Generator.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453
  1. /*
  2. * Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <LibJS/AST.h>
  7. #include <LibJS/Bytecode/BasicBlock.h>
  8. #include <LibJS/Bytecode/Generator.h>
  9. #include <LibJS/Bytecode/Instruction.h>
  10. #include <LibJS/Bytecode/Op.h>
  11. #include <LibJS/Bytecode/Register.h>
  12. namespace JS::Bytecode {
  13. Generator::Generator()
  14. : m_string_table(make<StringTable>())
  15. , m_identifier_table(make<IdentifierTable>())
  16. {
  17. }
  18. CodeGenerationErrorOr<NonnullOwnPtr<Executable>> Generator::generate(ASTNode const& node, FunctionKind enclosing_function_kind)
  19. {
  20. Generator generator;
  21. generator.switch_to_basic_block(generator.make_block());
  22. generator.m_enclosing_function_kind = enclosing_function_kind;
  23. if (generator.is_in_generator_or_async_function()) {
  24. // Immediately yield with no value.
  25. auto& start_block = generator.make_block();
  26. generator.emit<Bytecode::Op::Yield>(Label { start_block });
  27. generator.switch_to_basic_block(start_block);
  28. // NOTE: This doesn't have to handle received throw/return completions, as GeneratorObject::resume_abrupt
  29. // will not enter the generator from the SuspendedStart state and immediately completes the generator.
  30. }
  31. TRY(node.generate_bytecode(generator));
  32. if (generator.is_in_generator_or_async_function()) {
  33. // Terminate all unterminated blocks with yield return
  34. for (auto& block : generator.m_root_basic_blocks) {
  35. if (block->is_terminated())
  36. continue;
  37. generator.switch_to_basic_block(*block);
  38. generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
  39. generator.emit<Bytecode::Op::Yield>(nullptr);
  40. }
  41. }
  42. bool is_strict_mode = false;
  43. if (is<Program>(node))
  44. is_strict_mode = static_cast<Program const&>(node).is_strict_mode();
  45. else if (is<FunctionBody>(node))
  46. is_strict_mode = static_cast<FunctionBody const&>(node).in_strict_mode();
  47. else if (is<FunctionDeclaration>(node))
  48. is_strict_mode = static_cast<FunctionDeclaration const&>(node).is_strict_mode();
  49. else if (is<FunctionExpression>(node))
  50. is_strict_mode = static_cast<FunctionExpression const&>(node).is_strict_mode();
  51. return adopt_own(*new Executable {
  52. .name = {},
  53. .basic_blocks = move(generator.m_root_basic_blocks),
  54. .string_table = move(generator.m_string_table),
  55. .identifier_table = move(generator.m_identifier_table),
  56. .number_of_registers = generator.m_next_register,
  57. .is_strict_mode = is_strict_mode,
  58. });
  59. }
  60. void Generator::grow(size_t additional_size)
  61. {
  62. VERIFY(m_current_basic_block);
  63. m_current_basic_block->grow(additional_size);
  64. }
  65. void* Generator::next_slot()
  66. {
  67. VERIFY(m_current_basic_block);
  68. return m_current_basic_block->next_slot();
  69. }
  70. Register Generator::allocate_register()
  71. {
  72. VERIFY(m_next_register != NumericLimits<u32>::max());
  73. return Register { m_next_register++ };
  74. }
  75. Label Generator::nearest_continuable_scope() const
  76. {
  77. return m_continuable_scopes.last().bytecode_target;
  78. }
  79. void Generator::block_declaration_instantiation(ScopeNode const& scope_node)
  80. {
  81. start_boundary(BlockBoundaryType::LeaveLexicalEnvironment);
  82. emit<Bytecode::Op::BlockDeclarationInstantiation>(scope_node);
  83. }
  84. void Generator::begin_variable_scope()
  85. {
  86. start_boundary(BlockBoundaryType::LeaveLexicalEnvironment);
  87. emit<Bytecode::Op::CreateLexicalEnvironment>();
  88. }
  89. void Generator::end_variable_scope()
  90. {
  91. end_boundary(BlockBoundaryType::LeaveLexicalEnvironment);
  92. if (!m_current_basic_block->is_terminated()) {
  93. emit<Bytecode::Op::LeaveLexicalEnvironment>();
  94. }
  95. }
  96. void Generator::begin_continuable_scope(Label continue_target, Vector<DeprecatedFlyString> const& language_label_set)
  97. {
  98. m_continuable_scopes.append({ continue_target, language_label_set });
  99. start_boundary(BlockBoundaryType::Continue);
  100. }
  101. void Generator::end_continuable_scope()
  102. {
  103. m_continuable_scopes.take_last();
  104. end_boundary(BlockBoundaryType::Continue);
  105. }
  106. Label Generator::nearest_breakable_scope() const
  107. {
  108. return m_breakable_scopes.last().bytecode_target;
  109. }
  110. void Generator::begin_breakable_scope(Label breakable_target, Vector<DeprecatedFlyString> const& language_label_set)
  111. {
  112. m_breakable_scopes.append({ breakable_target, language_label_set });
  113. start_boundary(BlockBoundaryType::Break);
  114. }
  115. void Generator::end_breakable_scope()
  116. {
  117. m_breakable_scopes.take_last();
  118. end_boundary(BlockBoundaryType::Break);
  119. }
  120. CodeGenerationErrorOr<void> Generator::emit_load_from_reference(JS::ASTNode const& node)
  121. {
  122. if (is<Identifier>(node)) {
  123. auto& identifier = static_cast<Identifier const&>(node);
  124. emit<Bytecode::Op::GetVariable>(intern_identifier(identifier.string()));
  125. return {};
  126. }
  127. if (is<MemberExpression>(node)) {
  128. auto& expression = static_cast<MemberExpression const&>(node);
  129. // https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
  130. if (is<SuperExpression>(expression.object())) {
  131. // 1. Let env be GetThisEnvironment().
  132. // 2. Let actualThis be ? env.GetThisBinding().
  133. // NOTE: Whilst this isn't used, it's still observable (e.g. it throws if super() hasn't been called)
  134. emit<Bytecode::Op::ResolveThisBinding>();
  135. Optional<Bytecode::Register> computed_property_value_register;
  136. if (expression.is_computed()) {
  137. // SuperProperty : super [ Expression ]
  138. // 3. Let propertyNameReference be ? Evaluation of Expression.
  139. // 4. Let propertyNameValue be ? GetValue(propertyNameReference).
  140. TRY(expression.property().generate_bytecode(*this));
  141. computed_property_value_register = allocate_register();
  142. emit<Bytecode::Op::Store>(*computed_property_value_register);
  143. }
  144. // 5/7. Return ? MakeSuperPropertyReference(actualThis, propertyKey, strict).
  145. // https://tc39.es/ecma262/#sec-makesuperpropertyreference
  146. // 1. Let env be GetThisEnvironment().
  147. // 2. Assert: env.HasSuperBinding() is true.
  148. // 3. Let baseValue be ? env.GetSuperBase().
  149. emit<Bytecode::Op::ResolveSuperBase>();
  150. // 4. Return the Reference Record { [[Base]]: baseValue, [[ReferencedName]]: propertyKey, [[Strict]]: strict, [[ThisValue]]: actualThis }.
  151. if (computed_property_value_register.has_value()) {
  152. // 5. Let propertyKey be ? ToPropertyKey(propertyNameValue).
  153. // FIXME: This does ToPropertyKey out of order, which is observable by Symbol.toPrimitive!
  154. emit<Bytecode::Op::GetByValue>(*computed_property_value_register);
  155. } else {
  156. // 3. Let propertyKey be StringValue of IdentifierName.
  157. auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string());
  158. emit<Bytecode::Op::GetById>(identifier_table_ref);
  159. }
  160. } else {
  161. TRY(expression.object().generate_bytecode(*this));
  162. if (expression.is_computed()) {
  163. auto object_reg = allocate_register();
  164. emit<Bytecode::Op::Store>(object_reg);
  165. TRY(expression.property().generate_bytecode(*this));
  166. emit<Bytecode::Op::GetByValue>(object_reg);
  167. } else if (expression.property().is_identifier()) {
  168. auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string());
  169. emit<Bytecode::Op::GetById>(identifier_table_ref);
  170. } else {
  171. return CodeGenerationError {
  172. &expression,
  173. "Unimplemented non-computed member expression"sv
  174. };
  175. }
  176. }
  177. return {};
  178. }
  179. VERIFY_NOT_REACHED();
  180. }
  181. CodeGenerationErrorOr<void> Generator::emit_store_to_reference(JS::ASTNode const& node)
  182. {
  183. if (is<Identifier>(node)) {
  184. auto& identifier = static_cast<Identifier const&>(node);
  185. emit<Bytecode::Op::SetVariable>(intern_identifier(identifier.string()));
  186. return {};
  187. }
  188. if (is<MemberExpression>(node)) {
  189. // NOTE: The value is in the accumulator, so we have to store that away first.
  190. auto value_reg = allocate_register();
  191. emit<Bytecode::Op::Store>(value_reg);
  192. auto& expression = static_cast<MemberExpression const&>(node);
  193. TRY(expression.object().generate_bytecode(*this));
  194. auto object_reg = allocate_register();
  195. emit<Bytecode::Op::Store>(object_reg);
  196. if (expression.is_computed()) {
  197. TRY(expression.property().generate_bytecode(*this));
  198. auto property_reg = allocate_register();
  199. emit<Bytecode::Op::Store>(property_reg);
  200. emit<Bytecode::Op::Load>(value_reg);
  201. emit<Bytecode::Op::PutByValue>(object_reg, property_reg);
  202. } else if (expression.property().is_identifier()) {
  203. emit<Bytecode::Op::Load>(value_reg);
  204. auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string());
  205. emit<Bytecode::Op::PutById>(object_reg, identifier_table_ref);
  206. } else {
  207. return CodeGenerationError {
  208. &expression,
  209. "Unimplemented non-computed member expression"sv
  210. };
  211. }
  212. return {};
  213. }
  214. return CodeGenerationError {
  215. &node,
  216. "Unimplemented/invalid node used a reference"sv
  217. };
  218. }
  219. CodeGenerationErrorOr<void> Generator::emit_delete_reference(JS::ASTNode const& node)
  220. {
  221. if (is<Identifier>(node)) {
  222. auto& identifier = static_cast<Identifier const&>(node);
  223. emit<Bytecode::Op::DeleteVariable>(intern_identifier(identifier.string()));
  224. return {};
  225. }
  226. if (is<MemberExpression>(node)) {
  227. auto& expression = static_cast<MemberExpression const&>(node);
  228. TRY(expression.object().generate_bytecode(*this));
  229. if (expression.is_computed()) {
  230. auto object_reg = allocate_register();
  231. emit<Bytecode::Op::Store>(object_reg);
  232. TRY(expression.property().generate_bytecode(*this));
  233. emit<Bytecode::Op::DeleteByValue>(object_reg);
  234. } else if (expression.property().is_identifier()) {
  235. auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string());
  236. emit<Bytecode::Op::DeleteById>(identifier_table_ref);
  237. } else {
  238. // NOTE: Trying to delete a private field generates a SyntaxError in the parser.
  239. return CodeGenerationError {
  240. &expression,
  241. "Unimplemented non-computed member expression"sv
  242. };
  243. }
  244. return {};
  245. }
  246. // Though this will have no deletion effect, we still have to evaluate the node as it can have side effects.
  247. // For example: delete a(); delete ++c.b; etc.
  248. // 13.5.1.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-delete-operator-runtime-semantics-evaluation
  249. // 1. Let ref be the result of evaluating UnaryExpression.
  250. // 2. ReturnIfAbrupt(ref).
  251. TRY(node.generate_bytecode(*this));
  252. // 3. If ref is not a Reference Record, return true.
  253. emit<Bytecode::Op::LoadImmediate>(Value(true));
  254. // NOTE: The rest of the steps are handled by Delete{Variable,ByValue,Id}.
  255. return {};
  256. }
  257. void Generator::generate_break()
  258. {
  259. bool last_was_finally = false;
  260. // FIXME: Reduce code duplication
  261. for (size_t i = m_boundaries.size(); i > 0; --i) {
  262. auto boundary = m_boundaries[i - 1];
  263. using enum BlockBoundaryType;
  264. switch (boundary) {
  265. case Break:
  266. emit<Op::Jump>().set_targets(nearest_breakable_scope(), {});
  267. return;
  268. case Unwind:
  269. if (!last_was_finally)
  270. emit<Bytecode::Op::LeaveUnwindContext>();
  271. last_was_finally = false;
  272. break;
  273. case LeaveLexicalEnvironment:
  274. emit<Bytecode::Op::LeaveLexicalEnvironment>();
  275. break;
  276. case Continue:
  277. break;
  278. case ReturnToFinally: {
  279. auto& block = make_block(DeprecatedString::formatted("{}.break", current_block().name()));
  280. emit<Op::ScheduleJump>(Label { block });
  281. switch_to_basic_block(block);
  282. last_was_finally = true;
  283. break;
  284. };
  285. }
  286. }
  287. VERIFY_NOT_REACHED();
  288. }
  289. void Generator::generate_break(DeprecatedFlyString const& break_label)
  290. {
  291. size_t current_boundary = m_boundaries.size();
  292. bool last_was_finally = false;
  293. for (auto const& breakable_scope : m_breakable_scopes.in_reverse()) {
  294. for (; current_boundary > 0; --current_boundary) {
  295. auto boundary = m_boundaries[current_boundary - 1];
  296. if (boundary == BlockBoundaryType::Unwind) {
  297. if (!last_was_finally)
  298. emit<Bytecode::Op::LeaveUnwindContext>();
  299. last_was_finally = false;
  300. } else if (boundary == BlockBoundaryType::LeaveLexicalEnvironment) {
  301. emit<Bytecode::Op::LeaveLexicalEnvironment>();
  302. } else if (boundary == BlockBoundaryType::ReturnToFinally) {
  303. auto& block = make_block(DeprecatedString::formatted("{}.break", current_block().name()));
  304. emit<Op::ScheduleJump>(Label { block });
  305. switch_to_basic_block(block);
  306. last_was_finally = true;
  307. } else if (boundary == BlockBoundaryType::Break) {
  308. // Make sure we don't process this boundary twice if the current breakable scope doesn't contain the target label.
  309. --current_boundary;
  310. break;
  311. }
  312. }
  313. if (breakable_scope.language_label_set.contains_slow(break_label)) {
  314. emit<Op::Jump>().set_targets(breakable_scope.bytecode_target, {});
  315. return;
  316. }
  317. }
  318. // We must have a breakable scope available that contains the label, as this should be enforced by the parser.
  319. VERIFY_NOT_REACHED();
  320. }
  321. void Generator::generate_continue()
  322. {
  323. bool last_was_finally = false;
  324. // FIXME: Reduce code duplication
  325. for (size_t i = m_boundaries.size(); i > 0; --i) {
  326. auto boundary = m_boundaries[i - 1];
  327. using enum BlockBoundaryType;
  328. switch (boundary) {
  329. case Continue:
  330. emit<Op::Jump>().set_targets(nearest_continuable_scope(), {});
  331. return;
  332. case Unwind:
  333. if (!last_was_finally)
  334. emit<Bytecode::Op::LeaveUnwindContext>();
  335. last_was_finally = false;
  336. break;
  337. case LeaveLexicalEnvironment:
  338. emit<Bytecode::Op::LeaveLexicalEnvironment>();
  339. break;
  340. case Break:
  341. break;
  342. case ReturnToFinally: {
  343. auto& block = make_block(DeprecatedString::formatted("{}.continue", current_block().name()));
  344. emit<Op::ScheduleJump>(Label { block });
  345. switch_to_basic_block(block);
  346. last_was_finally = true;
  347. break;
  348. };
  349. }
  350. }
  351. VERIFY_NOT_REACHED();
  352. }
  353. void Generator::generate_continue(DeprecatedFlyString const& continue_label)
  354. {
  355. size_t current_boundary = m_boundaries.size();
  356. bool last_was_finally = false;
  357. for (auto const& continuable_scope : m_continuable_scopes.in_reverse()) {
  358. for (; current_boundary > 0; --current_boundary) {
  359. auto boundary = m_boundaries[current_boundary - 1];
  360. if (boundary == BlockBoundaryType::Unwind) {
  361. if (!last_was_finally)
  362. emit<Bytecode::Op::LeaveUnwindContext>();
  363. last_was_finally = false;
  364. } else if (boundary == BlockBoundaryType::LeaveLexicalEnvironment) {
  365. emit<Bytecode::Op::LeaveLexicalEnvironment>();
  366. } else if (boundary == BlockBoundaryType::ReturnToFinally) {
  367. auto& block = make_block(DeprecatedString::formatted("{}.continue", current_block().name()));
  368. emit<Op::ScheduleJump>(Label { block });
  369. switch_to_basic_block(block);
  370. last_was_finally = true;
  371. } else if (boundary == BlockBoundaryType::Continue) {
  372. // Make sure we don't process this boundary twice if the current continuable scope doesn't contain the target label.
  373. --current_boundary;
  374. break;
  375. }
  376. }
  377. if (continuable_scope.language_label_set.contains_slow(continue_label)) {
  378. emit<Op::Jump>().set_targets(continuable_scope.bytecode_target, {});
  379. return;
  380. }
  381. }
  382. // We must have a continuable scope available that contains the label, as this should be enforced by the parser.
  383. VERIFY_NOT_REACHED();
  384. }
  385. void Generator::push_home_object(Register register_)
  386. {
  387. m_home_objects.append(register_);
  388. }
  389. void Generator::pop_home_object()
  390. {
  391. m_home_objects.take_last();
  392. }
  393. void Generator::emit_new_function(FunctionNode const& function_node)
  394. {
  395. if (m_home_objects.is_empty())
  396. emit<Op::NewFunction>(function_node);
  397. else
  398. emit<Op::NewFunction>(function_node, m_home_objects.last());
  399. }
  400. }