execve.cpp 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2022, the SerenityOS developers.
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/ScopeGuard.h>
  8. #include <AK/TemporaryChange.h>
  9. #include <Kernel/Debug.h>
  10. #include <Kernel/FileSystem/Custody.h>
  11. #include <Kernel/FileSystem/OpenFileDescription.h>
  12. #include <Kernel/FileSystem/VirtualFileSystem.h>
  13. #include <Kernel/Memory/MemoryManager.h>
  14. #include <Kernel/Memory/Region.h>
  15. #include <Kernel/Memory/SharedInodeVMObject.h>
  16. #include <Kernel/Panic.h>
  17. #include <Kernel/PerformanceManager.h>
  18. #include <Kernel/Process.h>
  19. #include <Kernel/Random.h>
  20. #include <Kernel/Scheduler.h>
  21. #include <Kernel/Time/TimeManagement.h>
  22. #include <LibELF/AuxiliaryVector.h>
  23. #include <LibELF/Image.h>
  24. #include <LibELF/Validation.h>
  25. namespace Kernel {
  26. extern Memory::Region* g_signal_trampoline_region;
  27. struct LoadResult {
  28. OwnPtr<Memory::AddressSpace> space;
  29. FlatPtr load_base { 0 };
  30. FlatPtr entry_eip { 0 };
  31. size_t size { 0 };
  32. LockWeakPtr<Memory::Region> tls_region;
  33. size_t tls_size { 0 };
  34. size_t tls_alignment { 0 };
  35. LockWeakPtr<Memory::Region> stack_region;
  36. };
  37. static constexpr size_t auxiliary_vector_size = 15;
  38. static Array<ELF::AuxiliaryValue, auxiliary_vector_size> generate_auxiliary_vector(FlatPtr load_base, FlatPtr entry_eip, UserID uid, UserID euid, GroupID gid, GroupID egid, StringView executable_path, Optional<Process::ScopedDescriptionAllocation> const& main_program_fd_allocation);
  39. static bool validate_stack_size(NonnullOwnPtrVector<KString> const& arguments, NonnullOwnPtrVector<KString>& environment, Array<ELF::AuxiliaryValue, auxiliary_vector_size> const& auxiliary)
  40. {
  41. size_t total_arguments_size = 0;
  42. size_t total_environment_size = 0;
  43. size_t total_auxiliary_size = 0;
  44. for (auto const& a : arguments)
  45. total_arguments_size += a.length() + 1;
  46. for (auto const& e : environment)
  47. total_environment_size += e.length() + 1;
  48. for (auto const& v : auxiliary) {
  49. if (!v.optional_string.is_empty())
  50. total_auxiliary_size += round_up_to_power_of_two(v.optional_string.length() + 1, sizeof(FlatPtr));
  51. if (v.auxv.a_type == ELF::AuxiliaryValue::Random)
  52. total_auxiliary_size += round_up_to_power_of_two(16, sizeof(FlatPtr));
  53. }
  54. total_arguments_size += sizeof(char*) * (arguments.size() + 1);
  55. total_environment_size += sizeof(char*) * (environment.size() + 1);
  56. total_auxiliary_size += sizeof(auxv_t) * auxiliary.size();
  57. if (total_arguments_size > Process::max_arguments_size)
  58. return false;
  59. if (total_environment_size > Process::max_environment_size)
  60. return false;
  61. if (total_auxiliary_size > Process::max_auxiliary_size)
  62. return false;
  63. return true;
  64. }
  65. static ErrorOr<FlatPtr> make_userspace_context_for_main_thread([[maybe_unused]] ThreadRegisters& regs, Memory::Region& region, NonnullOwnPtrVector<KString> const& arguments,
  66. NonnullOwnPtrVector<KString> const& environment, Array<ELF::AuxiliaryValue, auxiliary_vector_size> auxiliary_values)
  67. {
  68. FlatPtr new_sp = region.range().end().get();
  69. // Add some bits of randomness to the user stack pointer.
  70. new_sp -= round_up_to_power_of_two(get_fast_random<u32>() % 4096, 16);
  71. auto push_on_new_stack = [&new_sp](FlatPtr value) {
  72. new_sp -= sizeof(FlatPtr);
  73. Userspace<FlatPtr*> stack_ptr = new_sp;
  74. auto result = copy_to_user(stack_ptr, &value);
  75. VERIFY(!result.is_error());
  76. };
  77. auto push_aux_value_on_new_stack = [&new_sp](auxv_t value) {
  78. new_sp -= sizeof(auxv_t);
  79. Userspace<auxv_t*> stack_ptr = new_sp;
  80. auto result = copy_to_user(stack_ptr, &value);
  81. VERIFY(!result.is_error());
  82. };
  83. auto push_string_on_new_stack = [&new_sp](StringView string) {
  84. new_sp -= round_up_to_power_of_two(string.length() + 1, sizeof(FlatPtr));
  85. Userspace<FlatPtr*> stack_ptr = new_sp;
  86. auto result = copy_to_user(stack_ptr, string.characters_without_null_termination(), string.length() + 1);
  87. VERIFY(!result.is_error());
  88. };
  89. Vector<FlatPtr> argv_entries;
  90. for (auto const& argument : arguments) {
  91. push_string_on_new_stack(argument.view());
  92. TRY(argv_entries.try_append(new_sp));
  93. }
  94. Vector<FlatPtr> env_entries;
  95. for (auto const& variable : environment) {
  96. push_string_on_new_stack(variable.view());
  97. TRY(env_entries.try_append(new_sp));
  98. }
  99. for (auto& value : auxiliary_values) {
  100. if (!value.optional_string.is_empty()) {
  101. push_string_on_new_stack(value.optional_string);
  102. value.auxv.a_un.a_ptr = (void*)new_sp;
  103. }
  104. if (value.auxv.a_type == ELF::AuxiliaryValue::Random) {
  105. u8 random_bytes[16] {};
  106. get_fast_random_bytes({ random_bytes, sizeof(random_bytes) });
  107. push_string_on_new_stack({ random_bytes, sizeof(random_bytes) });
  108. value.auxv.a_un.a_ptr = (void*)new_sp;
  109. }
  110. }
  111. for (ssize_t i = auxiliary_values.size() - 1; i >= 0; --i) {
  112. auto& value = auxiliary_values[i];
  113. push_aux_value_on_new_stack(value.auxv);
  114. }
  115. push_on_new_stack(0);
  116. for (ssize_t i = env_entries.size() - 1; i >= 0; --i)
  117. push_on_new_stack(env_entries[i]);
  118. FlatPtr envp = new_sp;
  119. push_on_new_stack(0);
  120. for (ssize_t i = argv_entries.size() - 1; i >= 0; --i)
  121. push_on_new_stack(argv_entries[i]);
  122. FlatPtr argv = new_sp;
  123. // NOTE: The stack needs to be 16-byte aligned.
  124. new_sp -= new_sp % 16;
  125. #if ARCH(X86_64)
  126. regs.rdi = argv_entries.size();
  127. regs.rsi = argv;
  128. regs.rdx = envp;
  129. #else
  130. # error Unknown architecture
  131. #endif
  132. VERIFY(new_sp % 16 == 0);
  133. // FIXME: The way we're setting up the stack and passing arguments to the entry point isn't ABI-compliant
  134. return new_sp;
  135. }
  136. struct RequiredLoadRange {
  137. FlatPtr start { 0 };
  138. FlatPtr end { 0 };
  139. };
  140. static ErrorOr<RequiredLoadRange> get_required_load_range(OpenFileDescription& program_description)
  141. {
  142. auto& inode = *(program_description.inode());
  143. auto vmobject = TRY(Memory::SharedInodeVMObject::try_create_with_inode(inode));
  144. size_t executable_size = inode.size();
  145. size_t rounded_executable_size = TRY(Memory::page_round_up(executable_size));
  146. auto region = TRY(MM.allocate_kernel_region_with_vmobject(*vmobject, rounded_executable_size, "ELF memory range calculation"sv, Memory::Region::Access::Read));
  147. auto elf_image = ELF::Image(region->vaddr().as_ptr(), executable_size);
  148. if (!elf_image.is_valid()) {
  149. return EINVAL;
  150. }
  151. RequiredLoadRange range {};
  152. elf_image.for_each_program_header([&range](auto const& pheader) {
  153. if (pheader.type() != PT_LOAD)
  154. return;
  155. auto region_start = (FlatPtr)pheader.vaddr().as_ptr();
  156. auto region_end = region_start + pheader.size_in_memory();
  157. if (range.start == 0 || region_start < range.start)
  158. range.start = region_start;
  159. if (range.end == 0 || region_end > range.end)
  160. range.end = region_end;
  161. });
  162. VERIFY(range.end > range.start);
  163. return range;
  164. };
  165. static ErrorOr<FlatPtr> get_load_offset(const ElfW(Ehdr) & main_program_header, OpenFileDescription& main_program_description, OpenFileDescription* interpreter_description)
  166. {
  167. constexpr FlatPtr load_range_start = 0x08000000;
  168. constexpr FlatPtr load_range_size = 65536 * PAGE_SIZE; // 2**16 * PAGE_SIZE = 256MB
  169. constexpr FlatPtr minimum_load_offset_randomization_size = 10 * MiB;
  170. auto random_load_offset_in_range([](auto start, auto size) {
  171. return Memory::page_round_down(start + get_good_random<FlatPtr>() % size);
  172. });
  173. if (main_program_header.e_type == ET_DYN) {
  174. return random_load_offset_in_range(load_range_start, load_range_size);
  175. }
  176. if (main_program_header.e_type != ET_EXEC)
  177. return EINVAL;
  178. auto main_program_load_range = TRY(get_required_load_range(main_program_description));
  179. RequiredLoadRange selected_range {};
  180. if (interpreter_description) {
  181. auto interpreter_load_range = TRY(get_required_load_range(*interpreter_description));
  182. auto interpreter_size_in_memory = interpreter_load_range.end - interpreter_load_range.start;
  183. auto interpreter_load_range_end = load_range_start + load_range_size - interpreter_size_in_memory;
  184. // No intersection
  185. if (main_program_load_range.end < load_range_start || main_program_load_range.start > interpreter_load_range_end)
  186. return random_load_offset_in_range(load_range_start, load_range_size);
  187. RequiredLoadRange first_available_part = { load_range_start, main_program_load_range.start };
  188. RequiredLoadRange second_available_part = { main_program_load_range.end, interpreter_load_range_end };
  189. // Select larger part
  190. if (first_available_part.end - first_available_part.start > second_available_part.end - second_available_part.start)
  191. selected_range = first_available_part;
  192. else
  193. selected_range = second_available_part;
  194. } else
  195. selected_range = main_program_load_range;
  196. // If main program is too big and leaves us without enough space for adequate loader randomization
  197. if (selected_range.end - selected_range.start < minimum_load_offset_randomization_size)
  198. return E2BIG;
  199. return random_load_offset_in_range(selected_range.start, selected_range.end - selected_range.start);
  200. }
  201. enum class ShouldAllocateTls {
  202. No,
  203. Yes,
  204. };
  205. enum class ShouldAllowSyscalls {
  206. No,
  207. Yes,
  208. };
  209. static ErrorOr<LoadResult> load_elf_object(NonnullOwnPtr<Memory::AddressSpace> new_space, OpenFileDescription& object_description,
  210. FlatPtr load_offset, ShouldAllocateTls should_allocate_tls, ShouldAllowSyscalls should_allow_syscalls)
  211. {
  212. auto& inode = *(object_description.inode());
  213. auto vmobject = TRY(Memory::SharedInodeVMObject::try_create_with_inode(inode));
  214. if (vmobject->writable_mappings()) {
  215. dbgln("Refusing to execute a write-mapped program");
  216. return ETXTBSY;
  217. }
  218. size_t executable_size = inode.size();
  219. size_t rounded_executable_size = TRY(Memory::page_round_up(executable_size));
  220. auto executable_region = TRY(MM.allocate_kernel_region_with_vmobject(*vmobject, rounded_executable_size, "ELF loading"sv, Memory::Region::Access::Read));
  221. auto elf_image = ELF::Image(executable_region->vaddr().as_ptr(), executable_size);
  222. if (!elf_image.is_valid())
  223. return ENOEXEC;
  224. Memory::Region* master_tls_region { nullptr };
  225. size_t master_tls_size = 0;
  226. size_t master_tls_alignment = 0;
  227. FlatPtr load_base_address = 0;
  228. size_t stack_size = 0;
  229. auto elf_name = TRY(object_description.pseudo_path());
  230. VERIFY(!Processor::in_critical());
  231. Memory::MemoryManager::enter_address_space(*new_space);
  232. auto load_tls_section = [&](auto& program_header) -> ErrorOr<void> {
  233. VERIFY(should_allocate_tls == ShouldAllocateTls::Yes);
  234. VERIFY(program_header.size_in_memory());
  235. if (!elf_image.is_within_image(program_header.raw_data(), program_header.size_in_image())) {
  236. dbgln("Shenanigans! ELF PT_TLS header sneaks outside of executable.");
  237. return ENOEXEC;
  238. }
  239. auto region_name = TRY(KString::formatted("{} (master-tls)", elf_name));
  240. master_tls_region = TRY(new_space->allocate_region(Memory::RandomizeVirtualAddress::Yes, {}, program_header.size_in_memory(), PAGE_SIZE, region_name->view(), PROT_READ | PROT_WRITE, AllocationStrategy::Reserve));
  241. master_tls_size = program_header.size_in_memory();
  242. master_tls_alignment = program_header.alignment();
  243. TRY(copy_to_user(master_tls_region->vaddr().as_ptr(), program_header.raw_data(), program_header.size_in_image()));
  244. return {};
  245. };
  246. auto load_writable_section = [&](auto& program_header) -> ErrorOr<void> {
  247. // Writable section: create a copy in memory.
  248. VERIFY(program_header.alignment() % PAGE_SIZE == 0);
  249. if (!elf_image.is_within_image(program_header.raw_data(), program_header.size_in_image())) {
  250. dbgln("Shenanigans! Writable ELF PT_LOAD header sneaks outside of executable.");
  251. return ENOEXEC;
  252. }
  253. int prot = 0;
  254. if (program_header.is_readable())
  255. prot |= PROT_READ;
  256. if (program_header.is_writable())
  257. prot |= PROT_WRITE;
  258. auto region_name = TRY(KString::formatted("{} (data-{}{})", elf_name, program_header.is_readable() ? "r" : "", program_header.is_writable() ? "w" : ""));
  259. auto range_base = VirtualAddress { Memory::page_round_down(program_header.vaddr().offset(load_offset).get()) };
  260. size_t rounded_range_end = TRY(Memory::page_round_up(program_header.vaddr().offset(load_offset).offset(program_header.size_in_memory()).get()));
  261. auto range_end = VirtualAddress { rounded_range_end };
  262. auto region = TRY(new_space->allocate_region(Memory::RandomizeVirtualAddress::Yes, range_base, range_end.get() - range_base.get(), PAGE_SIZE, region_name->view(), prot, AllocationStrategy::Reserve));
  263. // It's not always the case with PIE executables (and very well shouldn't be) that the
  264. // virtual address in the program header matches the one we end up giving the process.
  265. // In order to copy the data image correctly into memory, we need to copy the data starting at
  266. // the right initial page offset into the pages allocated for the elf_alloc-XX section.
  267. // FIXME: There's an opportunity to munmap, or at least mprotect, the padding space between
  268. // the .text and .data PT_LOAD sections of the executable.
  269. // Accessing it would definitely be a bug.
  270. auto page_offset = program_header.vaddr();
  271. page_offset.mask(~PAGE_MASK);
  272. TRY(copy_to_user((u8*)region->vaddr().as_ptr() + page_offset.get(), program_header.raw_data(), program_header.size_in_image()));
  273. return {};
  274. };
  275. auto load_section = [&](auto& program_header) -> ErrorOr<void> {
  276. if (program_header.size_in_memory() == 0)
  277. return {};
  278. if (program_header.is_writable())
  279. return load_writable_section(program_header);
  280. // Non-writable section: map the executable itself in memory.
  281. VERIFY(program_header.alignment() % PAGE_SIZE == 0);
  282. int prot = 0;
  283. if (program_header.is_readable())
  284. prot |= PROT_READ;
  285. if (program_header.is_writable())
  286. prot |= PROT_WRITE;
  287. if (program_header.is_executable())
  288. prot |= PROT_EXEC;
  289. auto range_base = VirtualAddress { Memory::page_round_down(program_header.vaddr().offset(load_offset).get()) };
  290. size_t rounded_range_end = TRY(Memory::page_round_up(program_header.vaddr().offset(load_offset).offset(program_header.size_in_memory()).get()));
  291. auto range_end = VirtualAddress { rounded_range_end };
  292. auto region = TRY(new_space->allocate_region_with_vmobject(Memory::RandomizeVirtualAddress::Yes, range_base, range_end.get() - range_base.get(), program_header.alignment(), *vmobject, program_header.offset(), elf_name->view(), prot, true));
  293. if (should_allow_syscalls == ShouldAllowSyscalls::Yes)
  294. region->set_syscall_region(true);
  295. if (program_header.offset() == 0)
  296. load_base_address = (FlatPtr)region->vaddr().as_ptr();
  297. return {};
  298. };
  299. auto load_elf_program_header = [&](auto& program_header) -> ErrorOr<void> {
  300. if (program_header.type() == PT_TLS)
  301. return load_tls_section(program_header);
  302. if (program_header.type() == PT_LOAD)
  303. return load_section(program_header);
  304. if (program_header.type() == PT_GNU_STACK) {
  305. stack_size = program_header.size_in_memory();
  306. }
  307. // NOTE: We ignore other program header types.
  308. return {};
  309. };
  310. TRY([&] {
  311. ErrorOr<void> result;
  312. elf_image.for_each_program_header([&](ELF::Image::ProgramHeader const& program_header) {
  313. result = load_elf_program_header(program_header);
  314. return result.is_error() ? IterationDecision::Break : IterationDecision::Continue;
  315. });
  316. return result;
  317. }());
  318. if (stack_size == 0) {
  319. stack_size = Thread::default_userspace_stack_size;
  320. }
  321. if (!elf_image.entry().offset(load_offset).get()) {
  322. dbgln("do_exec: Failure loading program, entry pointer is invalid! {})", elf_image.entry().offset(load_offset));
  323. return ENOEXEC;
  324. }
  325. auto* stack_region = TRY(new_space->allocate_region(Memory::RandomizeVirtualAddress::Yes, {}, stack_size, PAGE_SIZE, "Stack (Main thread)"sv, PROT_READ | PROT_WRITE, AllocationStrategy::Reserve));
  326. stack_region->set_stack(true);
  327. return LoadResult {
  328. move(new_space),
  329. load_base_address,
  330. elf_image.entry().offset(load_offset).get(),
  331. executable_size,
  332. TRY(AK::try_make_weak_ptr_if_nonnull(master_tls_region)),
  333. master_tls_size,
  334. master_tls_alignment,
  335. TRY(stack_region->try_make_weak_ptr())
  336. };
  337. }
  338. ErrorOr<LoadResult>
  339. Process::load(NonnullLockRefPtr<OpenFileDescription> main_program_description,
  340. LockRefPtr<OpenFileDescription> interpreter_description, const ElfW(Ehdr) & main_program_header)
  341. {
  342. auto new_space = TRY(Memory::AddressSpace::try_create(nullptr));
  343. ScopeGuard space_guard([&]() {
  344. Memory::MemoryManager::enter_process_address_space(*this);
  345. });
  346. auto load_offset = TRY(get_load_offset(main_program_header, main_program_description, interpreter_description));
  347. if (interpreter_description.is_null()) {
  348. auto load_result = TRY(load_elf_object(move(new_space), main_program_description, load_offset, ShouldAllocateTls::Yes, ShouldAllowSyscalls::No));
  349. m_master_tls_region = load_result.tls_region;
  350. m_master_tls_size = load_result.tls_size;
  351. m_master_tls_alignment = load_result.tls_alignment;
  352. return load_result;
  353. }
  354. auto interpreter_load_result = TRY(load_elf_object(move(new_space), *interpreter_description, load_offset, ShouldAllocateTls::No, ShouldAllowSyscalls::Yes));
  355. // TLS allocation will be done in userspace by the loader
  356. VERIFY(!interpreter_load_result.tls_region);
  357. VERIFY(!interpreter_load_result.tls_alignment);
  358. VERIFY(!interpreter_load_result.tls_size);
  359. return interpreter_load_result;
  360. }
  361. void Process::clear_signal_handlers_for_exec()
  362. {
  363. // Comments are as they are presented in the POSIX specification, but slightly out of order.
  364. for (size_t signal = 0; signal < m_signal_action_data.size(); signal++) {
  365. // Except for SIGCHLD, signals set to be ignored by the calling process image shall be set to be ignored by the new process image.
  366. // If the SIGCHLD signal is set to be ignored by the calling process image, it is unspecified whether the SIGCHLD signal is set
  367. // to be ignored or to the default action in the new process image.
  368. if (signal != SIGCHLD && m_signal_action_data[signal].handler_or_sigaction.get() == reinterpret_cast<FlatPtr>(SIG_IGN)) {
  369. m_signal_action_data[signal] = {};
  370. m_signal_action_data[signal].handler_or_sigaction.set(reinterpret_cast<FlatPtr>(SIG_IGN));
  371. continue;
  372. }
  373. // Signals set to the default action in the calling process image shall be set to the default action in the new process image.
  374. // Signals set to be caught by the calling process image shall be set to the default action in the new process image.
  375. m_signal_action_data[signal] = {};
  376. }
  377. }
  378. ErrorOr<void> Process::do_exec(NonnullLockRefPtr<OpenFileDescription> main_program_description, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment,
  379. LockRefPtr<OpenFileDescription> interpreter_description, Thread*& new_main_thread, u32& prev_flags, const ElfW(Ehdr) & main_program_header)
  380. {
  381. VERIFY(is_user_process());
  382. VERIFY(!Processor::in_critical());
  383. auto main_program_metadata = main_program_description->metadata();
  384. // NOTE: Don't allow running SUID binaries at all if we are in a jail.
  385. TRY(Process::current().jail().with([&](auto const& my_jail) -> ErrorOr<void> {
  386. if (my_jail && (main_program_metadata.is_setuid() || main_program_metadata.is_setgid())) {
  387. return Error::from_errno(EPERM);
  388. }
  389. return {};
  390. }));
  391. // Although we *could* handle a pseudo_path here, trying to execute something that doesn't have
  392. // a custody (e.g. BlockDevice or RandomDevice) is pretty suspicious anyway.
  393. auto path = TRY(main_program_description->original_absolute_path());
  394. dbgln_if(EXEC_DEBUG, "do_exec: {}", path);
  395. auto last_part = path->view().find_last_split_view('/');
  396. auto new_process_name = TRY(KString::try_create(last_part));
  397. auto new_main_thread_name = TRY(new_process_name->try_clone());
  398. auto load_result = TRY(load(main_program_description, interpreter_description, main_program_header));
  399. // NOTE: We don't need the interpreter executable description after this point.
  400. // We destroy it here to prevent it from getting destroyed when we return from this function.
  401. // That's important because when we're returning from this function, we're in a very delicate
  402. // state where we can't block (e.g by trying to acquire a mutex in description teardown.)
  403. bool has_interpreter = interpreter_description;
  404. interpreter_description = nullptr;
  405. auto* signal_trampoline_region = TRY(load_result.space->allocate_region_with_vmobject(Memory::RandomizeVirtualAddress::Yes, {}, PAGE_SIZE, PAGE_SIZE, g_signal_trampoline_region->vmobject(), 0, "Signal trampoline"sv, PROT_READ | PROT_EXEC, true));
  406. signal_trampoline_region->set_syscall_region(true);
  407. // (For dynamically linked executable) Allocate an FD for passing the main executable to the dynamic loader.
  408. Optional<ScopedDescriptionAllocation> main_program_fd_allocation;
  409. if (has_interpreter)
  410. main_program_fd_allocation = TRY(allocate_fd());
  411. auto old_credentials = this->credentials();
  412. auto new_credentials = old_credentials;
  413. auto old_process_attached_jail = m_attached_jail.with([&](auto& jail) -> RefPtr<Jail> { return jail; });
  414. bool executable_is_setid = false;
  415. if (!(main_program_description->custody()->mount_flags() & MS_NOSUID)) {
  416. auto new_euid = old_credentials->euid();
  417. auto new_egid = old_credentials->egid();
  418. auto new_suid = old_credentials->suid();
  419. auto new_sgid = old_credentials->sgid();
  420. if (main_program_metadata.is_setuid()) {
  421. executable_is_setid = true;
  422. new_euid = main_program_metadata.uid;
  423. new_suid = main_program_metadata.uid;
  424. }
  425. if (main_program_metadata.is_setgid()) {
  426. executable_is_setid = true;
  427. new_egid = main_program_metadata.gid;
  428. new_sgid = main_program_metadata.gid;
  429. }
  430. if (executable_is_setid) {
  431. new_credentials = TRY(Credentials::create(
  432. old_credentials->uid(),
  433. old_credentials->gid(),
  434. new_euid,
  435. new_egid,
  436. new_suid,
  437. new_sgid,
  438. old_credentials->extra_gids(),
  439. old_credentials->sid(),
  440. old_credentials->pgid()));
  441. }
  442. }
  443. // We commit to the new executable at this point. There is no turning back!
  444. // Prevent other processes from attaching to us with ptrace while we're doing this.
  445. MutexLocker ptrace_locker(ptrace_lock());
  446. // Disable profiling temporarily in case it's running on this process.
  447. auto was_profiling = m_profiling;
  448. TemporaryChange profiling_disabler(m_profiling, false);
  449. kill_threads_except_self();
  450. with_mutable_protected_data([&](auto& protected_data) {
  451. protected_data.credentials = move(new_credentials);
  452. protected_data.dumpable = !executable_is_setid;
  453. protected_data.executable_is_setid = executable_is_setid;
  454. });
  455. // We make sure to enter the new address space before destroying the old one.
  456. // This ensures that the process always has a valid page directory.
  457. Memory::MemoryManager::enter_address_space(*load_result.space);
  458. m_space.with([&](auto& space) { space = load_result.space.release_nonnull(); });
  459. m_executable.with([&](auto& executable) { executable = main_program_description->custody(); });
  460. m_arguments = move(arguments);
  461. m_attached_jail.with([&](auto& jail) {
  462. jail = old_process_attached_jail;
  463. });
  464. m_environment = move(environment);
  465. TRY(m_unveil_data.with([&](auto& unveil_data) -> ErrorOr<void> {
  466. TRY(m_exec_unveil_data.with([&](auto& exec_unveil_data) -> ErrorOr<void> {
  467. // Note: If we have exec unveil data being waiting to be dispatched
  468. // to the current execve'd program, then we apply the unveil data and
  469. // ensure it is locked in the new program.
  470. if (exec_unveil_data.state == VeilState::Dropped) {
  471. unveil_data.state = VeilState::LockedInherited;
  472. exec_unveil_data.state = VeilState::None;
  473. unveil_data.paths = TRY(exec_unveil_data.paths.deep_copy());
  474. } else {
  475. unveil_data.state = VeilState::None;
  476. exec_unveil_data.state = VeilState::None;
  477. unveil_data.paths.clear();
  478. unveil_data.paths.set_metadata({ TRY(KString::try_create("/"sv)), UnveilAccess::None, false });
  479. }
  480. exec_unveil_data.paths.clear();
  481. exec_unveil_data.paths.set_metadata({ TRY(KString::try_create("/"sv)), UnveilAccess::None, false });
  482. return {};
  483. }));
  484. return {};
  485. }));
  486. m_coredump_properties.for_each([](auto& property) {
  487. property = {};
  488. });
  489. auto* current_thread = Thread::current();
  490. current_thread->reset_signals_for_exec();
  491. clear_signal_handlers_for_exec();
  492. clear_futex_queues_on_exec();
  493. m_fds.with_exclusive([&](auto& fds) {
  494. fds.change_each([&](auto& file_description_metadata) {
  495. if (file_description_metadata.is_valid() && file_description_metadata.flags() & FD_CLOEXEC)
  496. file_description_metadata = {};
  497. });
  498. });
  499. if (main_program_fd_allocation.has_value()) {
  500. main_program_description->set_readable(true);
  501. m_fds.with_exclusive([&](auto& fds) { fds[main_program_fd_allocation->fd].set(move(main_program_description), FD_CLOEXEC); });
  502. }
  503. new_main_thread = nullptr;
  504. if (&current_thread->process() == this) {
  505. new_main_thread = current_thread;
  506. } else {
  507. for_each_thread([&](auto& thread) {
  508. new_main_thread = &thread;
  509. return IterationDecision::Break;
  510. });
  511. }
  512. VERIFY(new_main_thread);
  513. auto credentials = this->credentials();
  514. auto auxv = generate_auxiliary_vector(load_result.load_base, load_result.entry_eip, credentials->uid(), credentials->euid(), credentials->gid(), credentials->egid(), path->view(), main_program_fd_allocation);
  515. // FIXME: How much stack space does process startup need?
  516. if (!validate_stack_size(m_arguments, m_environment, auxv))
  517. return E2BIG;
  518. // NOTE: We create the new stack before disabling interrupts since it will zero-fault
  519. // and we don't want to deal with faults after this point.
  520. auto new_userspace_sp = TRY(make_userspace_context_for_main_thread(new_main_thread->regs(), *load_result.stack_region.unsafe_ptr(), m_arguments, m_environment, move(auxv)));
  521. m_name = move(new_process_name);
  522. new_main_thread->set_name(move(new_main_thread_name));
  523. if (wait_for_tracer_at_next_execve()) {
  524. // Make sure we release the ptrace lock here or the tracer will block forever.
  525. ptrace_locker.unlock();
  526. Thread::current()->send_urgent_signal_to_self(SIGSTOP);
  527. } else {
  528. // Unlock regardless before disabling interrupts.
  529. // Ensure we always unlock after checking ptrace status to avoid TOCTOU ptrace issues
  530. ptrace_locker.unlock();
  531. }
  532. // We enter a critical section here because we don't want to get interrupted between do_exec()
  533. // and Processor::assume_context() or the next context switch.
  534. // If we used an InterruptDisabler that sti()'d on exit, we might timer tick'd too soon in exec().
  535. Processor::enter_critical();
  536. prev_flags = cpu_flags();
  537. cli();
  538. // NOTE: Be careful to not trigger any page faults below!
  539. with_mutable_protected_data([&](auto& protected_data) {
  540. protected_data.promises = protected_data.execpromises.load();
  541. protected_data.has_promises = protected_data.has_execpromises.load();
  542. protected_data.execpromises = 0;
  543. protected_data.has_execpromises = false;
  544. protected_data.signal_trampoline = signal_trampoline_region->vaddr();
  545. // FIXME: PID/TID ISSUE
  546. protected_data.pid = new_main_thread->tid().value();
  547. });
  548. auto tsr_result = new_main_thread->make_thread_specific_region({});
  549. if (tsr_result.is_error()) {
  550. // FIXME: We cannot fail this late. Refactor this so the allocation happens before we commit to the new executable.
  551. VERIFY_NOT_REACHED();
  552. }
  553. new_main_thread->reset_fpu_state();
  554. auto& regs = new_main_thread->m_regs;
  555. regs.cs = GDT_SELECTOR_CODE3 | 3;
  556. regs.rip = load_result.entry_eip;
  557. regs.rsp = new_userspace_sp;
  558. regs.cr3 = address_space().with([](auto& space) { return space->page_directory().cr3(); });
  559. {
  560. TemporaryChange profiling_disabler(m_profiling, was_profiling);
  561. PerformanceManager::add_process_exec_event(*this);
  562. }
  563. u32 lock_count_to_restore;
  564. [[maybe_unused]] auto rc = big_lock().force_unlock_exclusive_if_locked(lock_count_to_restore);
  565. VERIFY_INTERRUPTS_DISABLED();
  566. VERIFY(Processor::in_critical());
  567. return {};
  568. }
  569. static Array<ELF::AuxiliaryValue, auxiliary_vector_size> generate_auxiliary_vector(FlatPtr load_base, FlatPtr entry_eip, UserID uid, UserID euid, GroupID gid, GroupID egid, StringView executable_path, Optional<Process::ScopedDescriptionAllocation> const& main_program_fd_allocation)
  570. {
  571. return { {
  572. // PHDR/EXECFD
  573. // PH*
  574. { ELF::AuxiliaryValue::PageSize, PAGE_SIZE },
  575. { ELF::AuxiliaryValue::BaseAddress, (void*)load_base },
  576. { ELF::AuxiliaryValue::Entry, (void*)entry_eip },
  577. // NOTELF
  578. { ELF::AuxiliaryValue::Uid, (long)uid.value() },
  579. { ELF::AuxiliaryValue::EUid, (long)euid.value() },
  580. { ELF::AuxiliaryValue::Gid, (long)gid.value() },
  581. { ELF::AuxiliaryValue::EGid, (long)egid.value() },
  582. { ELF::AuxiliaryValue::Platform, Processor::platform_string() },
  583. // FIXME: This is platform specific
  584. { ELF::AuxiliaryValue::HwCap, (long)CPUID(1).edx() },
  585. { ELF::AuxiliaryValue::ClockTick, (long)TimeManagement::the().ticks_per_second() },
  586. // FIXME: Also take into account things like extended filesystem permissions? That's what linux does...
  587. { ELF::AuxiliaryValue::Secure, ((uid != euid) || (gid != egid)) ? 1 : 0 },
  588. { ELF::AuxiliaryValue::Random, nullptr },
  589. { ELF::AuxiliaryValue::ExecFilename, executable_path },
  590. main_program_fd_allocation.has_value() ? ELF::AuxiliaryValue { ELF::AuxiliaryValue::ExecFileDescriptor, main_program_fd_allocation->fd } : ELF::AuxiliaryValue { ELF::AuxiliaryValue::Ignore, 0L },
  591. { ELF::AuxiliaryValue::Null, 0L },
  592. } };
  593. }
  594. static ErrorOr<NonnullOwnPtrVector<KString>> find_shebang_interpreter_for_executable(char const first_page[], size_t nread)
  595. {
  596. int word_start = 2;
  597. size_t word_length = 0;
  598. if (nread > 2 && first_page[0] == '#' && first_page[1] == '!') {
  599. NonnullOwnPtrVector<KString> interpreter_words;
  600. for (size_t i = 2; i < nread; ++i) {
  601. if (first_page[i] == '\n') {
  602. break;
  603. }
  604. if (first_page[i] != ' ') {
  605. ++word_length;
  606. }
  607. if (first_page[i] == ' ') {
  608. if (word_length > 0) {
  609. auto word = TRY(KString::try_create(StringView { &first_page[word_start], word_length }));
  610. TRY(interpreter_words.try_append(move(word)));
  611. }
  612. word_length = 0;
  613. word_start = i + 1;
  614. }
  615. }
  616. if (word_length > 0) {
  617. auto word = TRY(KString::try_create(StringView { &first_page[word_start], word_length }));
  618. TRY(interpreter_words.try_append(move(word)));
  619. }
  620. if (!interpreter_words.is_empty())
  621. return interpreter_words;
  622. }
  623. return ENOEXEC;
  624. }
  625. ErrorOr<LockRefPtr<OpenFileDescription>> Process::find_elf_interpreter_for_executable(StringView path, ElfW(Ehdr) const& main_executable_header, size_t main_executable_header_size, size_t file_size)
  626. {
  627. // Not using ErrorOr here because we'll want to do the same thing in userspace in the RTLD
  628. StringBuilder interpreter_path_builder;
  629. if (!TRY(ELF::validate_program_headers(main_executable_header, file_size, { &main_executable_header, main_executable_header_size }, &interpreter_path_builder))) {
  630. dbgln("exec({}): File has invalid ELF Program headers", path);
  631. return ENOEXEC;
  632. }
  633. auto interpreter_path = interpreter_path_builder.string_view();
  634. if (!interpreter_path.is_empty()) {
  635. dbgln_if(EXEC_DEBUG, "exec({}): Using program interpreter {}", path, interpreter_path);
  636. auto interpreter_description = TRY(VirtualFileSystem::the().open(credentials(), interpreter_path, O_EXEC, 0, current_directory()));
  637. auto interp_metadata = interpreter_description->metadata();
  638. VERIFY(interpreter_description->inode());
  639. // Validate the program interpreter as a valid elf binary.
  640. // If your program interpreter is a #! file or something, it's time to stop playing games :)
  641. if (interp_metadata.size < (int)sizeof(ElfW(Ehdr)))
  642. return ENOEXEC;
  643. char first_page[PAGE_SIZE] = {};
  644. auto first_page_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&first_page);
  645. auto nread = TRY(interpreter_description->read(first_page_buffer, sizeof(first_page)));
  646. if (nread < sizeof(ElfW(Ehdr)))
  647. return ENOEXEC;
  648. auto* elf_header = (ElfW(Ehdr)*)first_page;
  649. if (!ELF::validate_elf_header(*elf_header, interp_metadata.size)) {
  650. dbgln("exec({}): Interpreter ({}) has invalid ELF header", path, interpreter_path);
  651. return ENOEXEC;
  652. }
  653. // Not using ErrorOr here because we'll want to do the same thing in userspace in the RTLD
  654. StringBuilder interpreter_interpreter_path_builder;
  655. if (!TRY(ELF::validate_program_headers(*elf_header, interp_metadata.size, { first_page, nread }, &interpreter_interpreter_path_builder))) {
  656. dbgln("exec({}): Interpreter ({}) has invalid ELF Program headers", path, interpreter_path);
  657. return ENOEXEC;
  658. }
  659. auto interpreter_interpreter_path = interpreter_interpreter_path_builder.string_view();
  660. if (!interpreter_interpreter_path.is_empty()) {
  661. dbgln("exec({}): Interpreter ({}) has its own interpreter ({})! No thank you!", path, interpreter_path, interpreter_interpreter_path);
  662. return ELOOP;
  663. }
  664. return interpreter_description;
  665. }
  666. if (main_executable_header.e_type == ET_REL) {
  667. // We can't exec an ET_REL, that's just an object file from the compiler
  668. return ENOEXEC;
  669. }
  670. if (main_executable_header.e_type == ET_DYN) {
  671. // If it's ET_DYN with no PT_INTERP, then it's a dynamic executable responsible
  672. // for its own relocation (i.e. it's /usr/lib/Loader.so)
  673. if (path != "/usr/lib/Loader.so")
  674. dbgln("exec({}): WARNING - Dynamic ELF executable without a PT_INTERP header, and isn't /usr/lib/Loader.so", path);
  675. return nullptr;
  676. }
  677. // No interpreter, but, path refers to a valid elf image
  678. return nullptr;
  679. }
  680. ErrorOr<void> Process::exec(NonnullOwnPtr<KString> path, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, Thread*& new_main_thread, u32& prev_flags, int recursion_depth)
  681. {
  682. if (recursion_depth > 2) {
  683. dbgln("exec({}): SHENANIGANS! recursed too far trying to find #! interpreter", path);
  684. return ELOOP;
  685. }
  686. // Open the file to check what kind of binary format it is
  687. // Currently supported formats:
  688. // - #! interpreted file
  689. // - ELF32
  690. // * ET_EXEC binary that just gets loaded
  691. // * ET_DYN binary that requires a program interpreter
  692. //
  693. auto description = TRY(VirtualFileSystem::the().open(credentials(), path->view(), O_EXEC, 0, current_directory()));
  694. auto metadata = description->metadata();
  695. if (!metadata.is_regular_file())
  696. return EACCES;
  697. // Always gonna need at least 3 bytes. these are for #!X
  698. if (metadata.size < 3)
  699. return ENOEXEC;
  700. VERIFY(description->inode());
  701. // Read the first page of the program into memory so we can validate the binfmt of it
  702. char first_page[PAGE_SIZE];
  703. auto first_page_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&first_page);
  704. auto nread = TRY(description->read(first_page_buffer, sizeof(first_page)));
  705. // 1) #! interpreted file
  706. auto shebang_result = find_shebang_interpreter_for_executable(first_page, nread);
  707. if (!shebang_result.is_error()) {
  708. auto shebang_words = shebang_result.release_value();
  709. auto shebang_path = TRY(shebang_words.first().try_clone());
  710. arguments.ptr_at(0) = move(path);
  711. TRY(arguments.try_prepend(move(shebang_words)));
  712. return exec(move(shebang_path), move(arguments), move(environment), new_main_thread, prev_flags, ++recursion_depth);
  713. }
  714. // #2) ELF32 for i386
  715. if (nread < sizeof(ElfW(Ehdr)))
  716. return ENOEXEC;
  717. auto const* main_program_header = (ElfW(Ehdr)*)first_page;
  718. if (!ELF::validate_elf_header(*main_program_header, metadata.size)) {
  719. dbgln("exec({}): File has invalid ELF header", path);
  720. return ENOEXEC;
  721. }
  722. auto interpreter_description = TRY(find_elf_interpreter_for_executable(path->view(), *main_program_header, nread, metadata.size));
  723. return do_exec(move(description), move(arguments), move(environment), move(interpreter_description), new_main_thread, prev_flags, *main_program_header);
  724. }
  725. ErrorOr<FlatPtr> Process::sys$execve(Userspace<Syscall::SC_execve_params const*> user_params)
  726. {
  727. VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
  728. TRY(require_promise(Pledge::exec));
  729. Thread* new_main_thread = nullptr;
  730. u32 prev_flags = 0;
  731. // NOTE: Be extremely careful with allocating any kernel memory in this function.
  732. // On success, the kernel stack will be lost.
  733. // The explicit block scope below is specifically placed to minimize the number
  734. // of stack locals in this function.
  735. {
  736. auto params = TRY(copy_typed_from_user(user_params));
  737. if (params.arguments.length > ARG_MAX || params.environment.length > ARG_MAX)
  738. return E2BIG;
  739. // NOTE: The caller is expected to always pass at least one argument by convention,
  740. // the program path that was passed as params.path.
  741. if (params.arguments.length == 0)
  742. return EINVAL;
  743. auto path = TRY(get_syscall_path_argument(params.path));
  744. auto copy_user_strings = [](auto const& list, auto& output) -> ErrorOr<void> {
  745. if (!list.length)
  746. return {};
  747. Checked<size_t> size = sizeof(*list.strings);
  748. size *= list.length;
  749. if (size.has_overflow())
  750. return EOVERFLOW;
  751. Vector<Syscall::StringArgument, 32> strings;
  752. TRY(strings.try_resize(list.length));
  753. TRY(copy_from_user(strings.data(), list.strings, size.value()));
  754. for (size_t i = 0; i < list.length; ++i) {
  755. auto string = TRY(try_copy_kstring_from_user(strings[i]));
  756. TRY(output.try_append(move(string)));
  757. }
  758. return {};
  759. };
  760. NonnullOwnPtrVector<KString> arguments;
  761. TRY(copy_user_strings(params.arguments, arguments));
  762. NonnullOwnPtrVector<KString> environment;
  763. TRY(copy_user_strings(params.environment, environment));
  764. TRY(exec(move(path), move(arguments), move(environment), new_main_thread, prev_flags));
  765. }
  766. // NOTE: If we're here, the exec has succeeded and we've got a new executable image!
  767. // We will not return normally from this function. Instead, the next time we
  768. // get scheduled, it'll be at the entry point of the new executable.
  769. VERIFY_INTERRUPTS_DISABLED();
  770. VERIFY(Processor::in_critical());
  771. auto* current_thread = Thread::current();
  772. if (current_thread == new_main_thread) {
  773. // We need to enter the scheduler lock before changing the state
  774. // and it will be released after the context switch into that
  775. // thread. We should also still be in our critical section
  776. VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
  777. VERIFY(Processor::in_critical() == 1);
  778. g_scheduler_lock.lock();
  779. current_thread->set_state(Thread::State::Running);
  780. Processor::assume_context(*current_thread, prev_flags);
  781. VERIFY_NOT_REACHED();
  782. }
  783. // NOTE: This code path is taken in the non-syscall case, i.e when the kernel spawns
  784. // a userspace process directly (such as /bin/SystemServer on startup)
  785. if (prev_flags & 0x200)
  786. sti();
  787. Processor::leave_critical();
  788. return 0;
  789. }
  790. }