Region.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418
  1. #include <Kernel/FileSystem/Inode.h>
  2. #include <Kernel/Process.h>
  3. #include <Kernel/Thread.h>
  4. #include <Kernel/VM/AnonymousVMObject.h>
  5. #include <Kernel/VM/InodeVMObject.h>
  6. #include <Kernel/VM/MemoryManager.h>
  7. #include <Kernel/VM/Region.h>
  8. //#define MM_DEBUG
  9. //#define PAGE_FAULT_DEBUG
  10. Region::Region(const Range& range, const String& name, u8 access)
  11. : m_range(range)
  12. , m_vmobject(AnonymousVMObject::create_with_size(size()))
  13. , m_name(name)
  14. , m_access(access)
  15. {
  16. MM.register_region(*this);
  17. }
  18. Region::Region(const Range& range, NonnullRefPtr<Inode> inode, const String& name, u8 access)
  19. : m_range(range)
  20. , m_vmobject(InodeVMObject::create_with_inode(*inode))
  21. , m_name(name)
  22. , m_access(access)
  23. {
  24. MM.register_region(*this);
  25. }
  26. Region::Region(const Range& range, NonnullRefPtr<VMObject> vmo, size_t offset_in_vmo, const String& name, u8 access)
  27. : m_range(range)
  28. , m_offset_in_vmo(offset_in_vmo)
  29. , m_vmobject(move(vmo))
  30. , m_name(name)
  31. , m_access(access)
  32. {
  33. MM.register_region(*this);
  34. }
  35. Region::~Region()
  36. {
  37. // Make sure we disable interrupts so we don't get interrupted between unmapping and unregistering.
  38. // Unmapping the region will give the VM back to the RangeAllocator, so an interrupt handler would
  39. // find the address<->region mappings in an invalid state there.
  40. InterruptDisabler disabler;
  41. if (m_page_directory) {
  42. unmap(ShouldDeallocateVirtualMemoryRange::Yes);
  43. ASSERT(!m_page_directory);
  44. }
  45. MM.unregister_region(*this);
  46. }
  47. NonnullOwnPtr<Region> Region::clone()
  48. {
  49. ASSERT(current);
  50. // NOTE: Kernel-only regions should never be cloned.
  51. ASSERT(is_user_accessible());
  52. if (m_shared || (is_readable() && !is_writable())) {
  53. ASSERT(!m_stack);
  54. #ifdef MM_DEBUG
  55. dbgprintf("%s<%u> Region::clone(): sharing %s (V%p)\n",
  56. current->process().name().characters(),
  57. current->pid(),
  58. m_name.characters(),
  59. vaddr().get());
  60. #endif
  61. // Create a new region backed by the same VMObject.
  62. return Region::create_user_accessible(m_range, m_vmobject, m_offset_in_vmo, m_name, m_access);
  63. }
  64. #ifdef MM_DEBUG
  65. dbgprintf("%s<%u> Region::clone(): cowing %s (V%p)\n",
  66. current->process().name().characters(),
  67. current->pid(),
  68. m_name.characters(),
  69. vaddr().get());
  70. #endif
  71. // Set up a COW region. The parent (this) region becomes COW as well!
  72. ensure_cow_map().fill(true);
  73. remap();
  74. auto clone_region = Region::create_user_accessible(m_range, m_vmobject->clone(), m_offset_in_vmo, m_name, m_access);
  75. clone_region->ensure_cow_map();
  76. if (m_stack) {
  77. ASSERT(is_readable());
  78. ASSERT(is_writable());
  79. ASSERT(!is_shared());
  80. ASSERT(vmobject().is_anonymous());
  81. clone_region->set_stack(true);
  82. }
  83. return clone_region;
  84. }
  85. int Region::commit()
  86. {
  87. InterruptDisabler disabler;
  88. #ifdef MM_DEBUG
  89. dbgprintf("MM: commit %u pages in Region %p (VMO=%p) at V%p\n", vmobject().page_count(), this, &vmobject(), vaddr().get());
  90. #endif
  91. for (size_t i = 0; i < page_count(); ++i) {
  92. auto& vmobject_physical_page_entry = vmobject().physical_pages()[first_page_index() + i];
  93. if (!vmobject_physical_page_entry.is_null())
  94. continue;
  95. auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  96. if (!physical_page) {
  97. kprintf("MM: commit was unable to allocate a physical page\n");
  98. return -ENOMEM;
  99. }
  100. vmobject_physical_page_entry = move(physical_page);
  101. remap_page(i);
  102. }
  103. return 0;
  104. }
  105. size_t Region::amount_resident() const
  106. {
  107. size_t bytes = 0;
  108. for (size_t i = 0; i < page_count(); ++i) {
  109. if (m_vmobject->physical_pages()[first_page_index() + i])
  110. bytes += PAGE_SIZE;
  111. }
  112. return bytes;
  113. }
  114. size_t Region::amount_shared() const
  115. {
  116. size_t bytes = 0;
  117. for (size_t i = 0; i < page_count(); ++i) {
  118. auto& physical_page = m_vmobject->physical_pages()[first_page_index() + i];
  119. if (physical_page && physical_page->ref_count() > 1)
  120. bytes += PAGE_SIZE;
  121. }
  122. return bytes;
  123. }
  124. NonnullOwnPtr<Region> Region::create_user_accessible(const Range& range, const StringView& name, u8 access)
  125. {
  126. auto region = make<Region>(range, name, access);
  127. region->m_user_accessible = true;
  128. return region;
  129. }
  130. NonnullOwnPtr<Region> Region::create_user_accessible(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, const StringView& name, u8 access)
  131. {
  132. auto region = make<Region>(range, move(vmobject), offset_in_vmobject, name, access);
  133. region->m_user_accessible = true;
  134. return region;
  135. }
  136. NonnullOwnPtr<Region> Region::create_user_accessible(const Range& range, NonnullRefPtr<Inode> inode, const StringView& name, u8 access)
  137. {
  138. auto region = make<Region>(range, move(inode), name, access);
  139. region->m_user_accessible = true;
  140. return region;
  141. }
  142. NonnullOwnPtr<Region> Region::create_kernel_only(const Range& range, const StringView& name, u8 access)
  143. {
  144. auto region = make<Region>(range, name, access);
  145. region->m_user_accessible = false;
  146. return region;
  147. }
  148. bool Region::should_cow(size_t page_index) const
  149. {
  150. if (m_shared)
  151. return false;
  152. return m_cow_map && m_cow_map->get(page_index);
  153. }
  154. void Region::set_should_cow(size_t page_index, bool cow)
  155. {
  156. ASSERT(!m_shared);
  157. ensure_cow_map().set(page_index, cow);
  158. }
  159. Bitmap& Region::ensure_cow_map() const
  160. {
  161. if (!m_cow_map)
  162. m_cow_map = make<Bitmap>(page_count(), true);
  163. return *m_cow_map;
  164. }
  165. void Region::remap_page(size_t index)
  166. {
  167. ASSERT(m_page_directory);
  168. InterruptDisabler disabler;
  169. auto page_vaddr = vaddr().offset(index * PAGE_SIZE);
  170. auto& pte = MM.ensure_pte(*m_page_directory, page_vaddr);
  171. auto& physical_page = vmobject().physical_pages()[first_page_index() + index];
  172. ASSERT(physical_page);
  173. pte.set_physical_page_base(physical_page->paddr().get());
  174. pte.set_present(is_readable());
  175. if (should_cow(index))
  176. pte.set_writable(false);
  177. else
  178. pte.set_writable(is_writable());
  179. pte.set_user_allowed(is_user_accessible());
  180. m_page_directory->flush(page_vaddr);
  181. #ifdef MM_DEBUG
  182. dbg() << "MM: >> region.remap_page (PD=" << m_page_directory->cr3() << ", PTE=" << (void*)pte.raw() << "{" << &pte << "}) " << name() << " " << page_vaddr << " => " << physical_page->paddr() << " (@" << physical_page.ptr() << ")";
  183. #endif
  184. }
  185. void Region::unmap(ShouldDeallocateVirtualMemoryRange deallocate_range)
  186. {
  187. InterruptDisabler disabler;
  188. ASSERT(m_page_directory);
  189. for (size_t i = 0; i < page_count(); ++i) {
  190. auto vaddr = this->vaddr().offset(i * PAGE_SIZE);
  191. auto& pte = MM.ensure_pte(*m_page_directory, vaddr);
  192. pte.set_physical_page_base(0);
  193. pte.set_present(false);
  194. pte.set_writable(false);
  195. pte.set_user_allowed(false);
  196. m_page_directory->flush(vaddr);
  197. #ifdef MM_DEBUG
  198. auto& physical_page = vmobject().physical_pages()[first_page_index() + i];
  199. dbgprintf("MM: >> Unmapped V%p => P%p <<\n", vaddr.get(), physical_page ? physical_page->paddr().get() : 0);
  200. #endif
  201. }
  202. if (deallocate_range == ShouldDeallocateVirtualMemoryRange::Yes)
  203. m_page_directory->range_allocator().deallocate(range());
  204. m_page_directory = nullptr;
  205. }
  206. void Region::map(PageDirectory& page_directory)
  207. {
  208. ASSERT(!m_page_directory || m_page_directory == &page_directory);
  209. InterruptDisabler disabler;
  210. m_page_directory = page_directory;
  211. #ifdef MM_DEBUG
  212. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", first_page_index(), last_page_index(), vmobject().page_count());
  213. #endif
  214. for (size_t i = 0; i < page_count(); ++i) {
  215. auto page_vaddr = vaddr().offset(i * PAGE_SIZE);
  216. auto& pte = MM.ensure_pte(page_directory, page_vaddr);
  217. auto& physical_page = vmobject().physical_pages()[first_page_index() + i];
  218. if (physical_page) {
  219. pte.set_physical_page_base(physical_page->paddr().get());
  220. pte.set_present(is_readable());
  221. if (should_cow(i))
  222. pte.set_writable(false);
  223. else
  224. pte.set_writable(is_writable());
  225. } else {
  226. pte.set_physical_page_base(0);
  227. pte.set_present(false);
  228. pte.set_writable(is_writable());
  229. }
  230. pte.set_user_allowed(is_user_accessible());
  231. page_directory.flush(page_vaddr);
  232. #ifdef MM_DEBUG
  233. dbgprintf("MM: >> map_region_at_address (PD=%p) '%s' V%p => P%p (@%p)\n", &page_directory, name().characters(), page_vaddr.get(), physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  234. #endif
  235. }
  236. }
  237. void Region::remap()
  238. {
  239. ASSERT(m_page_directory);
  240. map(*m_page_directory);
  241. }
  242. PageFaultResponse Region::handle_fault(const PageFault& fault)
  243. {
  244. auto page_index_in_region = page_index_from_address(fault.vaddr());
  245. if (fault.type() == PageFault::Type::PageNotPresent) {
  246. if (!is_readable()) {
  247. dbgprintf("NP(non-readable) fault in Region{%p}[%u]\n", this, page_index_in_region);
  248. return PageFaultResponse::ShouldCrash;
  249. }
  250. if (vmobject().is_inode()) {
  251. #ifdef PAGE_FAULT_DEBUG
  252. dbgprintf("NP(inode) fault in Region{%p}[%u]\n", this, page_index_in_region);
  253. #endif
  254. return handle_inode_fault(page_index_in_region);
  255. }
  256. #ifdef PAGE_FAULT_DEBUG
  257. dbgprintf("NP(zero) fault in Region{%p}[%u]\n", this, page_index_in_region);
  258. #endif
  259. return handle_zero_fault(page_index_in_region);
  260. }
  261. ASSERT(fault.type() == PageFault::Type::ProtectionViolation);
  262. if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
  263. #ifdef PAGE_FAULT_DEBUG
  264. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", this, page_index_in_region);
  265. #endif
  266. return handle_cow_fault(page_index_in_region);
  267. }
  268. kprintf("PV(error) fault in Region{%p}[%u] at V%p\n", this, page_index_in_region, fault.vaddr().get());
  269. return PageFaultResponse::ShouldCrash;
  270. }
  271. PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
  272. {
  273. ASSERT_INTERRUPTS_DISABLED();
  274. ASSERT(vmobject().is_anonymous());
  275. sti();
  276. LOCKER(vmobject().m_paging_lock);
  277. cli();
  278. auto& vmobject_physical_page_entry = vmobject().physical_pages()[first_page_index() + page_index_in_region];
  279. if (!vmobject_physical_page_entry.is_null()) {
  280. #ifdef PAGE_FAULT_DEBUG
  281. dbgprintf("MM: zero_page() but page already present. Fine with me!\n");
  282. #endif
  283. remap_page(page_index_in_region);
  284. return PageFaultResponse::Continue;
  285. }
  286. if (current)
  287. current->did_zero_fault();
  288. auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  289. if (physical_page.is_null()) {
  290. kprintf("MM: handle_zero_fault was unable to allocate a physical page\n");
  291. return PageFaultResponse::ShouldCrash;
  292. }
  293. #ifdef PAGE_FAULT_DEBUG
  294. dbgprintf(" >> ZERO P%p\n", physical_page->paddr().get());
  295. #endif
  296. vmobject_physical_page_entry = move(physical_page);
  297. remap_page(page_index_in_region);
  298. return PageFaultResponse::Continue;
  299. }
  300. PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
  301. {
  302. ASSERT_INTERRUPTS_DISABLED();
  303. auto& vmobject_physical_page_entry = vmobject().physical_pages()[first_page_index() + page_index_in_region];
  304. if (vmobject_physical_page_entry->ref_count() == 1) {
  305. #ifdef PAGE_FAULT_DEBUG
  306. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  307. #endif
  308. set_should_cow(page_index_in_region, false);
  309. remap_page(page_index_in_region);
  310. return PageFaultResponse::Continue;
  311. }
  312. if (current)
  313. current->did_cow_fault();
  314. #ifdef PAGE_FAULT_DEBUG
  315. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  316. #endif
  317. auto physical_page_to_copy = move(vmobject_physical_page_entry);
  318. auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  319. if (physical_page.is_null()) {
  320. kprintf("MM: handle_cow_fault was unable to allocate a physical page\n");
  321. return PageFaultResponse::ShouldCrash;
  322. }
  323. u8* dest_ptr = MM.quickmap_page(*physical_page);
  324. const u8* src_ptr = vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  325. #ifdef PAGE_FAULT_DEBUG
  326. dbgprintf(" >> COW P%p <- P%p\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  327. #endif
  328. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  329. vmobject_physical_page_entry = move(physical_page);
  330. MM.unquickmap_page();
  331. set_should_cow(page_index_in_region, false);
  332. remap_page(page_index_in_region);
  333. return PageFaultResponse::Continue;
  334. }
  335. PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
  336. {
  337. ASSERT_INTERRUPTS_DISABLED();
  338. ASSERT(vmobject().is_inode());
  339. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
  340. auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[first_page_index() + page_index_in_region];
  341. sti();
  342. LOCKER(vmobject().m_paging_lock);
  343. cli();
  344. if (!vmobject_physical_page_entry.is_null()) {
  345. #ifdef PAGE_FAULT_DEBUG
  346. dbgprintf("MM: page_in_from_inode() but page already present. Fine with me!\n");
  347. #endif
  348. remap_page(page_index_in_region);
  349. return PageFaultResponse::Continue;
  350. }
  351. if (current)
  352. current->did_inode_fault();
  353. #ifdef MM_DEBUG
  354. dbgprintf("MM: page_in_from_inode ready to read from inode\n");
  355. #endif
  356. sti();
  357. u8 page_buffer[PAGE_SIZE];
  358. auto& inode = inode_vmobject.inode();
  359. auto nread = inode.read_bytes((first_page_index() + page_index_in_region) * PAGE_SIZE, PAGE_SIZE, page_buffer, nullptr);
  360. if (nread < 0) {
  361. kprintf("MM: handle_inode_fault had error (%d) while reading!\n", nread);
  362. return PageFaultResponse::ShouldCrash;
  363. }
  364. if (nread < PAGE_SIZE) {
  365. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  366. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  367. }
  368. cli();
  369. vmobject_physical_page_entry = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  370. if (vmobject_physical_page_entry.is_null()) {
  371. kprintf("MM: handle_inode_fault was unable to allocate a physical page\n");
  372. return PageFaultResponse::ShouldCrash;
  373. }
  374. remap_page(page_index_in_region);
  375. u8* dest_ptr = vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  376. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  377. return PageFaultResponse::Continue;
  378. }