MemoryManager.cpp 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Assertions.h>
  7. #include <AK/Memory.h>
  8. #include <AK/StringView.h>
  9. #include <Kernel/BootInfo.h>
  10. #include <Kernel/CMOS.h>
  11. #include <Kernel/FileSystem/Inode.h>
  12. #include <Kernel/Heap/kmalloc.h>
  13. #include <Kernel/Multiboot.h>
  14. #include <Kernel/Panic.h>
  15. #include <Kernel/Process.h>
  16. #include <Kernel/Sections.h>
  17. #include <Kernel/StdLib.h>
  18. #include <Kernel/VM/AnonymousVMObject.h>
  19. #include <Kernel/VM/ContiguousVMObject.h>
  20. #include <Kernel/VM/MemoryManager.h>
  21. #include <Kernel/VM/PageDirectory.h>
  22. #include <Kernel/VM/PhysicalRegion.h>
  23. #include <Kernel/VM/SharedInodeVMObject.h>
  24. extern u8* start_of_kernel_image;
  25. extern u8* end_of_kernel_image;
  26. extern FlatPtr start_of_kernel_text;
  27. extern FlatPtr start_of_kernel_data;
  28. extern FlatPtr end_of_kernel_bss;
  29. extern FlatPtr start_of_ro_after_init;
  30. extern FlatPtr end_of_ro_after_init;
  31. extern FlatPtr start_of_unmap_after_init;
  32. extern FlatPtr end_of_unmap_after_init;
  33. extern FlatPtr start_of_kernel_ksyms;
  34. extern FlatPtr end_of_kernel_ksyms;
  35. extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  36. extern size_t multiboot_copy_boot_modules_count;
  37. // Treat the super pages as logically separate from .bss
  38. __attribute__((section(".super_pages"))) static u8 super_pages[1 * MiB];
  39. namespace Kernel {
  40. // NOTE: We can NOT use AK::Singleton for this class, because
  41. // MemoryManager::initialize is called *before* global constructors are
  42. // run. If we do, then AK::Singleton would get re-initialized, causing
  43. // the memory manager to be initialized twice!
  44. static MemoryManager* s_the;
  45. RecursiveSpinLock s_mm_lock;
  46. MemoryManager& MM
  47. {
  48. return *s_the;
  49. }
  50. bool MemoryManager::is_initialized()
  51. {
  52. return s_the != nullptr;
  53. }
  54. UNMAP_AFTER_INIT MemoryManager::MemoryManager()
  55. {
  56. s_the = this;
  57. ScopedSpinLock lock(s_mm_lock);
  58. parse_memory_map();
  59. write_cr3(kernel_page_directory().cr3());
  60. protect_kernel_image();
  61. // We're temporarily "committing" to two pages that we need to allocate below
  62. if (!commit_user_physical_pages(2))
  63. VERIFY_NOT_REACHED();
  64. m_shared_zero_page = allocate_committed_user_physical_page();
  65. // We're wasting a page here, we just need a special tag (physical
  66. // address) so that we know when we need to lazily allocate a page
  67. // that we should be drawing this page from the committed pool rather
  68. // than potentially failing if no pages are available anymore.
  69. // By using a tag we don't have to query the VMObject for every page
  70. // whether it was committed or not
  71. m_lazy_committed_page = allocate_committed_user_physical_page();
  72. }
  73. UNMAP_AFTER_INIT MemoryManager::~MemoryManager()
  74. {
  75. }
  76. UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
  77. {
  78. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  79. // Disable writing to the kernel text and rodata segments.
  80. for (auto i = (FlatPtr)&start_of_kernel_text; i < (FlatPtr)&start_of_kernel_data; i += PAGE_SIZE) {
  81. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  82. pte.set_writable(false);
  83. }
  84. if (Processor::current().has_feature(CPUFeature::NX)) {
  85. // Disable execution of the kernel data, bss and heap segments.
  86. for (auto i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_image; i += PAGE_SIZE) {
  87. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  88. pte.set_execute_disabled(true);
  89. }
  90. }
  91. }
  92. UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
  93. {
  94. ScopedSpinLock mm_lock(s_mm_lock);
  95. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  96. // Disable writing to the .ro_after_init section
  97. for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
  98. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  99. pte.set_writable(false);
  100. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  101. }
  102. }
  103. void MemoryManager::unmap_text_after_init()
  104. {
  105. ScopedSpinLock mm_lock(s_mm_lock);
  106. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  107. auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
  108. auto end = page_round_up((FlatPtr)&end_of_unmap_after_init);
  109. // Unmap the entire .unmap_after_init section
  110. for (auto i = start; i < end; i += PAGE_SIZE) {
  111. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  112. pte.clear();
  113. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  114. }
  115. dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
  116. }
  117. void MemoryManager::unmap_ksyms_after_init()
  118. {
  119. ScopedSpinLock mm_lock(s_mm_lock);
  120. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  121. auto start = page_round_down((FlatPtr)&start_of_kernel_ksyms);
  122. auto end = page_round_up((FlatPtr)&end_of_kernel_ksyms);
  123. // Unmap the entire .ksyms section
  124. for (auto i = start; i < end; i += PAGE_SIZE) {
  125. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  126. pte.clear();
  127. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  128. }
  129. dmesgln("Unmapped {} KiB of kernel symbols after init! :^)", (end - start) / KiB);
  130. }
  131. UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
  132. {
  133. VERIFY(!m_physical_memory_ranges.is_empty());
  134. ContiguousReservedMemoryRange range;
  135. for (auto& current_range : m_physical_memory_ranges) {
  136. if (current_range.type != PhysicalMemoryRangeType::Reserved) {
  137. if (range.start.is_null())
  138. continue;
  139. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
  140. range.start.set((FlatPtr) nullptr);
  141. continue;
  142. }
  143. if (!range.start.is_null()) {
  144. continue;
  145. }
  146. range.start = current_range.start;
  147. }
  148. if (m_physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
  149. return;
  150. if (range.start.is_null())
  151. return;
  152. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, m_physical_memory_ranges.last().start.get() + m_physical_memory_ranges.last().length - range.start.get() });
  153. }
  154. bool MemoryManager::is_allowed_to_mmap_to_userspace(PhysicalAddress start_address, Range const& range) const
  155. {
  156. VERIFY(!m_reserved_memory_ranges.is_empty());
  157. for (auto& current_range : m_reserved_memory_ranges) {
  158. if (!(current_range.start <= start_address))
  159. continue;
  160. if (!(current_range.start.offset(current_range.length) > start_address))
  161. continue;
  162. if (current_range.length < range.size())
  163. return false;
  164. return true;
  165. }
  166. return false;
  167. }
  168. UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
  169. {
  170. // Register used memory regions that we know of.
  171. m_used_memory_ranges.ensure_capacity(4);
  172. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
  173. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Prekernel, PhysicalAddress(virtual_to_low_physical(FlatPtr(start_of_prekernel_image))), PhysicalAddress(page_round_up(virtual_to_low_physical(FlatPtr(end_of_prekernel_image)))) });
  174. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical(FlatPtr(&start_of_kernel_image))), PhysicalAddress(page_round_up(virtual_to_low_physical(FlatPtr(&end_of_kernel_image)))) });
  175. if (multiboot_info_ptr->flags & 0x4) {
  176. auto* bootmods_start = multiboot_copy_boot_modules_array;
  177. auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count;
  178. for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) {
  179. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) });
  180. }
  181. }
  182. auto* mmap_begin = reinterpret_cast<multiboot_memory_map_t*>(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
  183. auto* mmap_end = reinterpret_cast<multiboot_memory_map_t*>(low_physical_to_virtual(multiboot_info_ptr->mmap_addr) + multiboot_info_ptr->mmap_length);
  184. struct ContiguousPhysicalRange {
  185. PhysicalAddress lower;
  186. PhysicalAddress upper;
  187. };
  188. Vector<ContiguousPhysicalRange> contiguous_physical_ranges;
  189. for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
  190. dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", mmap->addr, mmap->len, mmap->type);
  191. auto start_address = PhysicalAddress(mmap->addr);
  192. auto length = mmap->len;
  193. switch (mmap->type) {
  194. case (MULTIBOOT_MEMORY_AVAILABLE):
  195. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
  196. break;
  197. case (MULTIBOOT_MEMORY_RESERVED):
  198. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
  199. break;
  200. case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
  201. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
  202. break;
  203. case (MULTIBOOT_MEMORY_NVS):
  204. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
  205. break;
  206. case (MULTIBOOT_MEMORY_BADRAM):
  207. dmesgln("MM: Warning, detected bad memory range!");
  208. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
  209. break;
  210. default:
  211. dbgln("MM: Unknown range!");
  212. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
  213. break;
  214. }
  215. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  216. continue;
  217. // Fix up unaligned memory regions.
  218. auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
  219. if (diff != 0) {
  220. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", mmap->addr, diff);
  221. diff = PAGE_SIZE - diff;
  222. mmap->addr += diff;
  223. mmap->len -= diff;
  224. }
  225. if ((mmap->len % PAGE_SIZE) != 0) {
  226. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", mmap->len, mmap->len % PAGE_SIZE);
  227. mmap->len -= mmap->len % PAGE_SIZE;
  228. }
  229. if (mmap->len < PAGE_SIZE) {
  230. dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, mmap->len);
  231. continue;
  232. }
  233. for (PhysicalSize page_base = mmap->addr; page_base <= (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  234. auto addr = PhysicalAddress(page_base);
  235. // Skip used memory ranges.
  236. bool should_skip = false;
  237. for (auto& used_range : m_used_memory_ranges) {
  238. if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
  239. should_skip = true;
  240. break;
  241. }
  242. }
  243. if (should_skip)
  244. continue;
  245. if (contiguous_physical_ranges.is_empty() || contiguous_physical_ranges.last().upper.offset(PAGE_SIZE) != addr) {
  246. contiguous_physical_ranges.append(ContiguousPhysicalRange {
  247. .lower = addr,
  248. .upper = addr,
  249. });
  250. } else {
  251. contiguous_physical_ranges.last().upper = addr;
  252. }
  253. }
  254. }
  255. for (auto& range : contiguous_physical_ranges) {
  256. m_user_physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull());
  257. }
  258. // Super pages are guaranteed to be in the first 16MB of physical memory
  259. VERIFY(virtual_to_low_physical((FlatPtr)super_pages) + sizeof(super_pages) < 0x1000000);
  260. // Append statically-allocated super physical physical_region.
  261. m_super_physical_regions.append(PhysicalRegion::try_create(
  262. PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages))),
  263. PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages + sizeof(super_pages)))))
  264. .release_nonnull());
  265. for (auto& region : m_super_physical_regions)
  266. m_system_memory_info.super_physical_pages += region.size();
  267. for (auto& region : m_user_physical_regions)
  268. m_system_memory_info.user_physical_pages += region.size();
  269. register_reserved_ranges();
  270. for (auto& range : m_reserved_memory_ranges) {
  271. dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
  272. }
  273. initialize_physical_pages();
  274. VERIFY(m_system_memory_info.super_physical_pages > 0);
  275. VERIFY(m_system_memory_info.user_physical_pages > 0);
  276. // We start out with no committed pages
  277. m_system_memory_info.user_physical_pages_uncommitted = m_system_memory_info.user_physical_pages;
  278. for (auto& used_range : m_used_memory_ranges) {
  279. dmesgln("MM: {} range @ {} - {} (size 0x{:x})", UserMemoryRangeTypeNames[to_underlying(used_range.type)], used_range.start, used_range.end.offset(-1), used_range.end.as_ptr() - used_range.start.as_ptr());
  280. }
  281. for (auto& region : m_super_physical_regions) {
  282. dmesgln("MM: Super physical region: {} - {} (size 0x{:x})", region.lower(), region.upper().offset(-1), PAGE_SIZE * region.size());
  283. region.initialize_zones();
  284. }
  285. for (auto& region : m_user_physical_regions) {
  286. dmesgln("MM: User physical region: {} - {} (size 0x{:x})", region.lower(), region.upper().offset(-1), PAGE_SIZE * region.size());
  287. region.initialize_zones();
  288. }
  289. }
  290. UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages()
  291. {
  292. // We assume that the physical page range is contiguous and doesn't contain huge gaps!
  293. PhysicalAddress highest_physical_address;
  294. for (auto& range : m_used_memory_ranges) {
  295. if (range.end.get() > highest_physical_address.get())
  296. highest_physical_address = range.end;
  297. }
  298. for (auto& region : m_physical_memory_ranges) {
  299. auto range_end = PhysicalAddress(region.start).offset(region.length);
  300. if (range_end.get() > highest_physical_address.get())
  301. highest_physical_address = range_end;
  302. }
  303. // Calculate how many total physical pages the array will have
  304. m_physical_page_entries_count = PhysicalAddress::physical_page_index(highest_physical_address.get()) + 1;
  305. VERIFY(m_physical_page_entries_count != 0);
  306. VERIFY(!Checked<decltype(m_physical_page_entries_count)>::multiplication_would_overflow(m_physical_page_entries_count, sizeof(PhysicalPageEntry)));
  307. // Calculate how many bytes the array will consume
  308. auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry);
  309. auto physical_page_array_pages = page_round_up(physical_page_array_size) / PAGE_SIZE;
  310. VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size);
  311. // Calculate how many page tables we will need to be able to map them all
  312. auto needed_page_table_count = (physical_page_array_pages + 512 - 1) / 512;
  313. auto physical_page_array_pages_and_page_tables_count = physical_page_array_pages + needed_page_table_count;
  314. // Now that we know how much memory we need for a contiguous array of PhysicalPage instances, find a memory region that can fit it
  315. PhysicalRegion* found_region { nullptr };
  316. Optional<size_t> found_region_index;
  317. for (size_t i = 0; i < m_user_physical_regions.size(); ++i) {
  318. auto& region = m_user_physical_regions[i];
  319. if (region.size() >= physical_page_array_pages_and_page_tables_count) {
  320. found_region = &region;
  321. found_region_index = i;
  322. break;
  323. }
  324. }
  325. if (!found_region) {
  326. dmesgln("MM: Need {} bytes for physical page management, but no memory region is large enough!", physical_page_array_pages_and_page_tables_count);
  327. VERIFY_NOT_REACHED();
  328. }
  329. VERIFY(m_system_memory_info.user_physical_pages >= physical_page_array_pages_and_page_tables_count);
  330. m_system_memory_info.user_physical_pages -= physical_page_array_pages_and_page_tables_count;
  331. if (found_region->size() == physical_page_array_pages_and_page_tables_count) {
  332. // We're stealing the entire region
  333. m_physical_pages_region = m_user_physical_regions.take(*found_region_index);
  334. } else {
  335. m_physical_pages_region = found_region->try_take_pages_from_beginning(physical_page_array_pages_and_page_tables_count);
  336. }
  337. m_used_memory_ranges.append({ UsedMemoryRangeType::PhysicalPages, m_physical_pages_region->lower(), m_physical_pages_region->upper() });
  338. // Create the bare page directory. This is not a fully constructed page directory and merely contains the allocators!
  339. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  340. // Allocate a virtual address range for our array
  341. auto range = m_kernel_page_directory->range_allocator().allocate_anywhere(physical_page_array_pages * PAGE_SIZE);
  342. if (!range.has_value()) {
  343. dmesgln("MM: Could not allocate {} bytes to map physical page array!", physical_page_array_pages * PAGE_SIZE);
  344. VERIFY_NOT_REACHED();
  345. }
  346. // Now that we have our special m_physical_pages_region region with enough pages to hold the entire array
  347. // try to map the entire region into kernel space so we always have it
  348. // We can't use ensure_pte here because it would try to allocate a PhysicalPage and we don't have the array
  349. // mapped yet so we can't create them
  350. ScopedSpinLock lock(s_mm_lock);
  351. // Create page tables at the beginning of m_physical_pages_region, followed by the PhysicalPageEntry array
  352. auto page_tables_base = m_physical_pages_region->lower();
  353. auto physical_page_array_base = page_tables_base.offset(needed_page_table_count * PAGE_SIZE);
  354. auto physical_page_array_current_page = physical_page_array_base.get();
  355. auto virtual_page_array_base = range.value().base().get();
  356. auto virtual_page_array_current_page = virtual_page_array_base;
  357. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  358. auto virtual_page_base_for_this_pt = virtual_page_array_current_page;
  359. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  360. auto* pt = reinterpret_cast<PageTableEntry*>(quickmap_page(pt_paddr));
  361. __builtin_memset(pt, 0, PAGE_SIZE);
  362. for (size_t pte_index = 0; pte_index < PAGE_SIZE / sizeof(PageTableEntry); pte_index++) {
  363. auto& pte = pt[pte_index];
  364. pte.set_physical_page_base(physical_page_array_current_page);
  365. pte.set_user_allowed(false);
  366. pte.set_writable(true);
  367. if (Processor::current().has_feature(CPUFeature::NX))
  368. pte.set_execute_disabled(false);
  369. pte.set_global(true);
  370. pte.set_present(true);
  371. physical_page_array_current_page += PAGE_SIZE;
  372. virtual_page_array_current_page += PAGE_SIZE;
  373. }
  374. unquickmap_page();
  375. // Hook the page table into the kernel page directory
  376. PhysicalAddress boot_pd_kernel_paddr(virtual_to_low_physical((FlatPtr)boot_pd_kernel));
  377. u32 page_directory_index = (virtual_page_base_for_this_pt >> 21) & 0x1ff;
  378. auto* pd = reinterpret_cast<PageDirectoryEntry*>(quickmap_page(boot_pd_kernel_paddr));
  379. PageDirectoryEntry& pde = pd[page_directory_index];
  380. VERIFY(!pde.is_present()); // Nothing should be using this PD yet
  381. // We can't use ensure_pte quite yet!
  382. pde.set_page_table_base(pt_paddr.get());
  383. pde.set_user_allowed(false);
  384. pde.set_present(true);
  385. pde.set_writable(true);
  386. pde.set_global(true);
  387. unquickmap_page();
  388. flush_tlb_local(VirtualAddress(virtual_page_base_for_this_pt));
  389. }
  390. // We now have the entire PhysicalPageEntry array mapped!
  391. m_physical_page_entries = (PhysicalPageEntry*)range.value().base().get();
  392. for (size_t i = 0; i < m_physical_page_entries_count; i++)
  393. new (&m_physical_page_entries[i]) PageTableEntry();
  394. // Now we should be able to allocate PhysicalPage instances,
  395. // so finish setting up the kernel page directory
  396. m_kernel_page_directory->allocate_kernel_directory();
  397. // Now create legit PhysicalPage objects for the page tables we created, so that
  398. // we can put them into kernel_page_directory().m_page_tables
  399. auto& kernel_page_tables = kernel_page_directory().m_page_tables;
  400. virtual_page_array_current_page = virtual_page_array_base;
  401. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  402. VERIFY(virtual_page_array_current_page <= range.value().end().get());
  403. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  404. auto physical_page_index = PhysicalAddress::physical_page_index(pt_paddr.get());
  405. auto& physical_page_entry = m_physical_page_entries[physical_page_index];
  406. auto physical_page = adopt_ref(*new (&physical_page_entry.allocated.physical_page) PhysicalPage(MayReturnToFreeList::No));
  407. auto result = kernel_page_tables.set(virtual_page_array_current_page & ~0x1fffff, move(physical_page));
  408. VERIFY(result == AK::HashSetResult::InsertedNewEntry);
  409. virtual_page_array_current_page += (PAGE_SIZE / sizeof(PageTableEntry)) * PAGE_SIZE;
  410. }
  411. dmesgln("MM: Physical page entries: {}", range.value());
  412. }
  413. PhysicalPageEntry& MemoryManager::get_physical_page_entry(PhysicalAddress physical_address)
  414. {
  415. VERIFY(m_physical_page_entries);
  416. auto physical_page_entry_index = PhysicalAddress::physical_page_index(physical_address.get());
  417. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  418. return m_physical_page_entries[physical_page_entry_index];
  419. }
  420. PhysicalAddress MemoryManager::get_physical_address(PhysicalPage const& physical_page)
  421. {
  422. PhysicalPageEntry const& physical_page_entry = *reinterpret_cast<PhysicalPageEntry const*>((u8 const*)&physical_page - __builtin_offsetof(PhysicalPageEntry, allocated.physical_page));
  423. VERIFY(m_physical_page_entries);
  424. size_t physical_page_entry_index = &physical_page_entry - m_physical_page_entries;
  425. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  426. return PhysicalAddress((PhysicalPtr)physical_page_entry_index * PAGE_SIZE);
  427. }
  428. PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
  429. {
  430. VERIFY_INTERRUPTS_DISABLED();
  431. VERIFY(s_mm_lock.own_lock());
  432. VERIFY(page_directory.get_lock().own_lock());
  433. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  434. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  435. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  436. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  437. PageDirectoryEntry const& pde = pd[page_directory_index];
  438. if (!pde.is_present())
  439. return nullptr;
  440. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  441. }
  442. PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  443. {
  444. VERIFY_INTERRUPTS_DISABLED();
  445. VERIFY(s_mm_lock.own_lock());
  446. VERIFY(page_directory.get_lock().own_lock());
  447. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  448. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  449. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  450. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  451. PageDirectoryEntry& pde = pd[page_directory_index];
  452. if (!pde.is_present()) {
  453. bool did_purge = false;
  454. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes, &did_purge);
  455. if (!page_table) {
  456. dbgln("MM: Unable to allocate page table to map {}", vaddr);
  457. return nullptr;
  458. }
  459. if (did_purge) {
  460. // If any memory had to be purged, ensure_pte may have been called as part
  461. // of the purging process. So we need to re-map the pd in this case to ensure
  462. // we're writing to the correct underlying physical page
  463. pd = quickmap_pd(page_directory, page_directory_table_index);
  464. VERIFY(&pde == &pd[page_directory_index]); // Sanity check
  465. VERIFY(!pde.is_present()); // Should have not changed
  466. }
  467. pde.set_page_table_base(page_table->paddr().get());
  468. pde.set_user_allowed(true);
  469. pde.set_present(true);
  470. pde.set_writable(true);
  471. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  472. // Use page_directory_table_index and page_directory_index as key
  473. // This allows us to release the page table entry when no longer needed
  474. auto result = page_directory.m_page_tables.set(vaddr.get() & ~(FlatPtr)0x1fffff, move(page_table));
  475. // If you're hitting this VERIFY on x86_64 chances are a 64-bit pointer was truncated somewhere
  476. VERIFY(result == AK::HashSetResult::InsertedNewEntry);
  477. }
  478. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  479. }
  480. void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, bool is_last_release)
  481. {
  482. VERIFY_INTERRUPTS_DISABLED();
  483. VERIFY(s_mm_lock.own_lock());
  484. VERIFY(page_directory.get_lock().own_lock());
  485. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  486. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  487. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  488. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  489. PageDirectoryEntry& pde = pd[page_directory_index];
  490. if (pde.is_present()) {
  491. auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
  492. auto& pte = page_table[page_table_index];
  493. pte.clear();
  494. if (is_last_release || page_table_index == 0x1ff) {
  495. // If this is the last PTE in a region or the last PTE in a page table then
  496. // check if we can also release the page table
  497. bool all_clear = true;
  498. for (u32 i = 0; i <= 0x1ff; i++) {
  499. if (!page_table[i].is_null()) {
  500. all_clear = false;
  501. break;
  502. }
  503. }
  504. if (all_clear) {
  505. pde.clear();
  506. auto result = page_directory.m_page_tables.remove(vaddr.get() & ~0x1fffff);
  507. VERIFY(result);
  508. }
  509. }
  510. }
  511. }
  512. UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
  513. {
  514. auto mm_data = new MemoryManagerData;
  515. Processor::current().set_mm_data(*mm_data);
  516. if (cpu == 0) {
  517. new MemoryManager;
  518. kmalloc_enable_expand();
  519. }
  520. }
  521. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  522. {
  523. ScopedSpinLock lock(s_mm_lock);
  524. for (auto& region : MM.m_kernel_regions) {
  525. if (region.contains(vaddr))
  526. return &region;
  527. }
  528. return nullptr;
  529. }
  530. Region* MemoryManager::find_user_region_from_vaddr_no_lock(Space& space, VirtualAddress vaddr)
  531. {
  532. VERIFY(space.get_lock().own_lock());
  533. return space.find_region_containing({ vaddr, 1 });
  534. }
  535. Region* MemoryManager::find_user_region_from_vaddr(Space& space, VirtualAddress vaddr)
  536. {
  537. ScopedSpinLock lock(space.get_lock());
  538. return find_user_region_from_vaddr_no_lock(space, vaddr);
  539. }
  540. void MemoryManager::validate_syscall_preconditions(Space& space, RegisterState const& regs)
  541. {
  542. // We take the space lock once here and then use the no_lock variants
  543. // to avoid excessive spinlock recursion in this extemely common path.
  544. ScopedSpinLock lock(space.get_lock());
  545. auto unlock_and_handle_crash = [&lock, &regs](const char* description, int signal) {
  546. lock.unlock();
  547. handle_crash(regs, description, signal);
  548. };
  549. {
  550. VirtualAddress userspace_sp = VirtualAddress { regs.userspace_sp() };
  551. if (!MM.validate_user_stack_no_lock(space, userspace_sp)) {
  552. dbgln("Invalid stack pointer: {:p}", userspace_sp);
  553. unlock_and_handle_crash("Bad stack on syscall entry", SIGSTKFLT);
  554. }
  555. }
  556. {
  557. VirtualAddress ip = VirtualAddress { regs.ip() };
  558. auto* calling_region = MM.find_user_region_from_vaddr_no_lock(space, ip);
  559. if (!calling_region) {
  560. dbgln("Syscall from {:p} which has no associated region", ip);
  561. unlock_and_handle_crash("Syscall from unknown region", SIGSEGV);
  562. }
  563. if (calling_region->is_writable()) {
  564. dbgln("Syscall from writable memory at {:p}", ip);
  565. unlock_and_handle_crash("Syscall from writable memory", SIGSEGV);
  566. }
  567. if (space.enforces_syscall_regions() && !calling_region->is_syscall_region()) {
  568. dbgln("Syscall from non-syscall region");
  569. unlock_and_handle_crash("Syscall from non-syscall region", SIGSEGV);
  570. }
  571. }
  572. }
  573. Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
  574. {
  575. ScopedSpinLock lock(s_mm_lock);
  576. if (auto* region = kernel_region_from_vaddr(vaddr))
  577. return region;
  578. auto page_directory = PageDirectory::find_by_cr3(read_cr3());
  579. if (!page_directory)
  580. return nullptr;
  581. VERIFY(page_directory->space());
  582. return find_user_region_from_vaddr(*page_directory->space(), vaddr);
  583. }
  584. PageFaultResponse MemoryManager::handle_page_fault(PageFault const& fault)
  585. {
  586. VERIFY_INTERRUPTS_DISABLED();
  587. ScopedSpinLock lock(s_mm_lock);
  588. if (Processor::current().in_irq()) {
  589. dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
  590. Processor::id(), fault.code(), fault.vaddr(), Processor::current().in_irq());
  591. dump_kernel_regions();
  592. return PageFaultResponse::ShouldCrash;
  593. }
  594. dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::id(), fault.code(), fault.vaddr());
  595. auto* region = find_region_from_vaddr(fault.vaddr());
  596. if (!region) {
  597. return PageFaultResponse::ShouldCrash;
  598. }
  599. return region->handle_fault(fault, lock);
  600. }
  601. OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  602. {
  603. VERIFY(!(size % PAGE_SIZE));
  604. ScopedSpinLock lock(s_mm_lock);
  605. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  606. if (!range.has_value())
  607. return {};
  608. auto vmobject = ContiguousVMObject::try_create_with_size(size);
  609. if (!vmobject) {
  610. kernel_page_directory().range_allocator().deallocate(range.value());
  611. return {};
  612. }
  613. return allocate_kernel_region_with_vmobject(range.value(), *vmobject, name, access, cacheable);
  614. }
  615. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
  616. {
  617. VERIFY(!(size % PAGE_SIZE));
  618. auto vm_object = AnonymousVMObject::try_create_with_size(size, strategy);
  619. if (!vm_object)
  620. return {};
  621. ScopedSpinLock lock(s_mm_lock);
  622. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  623. if (!range.has_value())
  624. return {};
  625. return allocate_kernel_region_with_vmobject(range.value(), vm_object.release_nonnull(), name, access, cacheable);
  626. }
  627. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  628. {
  629. auto vm_object = AnonymousVMObject::try_create_for_physical_range(paddr, size);
  630. if (!vm_object)
  631. return {};
  632. VERIFY(!(size % PAGE_SIZE));
  633. ScopedSpinLock lock(s_mm_lock);
  634. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  635. if (!range.has_value())
  636. return {};
  637. return allocate_kernel_region_with_vmobject(range.value(), *vm_object, name, access, cacheable);
  638. }
  639. OwnPtr<Region> MemoryManager::allocate_kernel_region_identity(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  640. {
  641. auto vm_object = AnonymousVMObject::try_create_for_physical_range(paddr, size);
  642. if (!vm_object)
  643. return {};
  644. VERIFY(!(size % PAGE_SIZE));
  645. ScopedSpinLock lock(s_mm_lock);
  646. auto range = kernel_page_directory().identity_range_allocator().allocate_specific(VirtualAddress(paddr.get()), size);
  647. if (!range.has_value())
  648. return {};
  649. return allocate_kernel_region_with_vmobject(range.value(), *vm_object, name, access, cacheable);
  650. }
  651. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(Range const& range, VMObject& vmobject, StringView name, Region::Access access, Region::Cacheable cacheable)
  652. {
  653. ScopedSpinLock lock(s_mm_lock);
  654. auto region = Region::try_create_kernel_only(range, vmobject, 0, KString::try_create(name), access, cacheable);
  655. if (region)
  656. region->map(kernel_page_directory());
  657. return region;
  658. }
  659. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  660. {
  661. VERIFY(!(size % PAGE_SIZE));
  662. ScopedSpinLock lock(s_mm_lock);
  663. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  664. if (!range.has_value())
  665. return {};
  666. return allocate_kernel_region_with_vmobject(range.value(), vmobject, name, access, cacheable);
  667. }
  668. bool MemoryManager::commit_user_physical_pages(size_t page_count)
  669. {
  670. VERIFY(page_count > 0);
  671. ScopedSpinLock lock(s_mm_lock);
  672. if (m_system_memory_info.user_physical_pages_uncommitted < page_count)
  673. return false;
  674. m_system_memory_info.user_physical_pages_uncommitted -= page_count;
  675. m_system_memory_info.user_physical_pages_committed += page_count;
  676. return true;
  677. }
  678. void MemoryManager::uncommit_user_physical_pages(size_t page_count)
  679. {
  680. VERIFY(page_count > 0);
  681. ScopedSpinLock lock(s_mm_lock);
  682. VERIFY(m_system_memory_info.user_physical_pages_committed >= page_count);
  683. m_system_memory_info.user_physical_pages_uncommitted += page_count;
  684. m_system_memory_info.user_physical_pages_committed -= page_count;
  685. }
  686. void MemoryManager::deallocate_physical_page(PhysicalAddress paddr)
  687. {
  688. ScopedSpinLock lock(s_mm_lock);
  689. // Are we returning a user page?
  690. for (auto& region : m_user_physical_regions) {
  691. if (!region.contains(paddr))
  692. continue;
  693. region.return_page(paddr);
  694. --m_system_memory_info.user_physical_pages_used;
  695. // Always return pages to the uncommitted pool. Pages that were
  696. // committed and allocated are only freed upon request. Once
  697. // returned there is no guarantee being able to get them back.
  698. ++m_system_memory_info.user_physical_pages_uncommitted;
  699. return;
  700. }
  701. // If it's not a user page, it should be a supervisor page.
  702. for (auto& region : m_super_physical_regions) {
  703. if (!region.contains(paddr)) {
  704. dbgln("MM: deallocate_supervisor_physical_page: {} not in {} - {}", paddr, region.lower(), region.upper());
  705. continue;
  706. }
  707. region.return_page(paddr);
  708. --m_system_memory_info.super_physical_pages_used;
  709. return;
  710. }
  711. PANIC("MM: deallocate_user_physical_page couldn't figure out region for page @ {}", paddr);
  712. }
  713. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page(bool committed)
  714. {
  715. VERIFY(s_mm_lock.is_locked());
  716. RefPtr<PhysicalPage> page;
  717. if (committed) {
  718. // Draw from the committed pages pool. We should always have these pages available
  719. VERIFY(m_system_memory_info.user_physical_pages_committed > 0);
  720. m_system_memory_info.user_physical_pages_committed--;
  721. } else {
  722. // We need to make sure we don't touch pages that we have committed to
  723. if (m_system_memory_info.user_physical_pages_uncommitted == 0)
  724. return {};
  725. m_system_memory_info.user_physical_pages_uncommitted--;
  726. }
  727. for (auto& region : m_user_physical_regions) {
  728. page = region.take_free_page();
  729. if (!page.is_null()) {
  730. ++m_system_memory_info.user_physical_pages_used;
  731. break;
  732. }
  733. }
  734. VERIFY(!committed || !page.is_null());
  735. return page;
  736. }
  737. NonnullRefPtr<PhysicalPage> MemoryManager::allocate_committed_user_physical_page(ShouldZeroFill should_zero_fill)
  738. {
  739. ScopedSpinLock lock(s_mm_lock);
  740. auto page = find_free_user_physical_page(true);
  741. if (should_zero_fill == ShouldZeroFill::Yes) {
  742. auto* ptr = quickmap_page(*page);
  743. memset(ptr, 0, PAGE_SIZE);
  744. unquickmap_page();
  745. }
  746. return page.release_nonnull();
  747. }
  748. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
  749. {
  750. ScopedSpinLock lock(s_mm_lock);
  751. auto page = find_free_user_physical_page(false);
  752. bool purged_pages = false;
  753. if (!page) {
  754. // We didn't have a single free physical page. Let's try to free something up!
  755. // First, we look for a purgeable VMObject in the volatile state.
  756. for_each_vmobject([&](auto& vmobject) {
  757. if (!vmobject.is_anonymous())
  758. return IterationDecision::Continue;
  759. int purged_page_count = static_cast<AnonymousVMObject&>(vmobject).purge_with_interrupts_disabled({});
  760. if (purged_page_count) {
  761. dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
  762. page = find_free_user_physical_page(false);
  763. purged_pages = true;
  764. VERIFY(page);
  765. return IterationDecision::Break;
  766. }
  767. return IterationDecision::Continue;
  768. });
  769. if (!page) {
  770. dmesgln("MM: no user physical pages available");
  771. return {};
  772. }
  773. }
  774. if (should_zero_fill == ShouldZeroFill::Yes) {
  775. auto* ptr = quickmap_page(*page);
  776. memset(ptr, 0, PAGE_SIZE);
  777. unquickmap_page();
  778. }
  779. if (did_purge)
  780. *did_purge = purged_pages;
  781. return page;
  782. }
  783. NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
  784. {
  785. VERIFY(!(size % PAGE_SIZE));
  786. ScopedSpinLock lock(s_mm_lock);
  787. size_t count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
  788. NonnullRefPtrVector<PhysicalPage> physical_pages;
  789. for (auto& region : m_super_physical_regions) {
  790. physical_pages = region.take_contiguous_free_pages(count);
  791. if (!physical_pages.is_empty())
  792. continue;
  793. }
  794. if (physical_pages.is_empty()) {
  795. if (m_super_physical_regions.is_empty()) {
  796. dmesgln("MM: no super physical regions available (?)");
  797. }
  798. dmesgln("MM: no super physical pages available");
  799. VERIFY_NOT_REACHED();
  800. return {};
  801. }
  802. auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
  803. fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
  804. m_system_memory_info.super_physical_pages_used += count;
  805. return physical_pages;
  806. }
  807. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  808. {
  809. ScopedSpinLock lock(s_mm_lock);
  810. RefPtr<PhysicalPage> page;
  811. for (auto& region : m_super_physical_regions) {
  812. page = region.take_free_page();
  813. if (!page.is_null())
  814. break;
  815. }
  816. if (!page) {
  817. if (m_super_physical_regions.is_empty()) {
  818. dmesgln("MM: no super physical regions available (?)");
  819. }
  820. dmesgln("MM: no super physical pages available");
  821. VERIFY_NOT_REACHED();
  822. return {};
  823. }
  824. fast_u32_fill((u32*)page->paddr().offset(kernel_base).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  825. ++m_system_memory_info.super_physical_pages_used;
  826. return page;
  827. }
  828. void MemoryManager::enter_process_paging_scope(Process& process)
  829. {
  830. enter_space(process.space());
  831. }
  832. void MemoryManager::enter_space(Space& space)
  833. {
  834. auto current_thread = Thread::current();
  835. VERIFY(current_thread != nullptr);
  836. ScopedSpinLock lock(s_mm_lock);
  837. current_thread->regs().cr3 = space.page_directory().cr3();
  838. write_cr3(space.page_directory().cr3());
  839. }
  840. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  841. {
  842. Processor::flush_tlb_local(vaddr, page_count);
  843. }
  844. void MemoryManager::flush_tlb(PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
  845. {
  846. Processor::flush_tlb(page_directory, vaddr, page_count);
  847. }
  848. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  849. {
  850. VERIFY(s_mm_lock.own_lock());
  851. auto& mm_data = get_data();
  852. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[(KERNEL_QUICKMAP_PD - KERNEL_PT1024_BASE) / PAGE_SIZE];
  853. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  854. if (pte.physical_page_base() != pd_paddr.get()) {
  855. pte.set_physical_page_base(pd_paddr.get());
  856. pte.set_present(true);
  857. pte.set_writable(true);
  858. pte.set_user_allowed(false);
  859. // Because we must continue to hold the MM lock while we use this
  860. // mapping, it is sufficient to only flush on the current CPU. Other
  861. // CPUs trying to use this API must wait on the MM lock anyway
  862. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
  863. } else {
  864. // Even though we don't allow this to be called concurrently, it's
  865. // possible that this PD was mapped on a different CPU and we don't
  866. // broadcast the flush. If so, we still need to flush the TLB.
  867. if (mm_data.m_last_quickmap_pd != pd_paddr)
  868. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
  869. }
  870. mm_data.m_last_quickmap_pd = pd_paddr;
  871. return (PageDirectoryEntry*)KERNEL_QUICKMAP_PD;
  872. }
  873. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  874. {
  875. VERIFY(s_mm_lock.own_lock());
  876. auto& mm_data = get_data();
  877. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[(KERNEL_QUICKMAP_PT - KERNEL_PT1024_BASE) / PAGE_SIZE];
  878. if (pte.physical_page_base() != pt_paddr.get()) {
  879. pte.set_physical_page_base(pt_paddr.get());
  880. pte.set_present(true);
  881. pte.set_writable(true);
  882. pte.set_user_allowed(false);
  883. // Because we must continue to hold the MM lock while we use this
  884. // mapping, it is sufficient to only flush on the current CPU. Other
  885. // CPUs trying to use this API must wait on the MM lock anyway
  886. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
  887. } else {
  888. // Even though we don't allow this to be called concurrently, it's
  889. // possible that this PT was mapped on a different CPU and we don't
  890. // broadcast the flush. If so, we still need to flush the TLB.
  891. if (mm_data.m_last_quickmap_pt != pt_paddr)
  892. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
  893. }
  894. mm_data.m_last_quickmap_pt = pt_paddr;
  895. return (PageTableEntry*)KERNEL_QUICKMAP_PT;
  896. }
  897. u8* MemoryManager::quickmap_page(PhysicalAddress const& physical_address)
  898. {
  899. VERIFY_INTERRUPTS_DISABLED();
  900. auto& mm_data = get_data();
  901. mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
  902. ScopedSpinLock lock(s_mm_lock);
  903. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::id() * PAGE_SIZE);
  904. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  905. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  906. if (pte.physical_page_base() != physical_address.get()) {
  907. pte.set_physical_page_base(physical_address.get());
  908. pte.set_present(true);
  909. pte.set_writable(true);
  910. pte.set_user_allowed(false);
  911. flush_tlb_local(vaddr);
  912. }
  913. return vaddr.as_ptr();
  914. }
  915. void MemoryManager::unquickmap_page()
  916. {
  917. VERIFY_INTERRUPTS_DISABLED();
  918. ScopedSpinLock lock(s_mm_lock);
  919. auto& mm_data = get_data();
  920. VERIFY(mm_data.m_quickmap_in_use.is_locked());
  921. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::id() * PAGE_SIZE);
  922. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  923. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  924. pte.clear();
  925. flush_tlb_local(vaddr);
  926. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
  927. }
  928. bool MemoryManager::validate_user_stack_no_lock(Space& space, VirtualAddress vaddr) const
  929. {
  930. VERIFY(space.get_lock().own_lock());
  931. if (!is_user_address(vaddr))
  932. return false;
  933. auto* region = find_user_region_from_vaddr_no_lock(space, vaddr);
  934. return region && region->is_user() && region->is_stack();
  935. }
  936. bool MemoryManager::validate_user_stack(Space& space, VirtualAddress vaddr) const
  937. {
  938. ScopedSpinLock lock(space.get_lock());
  939. return validate_user_stack_no_lock(space, vaddr);
  940. }
  941. void MemoryManager::register_vmobject(VMObject& vmobject)
  942. {
  943. ScopedSpinLock lock(s_mm_lock);
  944. m_vmobjects.append(vmobject);
  945. }
  946. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  947. {
  948. ScopedSpinLock lock(s_mm_lock);
  949. m_vmobjects.remove(vmobject);
  950. }
  951. void MemoryManager::register_region(Region& region)
  952. {
  953. ScopedSpinLock lock(s_mm_lock);
  954. if (region.is_kernel())
  955. m_kernel_regions.append(region);
  956. else
  957. m_user_regions.append(region);
  958. }
  959. void MemoryManager::unregister_region(Region& region)
  960. {
  961. ScopedSpinLock lock(s_mm_lock);
  962. if (region.is_kernel())
  963. m_kernel_regions.remove(region);
  964. else
  965. m_user_regions.remove(region);
  966. }
  967. void MemoryManager::dump_kernel_regions()
  968. {
  969. dbgln("Kernel regions:");
  970. dbgln("BEGIN END SIZE ACCESS NAME");
  971. ScopedSpinLock lock(s_mm_lock);
  972. for (auto& region : m_kernel_regions) {
  973. dbgln("{:08x} -- {:08x} {:08x} {:c}{:c}{:c}{:c}{:c}{:c} {}",
  974. region.vaddr().get(),
  975. region.vaddr().offset(region.size() - 1).get(),
  976. region.size(),
  977. region.is_readable() ? 'R' : ' ',
  978. region.is_writable() ? 'W' : ' ',
  979. region.is_executable() ? 'X' : ' ',
  980. region.is_shared() ? 'S' : ' ',
  981. region.is_stack() ? 'T' : ' ',
  982. region.is_syscall_region() ? 'C' : ' ',
  983. region.name());
  984. }
  985. }
  986. void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
  987. {
  988. ScopedSpinLock lock(s_mm_lock);
  989. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  990. auto* pte = ensure_pte(kernel_page_directory(), vaddr);
  991. VERIFY(pte);
  992. if (pte->is_writable() == writable)
  993. return;
  994. pte->set_writable(writable);
  995. flush_tlb(&kernel_page_directory(), vaddr);
  996. }
  997. }