exit_code = code;
  350. }
  351. void EventLoop::unquit()
  352. {
  353. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop::unquit()");
  354. m_exit_requested = false;
  355. m_exit_code = 0;
  356. }
  357. struct EventLoopPusher {
  358. public:
  359. EventLoopPusher(EventLoop& event_loop)
  360. : m_event_loop(event_loop)
  361. {
  362. if (EventLoop::has_been_instantiated()) {
  363. m_event_loop.take_pending_events_from(EventLoop::current());
  364. s_event_loop_stack->append(event_loop);
  365. }
  366. }
  367. ~EventLoopPusher()
  368. {
  369. if (EventLoop::has_been_instantiated()) {
  370. s_event_loop_stack->take_last();
  371. EventLoop::current().take_pending_events_from(m_event_loop);
  372. }
  373. }
  374. private:
  375. bool is_main_event_loop()
  376. {
  377. return s_main_event_loop.with_locked([this](auto* main_event_loop) { return &m_event_loop == main_event_loop; });
  378. }
  379. EventLoop& m_event_loop;
  380. };
  381. int EventLoop::exec()
  382. {
  383. EventLoopPusher pusher(*this);
  384. for (;;) {
  385. if (m_exit_requested)
  386. return m_exit_code;
  387. pump();
  388. }
  389. VERIFY_NOT_REACHED();
  390. }
  391. void EventLoop::spin_until(Function<bool()> goal_condition)
  392. {
  393. EventLoopPusher pusher(*this);
  394. while (!goal_condition())
  395. pump();
  396. }
  397. size_t EventLoop::pump(WaitMode mode)
  398. {
  399. wait_for_event(mode);
  400. decltype(m_queued_events) events;
  401. {
  402. Threading::MutexLocker locker(m_private->lock);
  403. events = move(m_queued_events);
  404. }
  405. size_t processed_events = 0;
  406. for (size_t i = 0; i < events.size(); ++i) {
  407. auto& queued_event = events.at(i);
  408. auto receiver = queued_event.receiver.strong_ref();
  409. auto& event = *queued_event.event;
  410. if (receiver)
  411. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: {} event {}", *receiver, event.type());
  412. if (!receiver) {
  413. switch (event.type()) {
  414. case Event::Quit:
  415. VERIFY_NOT_REACHED();
  416. default:
  417. dbgln_if(EVENTLOOP_DEBUG, "Event type {} with no receiver :(", event.type());
  418. break;
  419. }
  420. } else if (event.type() == Event::Type::DeferredInvoke) {
  421. dbgln_if(DEFERRED_INVOKE_DEBUG, "DeferredInvoke: receiver = {}", *receiver);
  422. static_cast<DeferredInvocationEvent&>(event).m_invokee();
  423. } else {
  424. NonnullRefPtr<Object> protector(*receiver);
  425. receiver->dispatch_event(event);
  426. }
  427. ++processed_events;
  428. if (m_exit_requested) {
  429. Threading::MutexLocker locker(m_private->lock);
  430. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: Exit requested. Rejigging {} events.", events.size() - i);
  431. decltype(m_queued_events) new_event_queue;
  432. new_event_queue.ensure_capacity(m_queued_events.size() + events.size());
  433. for (++i; i < events.size(); ++i)
  434. new_event_queue.unchecked_append(move(events[i]));
  435. new_event_queue.extend(move(m_queued_events));
  436. m_queued_events = move(new_event_queue);
  437. break;
  438. }
  439. }
  440. return processed_events;
  441. }
  442. void EventLoop::post_event(Object& receiver, NonnullOwnPtr<Event>&& event, ShouldWake should_wake)
  443. {
  444. Threading::MutexLocker lock(m_private->lock);
  445. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop::post_event: ({}) << receiver={}, event={}", m_queued_events.size(), receiver, event);
  446. m_queued_events.empend(receiver, move(event));
  447. if (should_wake == ShouldWake::Yes)
  448. wake();
  449. }
  450. SignalHandlers::SignalHandlers(int signo, void (*handle_signal)(int))
  451. : m_signo(signo)
  452. , m_original_handler(signal(signo, handle_signal))
  453. {
  454. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: Registered handler for signal {}", m_signo);
  455. }
  456. SignalHandlers::~SignalHandlers()
  457. {
  458. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: Unregistering handler for signal {}", m_signo);
  459. signal(m_signo, m_original_handler);
  460. }
  461. void SignalHandlers::dispatch()
  462. {
  463. TemporaryChange change(m_calling_handlers, true);
  464. for (auto& handler : m_handlers)
  465. handler.value(m_signo);
  466. if (!m_handlers_pending.is_empty()) {
  467. // Apply pending adds/removes
  468. for (auto& handler : m_handlers_pending) {
  469. if (handler.value) {
  470. auto result = m_handlers.set(handler.key, move(handler.value));
  471. VERIFY(result == AK::HashSetResult::InsertedNewEntry);
  472. } else {
  473. m_handlers.remove(handler.key);
  474. }
  475. }
  476. m_handlers_pending.clear();
  477. }
  478. }
  479. int SignalHandlers::add(Function<void(int)>&& handler)
  480. {
  481. int id = ++signals_info()->next_signal_id; // TODO: worry about wrapping and duplicates?
  482. if (m_calling_handlers)
  483. m_handlers_pending.set(id, move(handler));
  484. else
  485. m_handlers.set(id, move(handler));
  486. return id;
  487. }
  488. bool SignalHandlers::remove(int handler_id)
  489. {
  490. VERIFY(handler_id != 0);
  491. if (m_calling_handlers) {
  492. auto it = m_handlers.find(handler_id);
  493. if (it != m_handlers.end()) {
  494. // Mark pending remove
  495. m_handlers_pending.set(handler_id, {});
  496. return true;
  497. }
  498. it = m_handlers_pending.find(handler_id);
  499. if (it != m_handlers_pending.end()) {
  500. if (!it->value)
  501. return false; // already was marked as deleted
  502. it->value = nullptr;
  503. return true;
  504. }
  505. return false;
  506. }
  507. return m_handlers.remove(handler_id);
  508. }
  509. void EventLoop::dispatch_signal(int signo)
  510. {
  511. auto& info = *signals_info();
  512. auto handlers = info.signal_handlers.find(signo);
  513. if (handlers != info.signal_handlers.end()) {
  514. // Make sure we bump the ref count while dispatching the handlers!
  515. // This allows a handler to unregister/register while the handlers
  516. // are being called!
  517. auto handler = handlers->value;
  518. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: dispatching signal {}", signo);
  519. handler->dispatch();
  520. }
  521. }
  522. void EventLoop::handle_signal(int signo)
  523. {
  524. VERIFY(signo != 0);
  525. // We MUST check if the current pid still matches, because there
  526. // is a window between fork() and exec() where a signal delivered
  527. // to our fork could be inadvertently routed to the parent process!
  528. if (getpid() == s_pid) {
  529. int nwritten = write(s_wake_pipe_fds[1], &signo, sizeof(signo));
  530. if (nwritten < 0) {
  531. perror("EventLoop::register_signal: write");
  532. VERIFY_NOT_REACHED();
  533. }
  534. } else {
  535. // We're a fork who received a signal, reset s_pid
  536. s_pid = 0;
  537. }
  538. }
  539. int EventLoop::register_signal(int signo, Function<void(int)> handler)
  540. {
  541. VERIFY(signo != 0);
  542. auto& info = *signals_info();
  543. auto handlers = info.signal_handlers.find(signo);
  544. if (handlers == info.signal_handlers.end()) {
  545. auto signal_handlers = adopt_ref(*new SignalHandlers(signo, EventLoop::handle_signal));
  546. auto handler_id = signal_handlers->add(move(handler));
  547. info.signal_handlers.set(signo, move(signal_handlers));
  548. return handler_id;
  549. } else {
  550. return handlers->value->add(move(handler));
  551. }
  552. }
  553. void EventLoop::unregister_signal(int handler_id)
  554. {
  555. VERIFY(handler_id != 0);
  556. int remove_signo = 0;
  557. auto& info = *signals_info();
  558. for (auto& h : info.signal_handlers) {
  559. auto& handlers = *h.value;
  560. if (handlers.remove(handler_id)) {
  561. if (handlers.is_empty())
  562. remove_signo = handlers.m_signo;
  563. break;
  564. }
  565. }
  566. if (remove_signo != 0)
  567. info.signal_handlers.remove(remove_signo);
  568. }
  569. void EventLoop::notify_forked(ForkEvent event)
  570. {
  571. VERIFY_EVENT_LOOP_INITIALIZED();
  572. switch (event) {
  573. case ForkEvent::Child:
  574. s_main_event_loop.with_locked([]([[maybe_unused]] auto*& main_event_loop) { main_event_loop = nullptr; });
  575. s_event_loop_stack->clear();
  576. s_timers->clear();
  577. s_notifiers->clear();
  578. s_wake_pipe_initialized = false;
  579. initialize_wake_pipes();
  580. if (auto* info = signals_info<false>()) {
  581. info->signal_handlers.clear();
  582. info->next_signal_id = 0;
  583. }
  584. s_pid = 0;
  585. #ifdef __serenity__
  586. s_main_event_loop.with_locked([]([[maybe_unused]] auto*& main_event_loop) { main_event_loop = nullptr; });
  587. #endif
  588. return;
  589. }
  590. VERIFY_NOT_REACHED();
  591. }
  592. void EventLoop::wait_for_event(WaitMode mode)
  593. {
  594. fd_set rfds;
  595. fd_set wfds;
  596. retry:
  597. FD_ZERO(&rfds);
  598. FD_ZERO(&wfds);
  599. int max_fd = 0;
  600. auto add_fd_to_set = [&max_fd](int fd, fd_set& set) {
  601. FD_SET(fd, &set);
  602. if (fd > max_fd)
  603. max_fd = fd;
  604. };
  605. int max_fd_added = -1;
  606. add_fd_to_set(s_wake_pipe_fds[0], rfds);
  607. max_fd = max(max_fd, max_fd_added);
  608. for (auto& notifier : *s_notifiers) {
  609. if (notifier->event_mask() & Notifier::Read)
  610. add_fd_to_set(notifier->fd(), rfds);
  611. if (notifier->event_mask() & Notifier::Write)
  612. add_fd_to_set(notifier->fd(), wfds);
  613. if (notifier->event_mask() & Notifier::Exceptional)
  614. VERIFY_NOT_REACHED();
  615. }
  616. bool queued_events_is_empty;
  617. {
  618. Threading::MutexLocker locker(m_private->lock);
  619. queued_events_is_empty = m_queued_events.is_empty();
  620. }
  621. Time now;
  622. struct timeval timeout = { 0, 0 };
  623. bool should_wait_forever = false;
  624. if (mode == WaitMode::WaitForEvents && queued_events_is_empty) {
  625. auto next_timer_expiration = get_next_timer_expiration();
  626. if (next_timer_expiration.has_value()) {
  627. now = Time::now_monotonic_coarse();
  628. auto computed_timeout = next_timer_expiration.value() - now;
  629. if (computed_timeout.is_negative())
  630. computed_timeout = Time::zero();
  631. timeout = computed_timeout.to_timeval();
  632. } else {
  633. should_wait_forever = true;
  634. }
  635. }
  636. try_select_again:
  637. int marked_fd_count = select(max_fd + 1, &rfds, &wfds, nullptr, should_wait_forever ? nullptr : &timeout);
  638. if (marked_fd_count < 0) {
  639. int saved_errno = errno;
  640. if (saved_errno == EINTR) {
  641. if (m_exit_requested)
  642. return;
  643. goto try_select_again;
  644. }
  645. dbgln("Core::EventLoop::wait_for_event: {} ({}: {})", marked_fd_count, saved_errno, strerror(saved_errno));
  646. VERIFY_NOT_REACHED();
  647. }
  648. if (FD_ISSET(s_wake_pipe_fds[0], &rfds)) {
  649. int wake_events[8];
  650. ssize_t nread;
  651. // We might receive another signal while read()ing here. The signal will go to the handle_signal properly,
  652. // but we get interrupted. Therefore, just retry while we were interrupted.
  653. do {
  654. errno = 0;
  655. nread = read(s_wake_pipe_fds[0], wake_events, sizeof(wake_events));
  656. if (nread == 0)
  657. break;
  658. } while (nread < 0 && errno == EINTR);
  659. if (nread < 0) {
  660. perror("Core::EventLoop::wait_for_event: read from wake pipe");
  661. VERIFY_NOT_REACHED();
  662. }
  663. VERIFY(nread > 0);
  664. bool wake_requested = false;
  665. int event_count = nread / sizeof(wake_events[0]);
  666. for (int i = 0; i < event_count; i++) {
  667. if (wake_events[i] != 0)
  668. dispatch_signal(wake_events[i]);
  669. else
  670. wake_requested = true;
  671. }
  672. if (!wake_requested && nread == sizeof(wake_events))
  673. goto retry;
  674. }
  675. if (!s_timers->is_empty()) {
  676. now = Time::now_monotonic_coarse();
  677. }
  678. for (auto& it : *s_timers) {
  679. auto& timer = *it.value;
  680. if (!timer.has_expired(now))
  681. continue;
  682. auto owner = timer.owner.strong_ref();
  683. if (timer.fire_when_not_visible == TimerShouldFireWhenNotVisible::No
  684. && owner && !owner->is_visible_for_timer_purposes()) {
  685. continue;
  686. }
  687. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: Timer {} has expired, sending Core::TimerEvent to {}", timer.timer_id, *owner);
  688. if (owner)
  689. post_event(*owner, make<TimerEvent>(timer.timer_id));
  690. if (timer.should_reload) {
  691. timer.reload(now);
  692. } else {
  693. // FIXME: Support removing expired timers that don't want to reload.
  694. VERIFY_NOT_REACHED();
  695. }
  696. }
  697. if (!marked_fd_count)
  698. return;
  699. for (auto& notifier : *s_notifiers) {
  700. if (FD_ISSET(notifier->fd(), &rfds)) {
  701. if (notifier->event_mask() & Notifier::Event::Read)
  702. post_event(*notifier, make<NotifierReadEvent>(notifier->fd()));
  703. }
  704. if (FD_ISSET(notifier->fd(), &wfds)) {
  705. if (notifier->event_mask() & Notifier::Event::Write)
  706. post_event(*notifier, make<NotifierWriteEvent>(notifier->fd()));
  707. }
  708. }
  709. }
  710. bool EventLoopTimer::has_expired(Time const& now) const
  711. {
  712. return now > fire_time;
  713. }
  714. void EventLoopTimer::reload(Time const& now)
  715. {
  716. fire_time = now + interval;
  717. }
  718. Optional<Time> EventLoop::get_next_timer_expiration()
  719. {
  720. auto now = Time::now_monotonic_coarse();
  721. Optional<Time> soonest {};
  722. for (auto& it : *s_timers) {
  723. auto& fire_time = it.value->fire_time;
  724. auto owner = it.value->owner.strong_ref();
  725. if (it.value->fire_when_not_visible == TimerShouldFireWhenNotVisible::No
  726. && owner && !owner->is_visible_for_timer_purposes()) {
  727. continue;
  728. }
  729. // OPTIMIZATION: If we have a timer that needs to fire right away, we can stop looking here.
  730. // FIXME: This whole operation could be O(1) with a better data structure.
  731. if (fire_time < now)
  732. return now;
  733. if (!soonest.has_value() || fire_time < soonest.value())
  734. soonest = fire_time;
  735. }
  736. return soonest;
  737. }
  738. int EventLoop::register_timer(Object& object, int milliseconds, bool should_reload, TimerShouldFireWhenNotVisible fire_when_not_visible)
  739. {
  740. VERIFY_EVENT_LOOP_INITIALIZED();
  741. VERIFY(milliseconds >= 0);
  742. auto timer = make<EventLoopTimer>();
  743. timer->owner = object;
  744. timer->interval = Time::from_milliseconds(milliseconds);
  745. timer->reload(Time::now_monotonic_coarse());
  746. timer->should_reload = should_reload;
  747. timer->fire_when_not_visible = fire_when_not_visible;
  748. int timer_id = s_id_allocator.with_locked([](auto& allocator) { return allocator->allocate(); });
  749. timer->timer_id = timer_id;
  750. s_timers->set(timer_id, move(timer));
  751. return timer_id;
  752. }
  753. bool EventLoop::unregister_timer(int timer_id)
  754. {
  755. VERIFY_EVENT_LOOP_INITIALIZED();
  756. s_id_allocator.with_locked([&](auto& allocator) { allocator->deallocate(timer_id); });
  757. auto it = s_timers->find(timer_id);
  758. if (it == s_timers->end())
  759. return false;
  760. s_timers->remove(it);
  761. return true;
  762. }
  763. void EventLoop::register_notifier(Badge<Notifier>, Notifier& notifier)
  764. {
  765. VERIFY_EVENT_LOOP_INITIALIZED();
  766. s_notifiers->set(&notifier);
  767. }
  768. void EventLoop::unregister_notifier(Badge<Notifier>, Notifier& notifier)
  769. {
  770. VERIFY_EVENT_LOOP_INITIALIZED();
  771. s_notifiers->remove(&notifier);
  772. }
  773. void EventLoop::wake_current()
  774. {
  775. EventLoop::current().wake();
  776. }
  777. void EventLoop::wake()
  778. {
  779. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop::wake()");
  780. int wake_event = 0;
  781. int nwritten = write((*m_wake_pipe_fds)[1], &wake_event, sizeof(wake_event));
  782. if (nwritten < 0) {
  783. perror("EventLoop::wake: write");
  784. VERIFY_NOT_REACHED();
  785. }
  786. }
  787. EventLoop::QueuedEvent::QueuedEvent(Object& receiver, NonnullOwnPtr<Event> event)
  788. : receiver(receiver)
  789. , event(move(event))
  790. {
  791. }
  792. EventLoop::QueuedEvent::QueuedEvent(QueuedEvent&& other)
  793. : receiver(other.receiver)
  794. , event(move(other.event))
  795. {
  796. }
  797. }