Process.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Singleton.h>
  7. #include <AK/StdLibExtras.h>
  8. #include <AK/StringBuilder.h>
  9. #include <AK/Time.h>
  10. #include <AK/Types.h>
  11. #include <Kernel/API/Syscall.h>
  12. #include <Kernel/Arch/x86/InterruptDisabler.h>
  13. #include <Kernel/Coredump.h>
  14. #include <Kernel/Debug.h>
  15. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  16. # include <Kernel/Devices/KCOVDevice.h>
  17. #endif
  18. #include <Kernel/Devices/NullDevice.h>
  19. #include <Kernel/FileSystem/Custody.h>
  20. #include <Kernel/FileSystem/FileDescription.h>
  21. #include <Kernel/FileSystem/VirtualFileSystem.h>
  22. #include <Kernel/KBufferBuilder.h>
  23. #include <Kernel/KSyms.h>
  24. #include <Kernel/Memory/AnonymousVMObject.h>
  25. #include <Kernel/Memory/PageDirectory.h>
  26. #include <Kernel/Memory/SharedInodeVMObject.h>
  27. #include <Kernel/Module.h>
  28. #include <Kernel/PerformanceEventBuffer.h>
  29. #include <Kernel/PerformanceManager.h>
  30. #include <Kernel/Process.h>
  31. #include <Kernel/ProcessExposed.h>
  32. #include <Kernel/Sections.h>
  33. #include <Kernel/StdLib.h>
  34. #include <Kernel/TTY/TTY.h>
  35. #include <Kernel/Thread.h>
  36. #include <Kernel/ThreadTracer.h>
  37. #include <LibC/errno_numbers.h>
  38. #include <LibC/limits.h>
  39. namespace Kernel {
  40. static void create_signal_trampoline();
  41. RecursiveSpinlock g_profiling_lock;
  42. static Atomic<pid_t> next_pid;
  43. static Singleton<SpinlockProtected<Process::List>> s_processes;
  44. READONLY_AFTER_INIT HashMap<String, OwnPtr<Module>>* g_modules;
  45. READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
  46. static Singleton<MutexProtected<String>> s_hostname;
  47. MutexProtected<String>& hostname()
  48. {
  49. return *s_hostname;
  50. }
  51. SpinlockProtected<Process::List>& processes()
  52. {
  53. return *s_processes;
  54. }
  55. ProcessID Process::allocate_pid()
  56. {
  57. // Overflow is UB, and negative PIDs wreck havoc.
  58. // TODO: Handle PID overflow
  59. // For example: Use an Atomic<u32>, mask the most significant bit,
  60. // retry if PID is already taken as a PID, taken as a TID,
  61. // takes as a PGID, taken as a SID, or zero.
  62. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  63. }
  64. UNMAP_AFTER_INIT void Process::initialize()
  65. {
  66. g_modules = new HashMap<String, OwnPtr<Module>>;
  67. next_pid.store(0, AK::MemoryOrder::memory_order_release);
  68. // Note: This is called before scheduling is initialized, and before APs are booted.
  69. // So we can "safely" bypass the lock here.
  70. reinterpret_cast<String&>(hostname()) = "courage";
  71. create_signal_trampoline();
  72. }
  73. NonnullRefPtrVector<Process> Process::all_processes()
  74. {
  75. NonnullRefPtrVector<Process> output;
  76. processes().with([&](const auto& list) {
  77. output.ensure_capacity(list.size_slow());
  78. for (const auto& process : list)
  79. output.append(NonnullRefPtr<Process>(process));
  80. });
  81. return output;
  82. }
  83. bool Process::in_group(GroupID gid) const
  84. {
  85. return this->gid() == gid || extra_gids().contains_slow(gid);
  86. }
  87. void Process::kill_threads_except_self()
  88. {
  89. InterruptDisabler disabler;
  90. if (thread_count() <= 1)
  91. return;
  92. auto current_thread = Thread::current();
  93. for_each_thread([&](Thread& thread) {
  94. if (&thread == current_thread)
  95. return;
  96. if (auto state = thread.state(); state == Thread::State::Dead
  97. || state == Thread::State::Dying)
  98. return;
  99. // We need to detach this thread in case it hasn't been joined
  100. thread.detach();
  101. thread.set_should_die();
  102. });
  103. u32 dropped_lock_count = 0;
  104. if (big_lock().force_unlock_if_locked(dropped_lock_count) != LockMode::Unlocked)
  105. dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
  106. }
  107. void Process::kill_all_threads()
  108. {
  109. for_each_thread([&](Thread& thread) {
  110. // We need to detach this thread in case it hasn't been joined
  111. thread.detach();
  112. thread.set_should_die();
  113. });
  114. }
  115. void Process::register_new(Process& process)
  116. {
  117. // Note: this is essentially the same like process->ref()
  118. RefPtr<Process> new_process = process;
  119. processes().with([&](auto& list) {
  120. list.prepend(process);
  121. });
  122. }
  123. KResultOr<NonnullRefPtr<Process>> Process::try_create_user_process(RefPtr<Thread>& first_thread, String const& path, UserID uid, GroupID gid, Vector<String> arguments, Vector<String> environment, TTY* tty)
  124. {
  125. auto parts = path.split('/');
  126. if (arguments.is_empty()) {
  127. arguments.append(parts.last());
  128. }
  129. auto process = TRY(Process::try_create(first_thread, parts.take_last(), uid, gid, ProcessID(0), false, VirtualFileSystem::the().root_custody(), nullptr, tty));
  130. if (!process->m_fds.try_resize(process->m_fds.max_open())) {
  131. first_thread = nullptr;
  132. return ENOMEM;
  133. }
  134. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the();
  135. auto description = TRY(device_to_use_as_tty.open(O_RDWR));
  136. auto setup_description = [&process, &description](int fd) {
  137. process->m_fds.m_fds_metadatas[fd].allocate();
  138. process->m_fds[fd].set(*description);
  139. };
  140. setup_description(0);
  141. setup_description(1);
  142. setup_description(2);
  143. if (auto result = process->exec(path, move(arguments), move(environment)); result.is_error()) {
  144. dbgln("Failed to exec {}: {}", path, result);
  145. first_thread = nullptr;
  146. return result;
  147. }
  148. register_new(*process);
  149. // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockerSet::finalize().
  150. process->ref();
  151. return process;
  152. }
  153. RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
  154. {
  155. auto process_or_error = Process::try_create(first_thread, move(name), UserID(0), GroupID(0), ProcessID(0), true);
  156. if (process_or_error.is_error())
  157. return {};
  158. auto process = process_or_error.release_value();
  159. first_thread->regs().set_ip((FlatPtr)entry);
  160. #if ARCH(I386)
  161. first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
  162. #else
  163. first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
  164. #endif
  165. if (do_register == RegisterProcess::Yes)
  166. register_new(*process);
  167. SpinlockLocker lock(g_scheduler_lock);
  168. first_thread->set_affinity(affinity);
  169. first_thread->set_state(Thread::State::Runnable);
  170. return process;
  171. }
  172. void Process::protect_data()
  173. {
  174. m_protected_data_refs.unref([&]() {
  175. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, false);
  176. });
  177. }
  178. void Process::unprotect_data()
  179. {
  180. m_protected_data_refs.ref([&]() {
  181. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, true);
  182. });
  183. }
  184. KResultOr<NonnullRefPtr<Process>> Process::try_create(RefPtr<Thread>& first_thread, String const& name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
  185. {
  186. auto space = TRY(Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr));
  187. auto process = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) Process(name, uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty)));
  188. TRY(process->attach_resources(move(space), first_thread, fork_parent));
  189. return process;
  190. }
  191. Process::Process(const String& name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty)
  192. : m_name(move(name))
  193. , m_is_kernel_process(is_kernel_process)
  194. , m_executable(move(executable))
  195. , m_cwd(move(cwd))
  196. , m_tty(tty)
  197. , m_wait_blocker_set(*this)
  198. {
  199. // Ensure that we protect the process data when exiting the constructor.
  200. ProtectedDataMutationScope scope { *this };
  201. m_protected_values.pid = allocate_pid();
  202. m_protected_values.ppid = ppid;
  203. m_protected_values.uid = uid;
  204. m_protected_values.gid = gid;
  205. m_protected_values.euid = uid;
  206. m_protected_values.egid = gid;
  207. m_protected_values.suid = uid;
  208. m_protected_values.sgid = gid;
  209. dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
  210. }
  211. KResult Process::attach_resources(NonnullOwnPtr<Memory::AddressSpace>&& preallocated_space, RefPtr<Thread>& first_thread, Process* fork_parent)
  212. {
  213. m_space = move(preallocated_space);
  214. auto create_first_thread = [&] {
  215. if (fork_parent) {
  216. // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
  217. return Thread::current()->try_clone(*this);
  218. }
  219. // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
  220. return Thread::try_create(*this);
  221. };
  222. first_thread = TRY(create_first_thread());
  223. if (!fork_parent) {
  224. // FIXME: Figure out if this is really necessary.
  225. first_thread->detach();
  226. }
  227. m_procfs_traits = TRY(ProcessProcFSTraits::try_create({}, *this));
  228. return KSuccess;
  229. }
  230. Process::~Process()
  231. {
  232. unprotect_data();
  233. VERIFY(thread_count() == 0); // all threads should have been finalized
  234. VERIFY(!m_alarm_timer);
  235. PerformanceManager::add_process_exit_event(*this);
  236. }
  237. bool Process::unref() const
  238. {
  239. // NOTE: We need to obtain the process list lock before doing anything,
  240. // because otherwise someone might get in between us lowering the
  241. // refcount and acquiring the lock.
  242. auto did_hit_zero = processes().with([&](auto& list) {
  243. auto new_ref_count = deref_base();
  244. if (new_ref_count > 0)
  245. return false;
  246. if (m_list_node.is_in_list())
  247. list.remove(*const_cast<Process*>(this));
  248. return true;
  249. });
  250. if (did_hit_zero)
  251. delete this;
  252. return did_hit_zero;
  253. }
  254. // Make sure the compiler doesn't "optimize away" this function:
  255. extern void signal_trampoline_dummy() __attribute__((used));
  256. void signal_trampoline_dummy()
  257. {
  258. #if ARCH(I386)
  259. // The trampoline preserves the current eax, pushes the signal code and
  260. // then calls the signal handler. We do this because, when interrupting a
  261. // blocking syscall, that syscall may return some special error code in eax;
  262. // This error code would likely be overwritten by the signal handler, so it's
  263. // necessary to preserve it here.
  264. asm(
  265. ".intel_syntax noprefix\n"
  266. ".globl asm_signal_trampoline\n"
  267. "asm_signal_trampoline:\n"
  268. "push ebp\n"
  269. "mov ebp, esp\n"
  270. "push eax\n" // we have to store eax 'cause it might be the return value from a syscall
  271. "sub esp, 4\n" // align the stack to 16 bytes
  272. "mov eax, [ebp+12]\n" // push the signal code
  273. "push eax\n"
  274. "call [ebp+8]\n" // call the signal handler
  275. "add esp, 8\n"
  276. "mov eax, %P0\n"
  277. "int 0x82\n" // sigreturn syscall
  278. ".globl asm_signal_trampoline_end\n"
  279. "asm_signal_trampoline_end:\n"
  280. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  281. #elif ARCH(X86_64)
  282. // The trampoline preserves the current rax, pushes the signal code and
  283. // then calls the signal handler. We do this because, when interrupting a
  284. // blocking syscall, that syscall may return some special error code in eax;
  285. // This error code would likely be overwritten by the signal handler, so it's
  286. // necessary to preserve it here.
  287. asm(
  288. ".intel_syntax noprefix\n"
  289. ".globl asm_signal_trampoline\n"
  290. "asm_signal_trampoline:\n"
  291. "push rbp\n"
  292. "mov rbp, rsp\n"
  293. "push rax\n" // we have to store rax 'cause it might be the return value from a syscall
  294. "sub rsp, 8\n" // align the stack to 16 bytes
  295. "mov rdi, [rbp+24]\n" // push the signal code
  296. "call [rbp+16]\n" // call the signal handler
  297. "add rsp, 8\n"
  298. "mov rax, %P0\n"
  299. "int 0x82\n" // sigreturn syscall
  300. ".globl asm_signal_trampoline_end\n"
  301. "asm_signal_trampoline_end:\n"
  302. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  303. #endif
  304. }
  305. extern "C" char const asm_signal_trampoline[];
  306. extern "C" char const asm_signal_trampoline_end[];
  307. void create_signal_trampoline()
  308. {
  309. // NOTE: We leak this region.
  310. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).release_value().leak_ptr();
  311. g_signal_trampoline_region->set_syscall_region(true);
  312. size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
  313. u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
  314. memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
  315. g_signal_trampoline_region->set_writable(false);
  316. g_signal_trampoline_region->remap();
  317. }
  318. void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
  319. {
  320. VERIFY(!is_dead());
  321. VERIFY(&Process::current() == this);
  322. if (out_of_memory) {
  323. dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
  324. } else {
  325. if (ip >= kernel_load_base && g_kernel_symbols_available) {
  326. auto* symbol = symbolicate_kernel_address(ip);
  327. dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
  328. } else {
  329. dbgln("\033[31;1m{:p} (?)\033[0m\n", ip);
  330. }
  331. dump_backtrace();
  332. }
  333. {
  334. ProtectedDataMutationScope scope { *this };
  335. m_protected_values.termination_signal = signal;
  336. }
  337. set_should_generate_coredump(!out_of_memory);
  338. address_space().dump_regions();
  339. VERIFY(is_user_process());
  340. die();
  341. // We can not return from here, as there is nowhere
  342. // to unwind to, so die right away.
  343. Thread::current()->die_if_needed();
  344. VERIFY_NOT_REACHED();
  345. }
  346. RefPtr<Process> Process::from_pid(ProcessID pid)
  347. {
  348. return processes().with([&](const auto& list) -> RefPtr<Process> {
  349. for (auto& process : list) {
  350. if (process.pid() == pid)
  351. return &process;
  352. }
  353. return {};
  354. });
  355. }
  356. const Process::FileDescriptionAndFlags* Process::FileDescriptions::get_if_valid(size_t i) const
  357. {
  358. SpinlockLocker lock(m_fds_lock);
  359. if (m_fds_metadatas.size() <= i)
  360. return nullptr;
  361. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  362. return &metadata;
  363. return nullptr;
  364. }
  365. Process::FileDescriptionAndFlags* Process::FileDescriptions::get_if_valid(size_t i)
  366. {
  367. SpinlockLocker lock(m_fds_lock);
  368. if (m_fds_metadatas.size() <= i)
  369. return nullptr;
  370. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  371. return &metadata;
  372. return nullptr;
  373. }
  374. const Process::FileDescriptionAndFlags& Process::FileDescriptions::at(size_t i) const
  375. {
  376. SpinlockLocker lock(m_fds_lock);
  377. VERIFY(m_fds_metadatas[i].is_allocated());
  378. return m_fds_metadatas[i];
  379. }
  380. Process::FileDescriptionAndFlags& Process::FileDescriptions::at(size_t i)
  381. {
  382. SpinlockLocker lock(m_fds_lock);
  383. VERIFY(m_fds_metadatas[i].is_allocated());
  384. return m_fds_metadatas[i];
  385. }
  386. KResultOr<NonnullRefPtr<FileDescription>> Process::FileDescriptions::file_description(int fd) const
  387. {
  388. SpinlockLocker lock(m_fds_lock);
  389. if (fd < 0)
  390. return EBADF;
  391. if (static_cast<size_t>(fd) >= m_fds_metadatas.size())
  392. return EBADF;
  393. RefPtr description = m_fds_metadatas[fd].description();
  394. if (!description)
  395. return EBADF;
  396. return description.release_nonnull();
  397. }
  398. void Process::FileDescriptions::enumerate(Function<void(const FileDescriptionAndFlags&)> callback) const
  399. {
  400. SpinlockLocker lock(m_fds_lock);
  401. for (auto& file_description_metadata : m_fds_metadatas) {
  402. callback(file_description_metadata);
  403. }
  404. }
  405. void Process::FileDescriptions::change_each(Function<void(FileDescriptionAndFlags&)> callback)
  406. {
  407. SpinlockLocker lock(m_fds_lock);
  408. for (auto& file_description_metadata : m_fds_metadatas) {
  409. callback(file_description_metadata);
  410. }
  411. }
  412. size_t Process::FileDescriptions::open_count() const
  413. {
  414. size_t count = 0;
  415. enumerate([&](auto& file_description_metadata) {
  416. if (file_description_metadata.is_valid())
  417. ++count;
  418. });
  419. return count;
  420. }
  421. KResultOr<Process::ScopedDescriptionAllocation> Process::FileDescriptions::allocate(int first_candidate_fd)
  422. {
  423. SpinlockLocker lock(m_fds_lock);
  424. for (size_t i = first_candidate_fd; i < max_open(); ++i) {
  425. if (!m_fds_metadatas[i].is_allocated()) {
  426. m_fds_metadatas[i].allocate();
  427. return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
  428. }
  429. }
  430. return EMFILE;
  431. }
  432. Time kgettimeofday()
  433. {
  434. return TimeManagement::now();
  435. }
  436. siginfo_t Process::wait_info()
  437. {
  438. siginfo_t siginfo {};
  439. siginfo.si_signo = SIGCHLD;
  440. siginfo.si_pid = pid().value();
  441. siginfo.si_uid = uid().value();
  442. if (m_protected_values.termination_signal) {
  443. siginfo.si_status = m_protected_values.termination_signal;
  444. siginfo.si_code = CLD_KILLED;
  445. } else {
  446. siginfo.si_status = m_protected_values.termination_status;
  447. siginfo.si_code = CLD_EXITED;
  448. }
  449. return siginfo;
  450. }
  451. Custody& Process::current_directory()
  452. {
  453. if (!m_cwd)
  454. m_cwd = VirtualFileSystem::the().root_custody();
  455. return *m_cwd;
  456. }
  457. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length) const
  458. {
  459. if (path_length == 0)
  460. return EINVAL;
  461. if (path_length > PATH_MAX)
  462. return ENAMETOOLONG;
  463. return try_copy_kstring_from_user(user_path, path_length);
  464. }
  465. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path) const
  466. {
  467. Userspace<char const*> path_characters((FlatPtr)path.characters);
  468. return get_syscall_path_argument(path_characters, path.length);
  469. }
  470. bool Process::dump_core()
  471. {
  472. VERIFY(is_dumpable());
  473. VERIFY(should_generate_coredump());
  474. dbgln("Generating coredump for pid: {}", pid().value());
  475. auto coredump_path = String::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), kgettimeofday().to_truncated_seconds());
  476. auto coredump_or_error = Coredump::try_create(*this, coredump_path);
  477. if (coredump_or_error.is_error())
  478. return false;
  479. return !coredump_or_error.value()->write().is_error();
  480. }
  481. bool Process::dump_perfcore()
  482. {
  483. VERIFY(is_dumpable());
  484. VERIFY(m_perf_event_buffer);
  485. dbgln("Generating perfcore for pid: {}", pid().value());
  486. // Try to generate a filename which isn't already used.
  487. auto base_filename = String::formatted("{}_{}", name(), pid().value());
  488. auto description_or_error = VirtualFileSystem::the().open(String::formatted("{}.profile", base_filename), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  489. for (size_t attempt = 1; attempt < 10 && description_or_error.is_error(); ++attempt)
  490. description_or_error = VirtualFileSystem::the().open(String::formatted("{}.{}.profile", base_filename, attempt), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  491. if (description_or_error.is_error()) {
  492. dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
  493. return false;
  494. }
  495. auto& description = *description_or_error.value();
  496. KBufferBuilder builder;
  497. if (!m_perf_event_buffer->to_json(builder)) {
  498. dbgln("Failed to generate perfcore for pid {}: Could not serialize performance events to JSON.", pid().value());
  499. return false;
  500. }
  501. auto json = builder.build();
  502. if (!json) {
  503. dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
  504. return false;
  505. }
  506. auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
  507. if (description.write(json_buffer, json->size()).is_error()) {
  508. return false;
  509. dbgln("Failed to generate perfcore for pid {}: Cound not write to perfcore file.", pid().value());
  510. }
  511. dbgln("Wrote perfcore for pid {} to {}", pid().value(), description.absolute_path());
  512. return true;
  513. }
  514. void Process::finalize()
  515. {
  516. VERIFY(Thread::current() == g_finalizer);
  517. dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
  518. if (is_dumpable()) {
  519. if (m_should_generate_coredump)
  520. dump_core();
  521. if (m_perf_event_buffer) {
  522. dump_perfcore();
  523. TimeManagement::the().disable_profile_timer();
  524. }
  525. }
  526. m_threads_for_coredump.clear();
  527. if (m_alarm_timer)
  528. TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
  529. m_fds.clear();
  530. m_tty = nullptr;
  531. m_executable = nullptr;
  532. m_cwd = nullptr;
  533. m_arguments.clear();
  534. m_environment.clear();
  535. m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
  536. {
  537. // FIXME: PID/TID BUG
  538. if (auto parent_thread = Thread::from_tid(ppid().value())) {
  539. if (!(parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT))
  540. parent_thread->send_signal(SIGCHLD, this);
  541. }
  542. }
  543. if (!!ppid()) {
  544. if (auto parent = Process::from_pid(ppid())) {
  545. parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
  546. parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
  547. }
  548. }
  549. unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
  550. m_space->remove_all_regions({});
  551. VERIFY(ref_count() > 0);
  552. // WaitBlockerSet::finalize will be in charge of dropping the last
  553. // reference if there are still waiters around, or whenever the last
  554. // waitable states are consumed. Unless there is no parent around
  555. // anymore, in which case we'll just drop it right away.
  556. m_wait_blocker_set.finalize();
  557. }
  558. void Process::disowned_by_waiter(Process& process)
  559. {
  560. m_wait_blocker_set.disowned_by_waiter(process);
  561. }
  562. void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
  563. {
  564. if (auto parent = Process::from_pid(ppid()))
  565. parent->m_wait_blocker_set.unblock(*this, flags, signal);
  566. }
  567. void Process::die()
  568. {
  569. auto expected = State::Running;
  570. if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
  571. // It's possible that another thread calls this at almost the same time
  572. // as we can't always instantly kill other threads (they may be blocked)
  573. // So if we already were called then other threads should stop running
  574. // momentarily and we only really need to service the first thread
  575. return;
  576. }
  577. // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
  578. // getting an EOF when the last process using the slave PTY dies.
  579. // If the master PTY owner relies on an EOF to know when to wait() on a
  580. // slave owner, we have to allow the PTY pair to be torn down.
  581. m_tty = nullptr;
  582. VERIFY(m_threads_for_coredump.is_empty());
  583. for_each_thread([&](auto& thread) {
  584. m_threads_for_coredump.append(thread);
  585. });
  586. processes().with([&](const auto& list) {
  587. for (auto it = list.begin(); it != list.end();) {
  588. auto& process = *it;
  589. ++it;
  590. if (process.has_tracee_thread(pid())) {
  591. dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
  592. process.stop_tracing();
  593. auto err = process.send_signal(SIGSTOP, this);
  594. if (err.is_error())
  595. dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
  596. }
  597. }
  598. });
  599. kill_all_threads();
  600. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  601. KCOVDevice::free_process();
  602. #endif
  603. }
  604. void Process::terminate_due_to_signal(u8 signal)
  605. {
  606. VERIFY_INTERRUPTS_DISABLED();
  607. VERIFY(signal < 32);
  608. VERIFY(&Process::current() == this);
  609. dbgln("Terminating {} due to signal {}", *this, signal);
  610. {
  611. ProtectedDataMutationScope scope { *this };
  612. m_protected_values.termination_status = 0;
  613. m_protected_values.termination_signal = signal;
  614. }
  615. die();
  616. }
  617. KResult Process::send_signal(u8 signal, Process* sender)
  618. {
  619. // Try to send it to the "obvious" main thread:
  620. auto receiver_thread = Thread::from_tid(pid().value());
  621. // If the main thread has died, there may still be other threads:
  622. if (!receiver_thread) {
  623. // The first one should be good enough.
  624. // Neither kill(2) nor kill(3) specify any selection precedure.
  625. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
  626. receiver_thread = &thread;
  627. return IterationDecision::Break;
  628. });
  629. }
  630. if (receiver_thread) {
  631. receiver_thread->send_signal(signal, sender);
  632. return KSuccess;
  633. }
  634. return ESRCH;
  635. }
  636. RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr<KString> name, u32 affinity, bool joinable)
  637. {
  638. VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
  639. // FIXME: Do something with guard pages?
  640. auto thread_or_error = Thread::try_create(*this);
  641. if (thread_or_error.is_error())
  642. return {};
  643. auto thread = thread_or_error.release_value();
  644. thread->set_name(move(name));
  645. thread->set_affinity(affinity);
  646. thread->set_priority(priority);
  647. if (!joinable)
  648. thread->detach();
  649. auto& regs = thread->regs();
  650. regs.set_ip((FlatPtr)entry);
  651. regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register
  652. SpinlockLocker lock(g_scheduler_lock);
  653. thread->set_state(Thread::State::Runnable);
  654. return thread;
  655. }
  656. void Process::FileDescriptionAndFlags::clear()
  657. {
  658. // FIXME: Verify Process::m_fds_lock is locked!
  659. m_description = nullptr;
  660. m_flags = 0;
  661. }
  662. void Process::FileDescriptionAndFlags::set(NonnullRefPtr<FileDescription>&& description, u32 flags)
  663. {
  664. // FIXME: Verify Process::m_fds_lock is locked!
  665. m_description = move(description);
  666. m_flags = flags;
  667. }
  668. void Process::set_tty(TTY* tty)
  669. {
  670. m_tty = tty;
  671. }
  672. KResult Process::start_tracing_from(ProcessID tracer)
  673. {
  674. auto thread_tracer = ThreadTracer::create(tracer);
  675. if (!thread_tracer)
  676. return ENOMEM;
  677. m_tracer = move(thread_tracer);
  678. return KSuccess;
  679. }
  680. void Process::stop_tracing()
  681. {
  682. m_tracer = nullptr;
  683. }
  684. void Process::tracer_trap(Thread& thread, const RegisterState& regs)
  685. {
  686. VERIFY(m_tracer.ptr());
  687. m_tracer->set_regs(regs);
  688. thread.send_urgent_signal_to_self(SIGTRAP);
  689. }
  690. bool Process::create_perf_events_buffer_if_needed()
  691. {
  692. if (!m_perf_event_buffer) {
  693. m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
  694. m_perf_event_buffer->add_process(*this, ProcessEventType::Create);
  695. }
  696. return !!m_perf_event_buffer;
  697. }
  698. void Process::delete_perf_events_buffer()
  699. {
  700. if (m_perf_event_buffer)
  701. m_perf_event_buffer = nullptr;
  702. }
  703. bool Process::remove_thread(Thread& thread)
  704. {
  705. ProtectedDataMutationScope scope { *this };
  706. auto thread_cnt_before = m_protected_values.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  707. VERIFY(thread_cnt_before != 0);
  708. thread_list().with([&](auto& thread_list) {
  709. thread_list.remove(thread);
  710. });
  711. return thread_cnt_before == 1;
  712. }
  713. bool Process::add_thread(Thread& thread)
  714. {
  715. ProtectedDataMutationScope scope { *this };
  716. bool is_first = m_protected_values.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
  717. thread_list().with([&](auto& thread_list) {
  718. thread_list.append(thread);
  719. });
  720. return is_first;
  721. }
  722. void Process::set_dumpable(bool dumpable)
  723. {
  724. if (dumpable == m_protected_values.dumpable)
  725. return;
  726. ProtectedDataMutationScope scope { *this };
  727. m_protected_values.dumpable = dumpable;
  728. }
  729. KResult Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
  730. {
  731. // Write it into the first available property slot.
  732. for (auto& slot : m_coredump_properties) {
  733. if (slot.key)
  734. continue;
  735. slot.key = move(key);
  736. slot.value = move(value);
  737. return KSuccess;
  738. }
  739. return ENOBUFS;
  740. }
  741. KResult Process::try_set_coredump_property(StringView key, StringView value)
  742. {
  743. auto key_kstring = TRY(KString::try_create(key));
  744. auto value_kstring = TRY(KString::try_create(value));
  745. return set_coredump_property(move(key_kstring), move(value_kstring));
  746. };
  747. static constexpr StringView to_string(Pledge promise)
  748. {
  749. #define __ENUMERATE_PLEDGE_PROMISE(x) \
  750. case Pledge::x: \
  751. return #x;
  752. switch (promise) {
  753. ENUMERATE_PLEDGE_PROMISES
  754. }
  755. #undef __ENUMERATE_PLEDGE_PROMISE
  756. VERIFY_NOT_REACHED();
  757. }
  758. void Process::require_no_promises()
  759. {
  760. if (!has_promises())
  761. return;
  762. dbgln("Has made a promise");
  763. Process::current().crash(SIGABRT, 0);
  764. VERIFY_NOT_REACHED();
  765. }
  766. void Process::require_promise(Pledge promise)
  767. {
  768. if (!has_promises())
  769. return;
  770. if (has_promised(promise))
  771. return;
  772. dbgln("Has not pledged {}", to_string(promise));
  773. (void)try_set_coredump_property("pledge_violation"sv, to_string(promise));
  774. crash(SIGABRT, 0);
  775. }
  776. }