MemoryManager.cpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/Assertions.h>
  27. #include <AK/Memory.h>
  28. #include <AK/StringView.h>
  29. #include <Kernel/Arch/i386/CPU.h>
  30. #include <Kernel/CMOS.h>
  31. #include <Kernel/FileSystem/Inode.h>
  32. #include <Kernel/Multiboot.h>
  33. #include <Kernel/Process.h>
  34. #include <Kernel/VM/AnonymousVMObject.h>
  35. #include <Kernel/VM/ContiguousVMObject.h>
  36. #include <Kernel/VM/MemoryManager.h>
  37. #include <Kernel/VM/PageDirectory.h>
  38. #include <Kernel/VM/PhysicalRegion.h>
  39. #include <Kernel/VM/PurgeableVMObject.h>
  40. #include <Kernel/VM/SharedInodeVMObject.h>
  41. #include <Kernel/StdLib.h>
  42. //#define MM_DEBUG
  43. //#define PAGE_FAULT_DEBUG
  44. extern FlatPtr start_of_kernel_text;
  45. extern FlatPtr start_of_kernel_data;
  46. extern FlatPtr end_of_kernel_bss;
  47. namespace Kernel {
  48. static MemoryManager* s_the;
  49. RecursiveSpinLock MemoryManager::s_lock;
  50. MemoryManager& MM
  51. {
  52. return *s_the;
  53. }
  54. MemoryManager::MemoryManager()
  55. {
  56. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  57. parse_memory_map();
  58. write_cr3(kernel_page_directory().cr3());
  59. protect_kernel_image();
  60. m_shared_zero_page = allocate_user_physical_page();
  61. }
  62. MemoryManager::~MemoryManager()
  63. {
  64. }
  65. void MemoryManager::protect_kernel_image()
  66. {
  67. // Disable writing to the kernel text and rodata segments.
  68. for (size_t i = (FlatPtr)&start_of_kernel_text; i < (FlatPtr)&start_of_kernel_data; i += PAGE_SIZE) {
  69. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  70. pte.set_writable(false);
  71. }
  72. if (g_cpu_supports_nx) {
  73. // Disable execution of the kernel data and bss segments.
  74. for (size_t i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_bss; i += PAGE_SIZE) {
  75. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  76. pte.set_execute_disabled(true);
  77. }
  78. }
  79. }
  80. void MemoryManager::parse_memory_map()
  81. {
  82. RefPtr<PhysicalRegion> region;
  83. bool region_is_super = false;
  84. auto* mmap = (multiboot_memory_map_t*)(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
  85. for (; (unsigned long)mmap < (low_physical_to_virtual(multiboot_info_ptr->mmap_addr)) + (multiboot_info_ptr->mmap_length); mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  86. klog() << "MM: Multiboot mmap: base_addr = " << String::format("0x%08x", mmap->addr) << ", length = " << String::format("0x%08x", mmap->len) << ", type = 0x" << String::format("%x", mmap->type);
  87. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  88. continue;
  89. // FIXME: Maybe make use of stuff below the 1MB mark?
  90. if (mmap->addr < (1 * MB))
  91. continue;
  92. if ((mmap->addr + mmap->len) > 0xffffffff)
  93. continue;
  94. auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
  95. if (diff != 0) {
  96. klog() << "MM: got an unaligned region base from the bootloader; correcting " << String::format("%p", mmap->addr) << " by " << diff << " bytes";
  97. diff = PAGE_SIZE - diff;
  98. mmap->addr += diff;
  99. mmap->len -= diff;
  100. }
  101. if ((mmap->len % PAGE_SIZE) != 0) {
  102. klog() << "MM: got an unaligned region length from the bootloader; correcting " << mmap->len << " by " << (mmap->len % PAGE_SIZE) << " bytes";
  103. mmap->len -= mmap->len % PAGE_SIZE;
  104. }
  105. if (mmap->len < PAGE_SIZE) {
  106. klog() << "MM: memory region from bootloader is too small; we want >= " << PAGE_SIZE << " bytes, but got " << mmap->len << " bytes";
  107. continue;
  108. }
  109. #ifdef MM_DEBUG
  110. klog() << "MM: considering memory at " << String::format("%p", (FlatPtr)mmap->addr) << " - " << String::format("%p", (FlatPtr)(mmap->addr + mmap->len));
  111. #endif
  112. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  113. auto addr = PhysicalAddress(page_base);
  114. if (page_base < 7 * MB) {
  115. // nothing
  116. } else if (page_base >= 7 * MB && page_base < 8 * MB) {
  117. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  118. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  119. region = m_super_physical_regions.last();
  120. region_is_super = true;
  121. } else {
  122. region->expand(region->lower(), addr);
  123. }
  124. } else {
  125. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  126. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  127. region = m_user_physical_regions.last();
  128. region_is_super = false;
  129. } else {
  130. region->expand(region->lower(), addr);
  131. }
  132. }
  133. }
  134. }
  135. for (auto& region : m_super_physical_regions)
  136. m_super_physical_pages += region.finalize_capacity();
  137. for (auto& region : m_user_physical_regions)
  138. m_user_physical_pages += region.finalize_capacity();
  139. ASSERT(m_super_physical_pages > 0);
  140. ASSERT(m_user_physical_pages > 0);
  141. }
  142. const PageTableEntry* MemoryManager::pte(const PageDirectory& page_directory, VirtualAddress vaddr)
  143. {
  144. ASSERT_INTERRUPTS_DISABLED();
  145. ScopedSpinLock lock(s_lock);
  146. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  147. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  148. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  149. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  150. const PageDirectoryEntry& pde = pd[page_directory_index];
  151. if (!pde.is_present())
  152. return nullptr;
  153. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  154. }
  155. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  156. {
  157. ASSERT_INTERRUPTS_DISABLED();
  158. ScopedSpinLock lock(s_lock);
  159. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  160. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  161. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  162. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  163. PageDirectoryEntry& pde = pd[page_directory_index];
  164. if (!pde.is_present()) {
  165. #ifdef MM_DEBUG
  166. dbg() << "MM: PDE " << page_directory_index << " not present (requested for " << vaddr << "), allocating";
  167. #endif
  168. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes);
  169. #ifdef MM_DEBUG
  170. dbg() << "MM: PD K" << &page_directory << " (" << (&page_directory == m_kernel_page_directory ? "Kernel" : "User") << ") at " << PhysicalAddress(page_directory.cr3()) << " allocated page table #" << page_directory_index << " (for " << vaddr << ") at " << page_table->paddr();
  171. #endif
  172. pde.set_page_table_base(page_table->paddr().get());
  173. pde.set_user_allowed(true);
  174. pde.set_present(true);
  175. pde.set_writable(true);
  176. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  177. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  178. }
  179. return quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  180. }
  181. void MemoryManager::initialize()
  182. {
  183. s_the = new MemoryManager;
  184. }
  185. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  186. {
  187. ScopedSpinLock lock(s_lock);
  188. for (auto& region : MM.m_kernel_regions) {
  189. if (region.contains(vaddr))
  190. return &region;
  191. }
  192. return nullptr;
  193. }
  194. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  195. {
  196. ScopedSpinLock lock(s_lock);
  197. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  198. for (auto& region : process.m_regions) {
  199. if (region.contains(vaddr))
  200. return &region;
  201. }
  202. #ifdef MM_DEBUG
  203. dbg() << process << " Couldn't find user region for " << vaddr;
  204. #endif
  205. return nullptr;
  206. }
  207. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  208. {
  209. ScopedSpinLock lock(s_lock);
  210. if (auto* region = user_region_from_vaddr(process, vaddr))
  211. return region;
  212. return kernel_region_from_vaddr(vaddr);
  213. }
  214. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  215. {
  216. ScopedSpinLock lock(s_lock);
  217. if (auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr))
  218. return region;
  219. return kernel_region_from_vaddr(vaddr);
  220. }
  221. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  222. {
  223. ScopedSpinLock lock(s_lock);
  224. if (auto* region = kernel_region_from_vaddr(vaddr))
  225. return region;
  226. auto page_directory = PageDirectory::find_by_cr3(read_cr3());
  227. if (!page_directory)
  228. return nullptr;
  229. ASSERT(page_directory->process());
  230. return user_region_from_vaddr(*page_directory->process(), vaddr);
  231. }
  232. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  233. {
  234. ASSERT_INTERRUPTS_DISABLED();
  235. ASSERT(Thread::current);
  236. ScopedSpinLock lock(s_lock);
  237. if (Processor::current().in_irq()) {
  238. dbg() << "CPU[" << Processor::current().id() << "] BUG! Page fault while handling IRQ! code=" << fault.code() << ", vaddr=" << fault.vaddr() << ", irq level: " << Processor::current().in_irq();
  239. dump_kernel_regions();
  240. return PageFaultResponse::ShouldCrash;
  241. }
  242. #ifdef PAGE_FAULT_DEBUG
  243. dbg() << "MM: CPU[" << Processor::current().id() << "] handle_page_fault(" << String::format("%w", fault.code()) << ") at " << fault.vaddr();
  244. #endif
  245. auto* region = region_from_vaddr(fault.vaddr());
  246. if (!region) {
  247. klog() << "CPU[" << Processor::current().id() << "] NP(error) fault at invalid address " << fault.vaddr();
  248. return PageFaultResponse::ShouldCrash;
  249. }
  250. return region->handle_fault(fault);
  251. }
  252. OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  253. {
  254. ASSERT(!(size % PAGE_SIZE));
  255. ScopedSpinLock lock(s_lock);
  256. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  257. if (!range.is_valid())
  258. return nullptr;
  259. auto vmobject = ContiguousVMObject::create_with_size(size);
  260. auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  261. if (!region)
  262. return nullptr;
  263. return region;
  264. }
  265. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit, bool cacheable)
  266. {
  267. ASSERT(!(size % PAGE_SIZE));
  268. ScopedSpinLock lock(s_lock);
  269. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  270. if (!range.is_valid())
  271. return nullptr;
  272. auto vmobject = AnonymousVMObject::create_with_size(size);
  273. auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  274. if (!region)
  275. return nullptr;
  276. if (should_commit && !region->commit())
  277. return nullptr;
  278. return region;
  279. }
  280. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  281. {
  282. ASSERT(!(size % PAGE_SIZE));
  283. ScopedSpinLock lock(s_lock);
  284. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  285. if (!range.is_valid())
  286. return nullptr;
  287. auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
  288. if (!vmobject)
  289. return nullptr;
  290. return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
  291. }
  292. OwnPtr<Region> MemoryManager::allocate_kernel_region_identity(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  293. {
  294. ASSERT(!(size % PAGE_SIZE));
  295. ScopedSpinLock lock(s_lock);
  296. auto range = kernel_page_directory().identity_range_allocator().allocate_specific(VirtualAddress(paddr.get()), size);
  297. if (!range.is_valid())
  298. return nullptr;
  299. auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
  300. if (!vmobject)
  301. return nullptr;
  302. return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
  303. }
  304. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access, bool cacheable)
  305. {
  306. return allocate_kernel_region(size, name, access, true, true, cacheable);
  307. }
  308. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(const Range& range, VMObject& vmobject, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  309. {
  310. ScopedSpinLock lock(s_lock);
  311. OwnPtr<Region> region;
  312. if (user_accessible)
  313. region = Region::create_user_accessible(range, vmobject, 0, name, access, cacheable);
  314. else
  315. region = Region::create_kernel_only(range, vmobject, 0, name, access, cacheable);
  316. if (region)
  317. region->map(kernel_page_directory());
  318. return region;
  319. }
  320. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  321. {
  322. ASSERT(!(size % PAGE_SIZE));
  323. ScopedSpinLock lock(s_lock);
  324. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  325. if (!range.is_valid())
  326. return nullptr;
  327. return allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  328. }
  329. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  330. {
  331. ScopedSpinLock lock(s_lock);
  332. for (auto& region : m_user_physical_regions) {
  333. if (!region.contains(page)) {
  334. klog() << "MM: deallocate_user_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
  335. continue;
  336. }
  337. region.return_page(move(page));
  338. --m_user_physical_pages_used;
  339. return;
  340. }
  341. klog() << "MM: deallocate_user_physical_page couldn't figure out region for user page @ " << page.paddr();
  342. ASSERT_NOT_REACHED();
  343. }
  344. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  345. {
  346. ASSERT(s_lock.is_locked());
  347. RefPtr<PhysicalPage> page;
  348. for (auto& region : m_user_physical_regions) {
  349. page = region.take_free_page(false);
  350. if (!page.is_null())
  351. break;
  352. }
  353. return page;
  354. }
  355. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  356. {
  357. ScopedSpinLock lock(s_lock);
  358. auto page = find_free_user_physical_page();
  359. if (!page) {
  360. // We didn't have a single free physical page. Let's try to free something up!
  361. // First, we look for a purgeable VMObject in the volatile state.
  362. for_each_vmobject_of_type<PurgeableVMObject>([&](auto& vmobject) {
  363. int purged_page_count = vmobject.purge_with_interrupts_disabled({});
  364. if (purged_page_count) {
  365. klog() << "MM: Purge saved the day! Purged " << purged_page_count << " pages from PurgeableVMObject{" << &vmobject << "}";
  366. page = find_free_user_physical_page();
  367. ASSERT(page);
  368. return IterationDecision::Break;
  369. }
  370. return IterationDecision::Continue;
  371. });
  372. if (!page) {
  373. klog() << "MM: no user physical pages available";
  374. return {};
  375. }
  376. }
  377. #ifdef MM_DEBUG
  378. dbg() << "MM: allocate_user_physical_page vending " << page->paddr();
  379. #endif
  380. if (should_zero_fill == ShouldZeroFill::Yes) {
  381. auto* ptr = quickmap_page(*page);
  382. memset(ptr, 0, PAGE_SIZE);
  383. unquickmap_page();
  384. }
  385. ++m_user_physical_pages_used;
  386. return page;
  387. }
  388. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  389. {
  390. ASSERT(s_lock.is_locked());
  391. for (auto& region : m_super_physical_regions) {
  392. if (!region.contains(page)) {
  393. klog() << "MM: deallocate_supervisor_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
  394. continue;
  395. }
  396. region.return_page(move(page));
  397. --m_super_physical_pages_used;
  398. return;
  399. }
  400. klog() << "MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ " << page.paddr();
  401. ASSERT_NOT_REACHED();
  402. }
  403. NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
  404. {
  405. ASSERT(!(size % PAGE_SIZE));
  406. ScopedSpinLock lock(s_lock);
  407. size_t count = ceil_div(size, PAGE_SIZE);
  408. NonnullRefPtrVector<PhysicalPage> physical_pages;
  409. for (auto& region : m_super_physical_regions) {
  410. physical_pages = region.take_contiguous_free_pages((count), true);
  411. if (physical_pages.is_empty())
  412. continue;
  413. }
  414. if (physical_pages.is_empty()) {
  415. if (m_super_physical_regions.is_empty()) {
  416. klog() << "MM: no super physical regions available (?)";
  417. }
  418. klog() << "MM: no super physical pages available";
  419. ASSERT_NOT_REACHED();
  420. return {};
  421. }
  422. auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
  423. fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
  424. m_super_physical_pages_used += count;
  425. return physical_pages;
  426. }
  427. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  428. {
  429. ScopedSpinLock lock(s_lock);
  430. RefPtr<PhysicalPage> page;
  431. for (auto& region : m_super_physical_regions) {
  432. page = region.take_free_page(true);
  433. if (page.is_null())
  434. continue;
  435. }
  436. if (!page) {
  437. if (m_super_physical_regions.is_empty()) {
  438. klog() << "MM: no super physical regions available (?)";
  439. }
  440. klog() << "MM: no super physical pages available";
  441. ASSERT_NOT_REACHED();
  442. return {};
  443. }
  444. #ifdef MM_DEBUG
  445. dbg() << "MM: allocate_supervisor_physical_page vending " << page->paddr();
  446. #endif
  447. fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  448. ++m_super_physical_pages_used;
  449. return page;
  450. }
  451. void MemoryManager::enter_process_paging_scope(Process& process)
  452. {
  453. ASSERT(Thread::current);
  454. ScopedSpinLock lock(s_lock);
  455. Thread::current->tss().cr3 = process.page_directory().cr3();
  456. write_cr3(process.page_directory().cr3());
  457. }
  458. void MemoryManager::flush_entire_tlb()
  459. {
  460. write_cr3(read_cr3());
  461. }
  462. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  463. {
  464. #ifdef MM_DEBUG
  465. dbg() << "MM: Flush page " << vaddr;
  466. #endif
  467. asm volatile("invlpg %0"
  468. :
  469. : "m"(*(char*)vaddr.get())
  470. : "memory");
  471. }
  472. extern "C" PageTableEntry boot_pd3_pt1023[1024];
  473. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  474. {
  475. ScopedSpinLock lock(s_lock);
  476. auto& pte = boot_pd3_pt1023[4];
  477. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  478. if (pte.physical_page_base() != pd_paddr.as_ptr()) {
  479. #ifdef MM_DEBUG
  480. dbg() << "quickmap_pd: Mapping P" << (void*)directory.m_directory_pages[pdpt_index]->paddr().as_ptr() << " at 0xffe04000 in pte @ " << &pte;
  481. #endif
  482. pte.set_physical_page_base(pd_paddr.get());
  483. pte.set_present(true);
  484. pte.set_writable(true);
  485. pte.set_user_allowed(false);
  486. flush_tlb(VirtualAddress(0xffe04000));
  487. }
  488. return (PageDirectoryEntry*)0xffe04000;
  489. }
  490. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  491. {
  492. ScopedSpinLock lock(s_lock);
  493. auto& pte = boot_pd3_pt1023[8];
  494. if (pte.physical_page_base() != pt_paddr.as_ptr()) {
  495. #ifdef MM_DEBUG
  496. dbg() << "quickmap_pt: Mapping P" << (void*)pt_paddr.as_ptr() << " at 0xffe08000 in pte @ " << &pte;
  497. #endif
  498. pte.set_physical_page_base(pt_paddr.get());
  499. pte.set_present(true);
  500. pte.set_writable(true);
  501. pte.set_user_allowed(false);
  502. flush_tlb(VirtualAddress(0xffe08000));
  503. }
  504. return (PageTableEntry*)0xffe08000;
  505. }
  506. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  507. {
  508. ASSERT_INTERRUPTS_DISABLED();
  509. ScopedSpinLock lock(s_lock);
  510. ASSERT(!m_quickmap_in_use);
  511. m_quickmap_in_use = true;
  512. auto& pte = boot_pd3_pt1023[0];
  513. if (pte.physical_page_base() != physical_page.paddr().as_ptr()) {
  514. #ifdef MM_DEBUG
  515. dbg() << "quickmap_page: Mapping P" << (void*)physical_page.paddr().as_ptr() << " at 0xffe00000 in pte @ " << &pte;
  516. #endif
  517. pte.set_physical_page_base(physical_page.paddr().get());
  518. pte.set_present(true);
  519. pte.set_writable(true);
  520. pte.set_user_allowed(false);
  521. flush_tlb(VirtualAddress(0xffe00000));
  522. }
  523. return (u8*)0xffe00000;
  524. }
  525. void MemoryManager::unquickmap_page()
  526. {
  527. ASSERT_INTERRUPTS_DISABLED();
  528. ScopedSpinLock lock(s_lock);
  529. ASSERT(m_quickmap_in_use);
  530. auto& pte = boot_pd3_pt1023[0];
  531. pte.clear();
  532. flush_tlb(VirtualAddress(0xffe00000));
  533. m_quickmap_in_use = false;
  534. }
  535. template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
  536. bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
  537. {
  538. ASSERT(s_lock.is_locked());
  539. ASSERT(size);
  540. if (base_vaddr > base_vaddr.offset(size)) {
  541. dbg() << "Shenanigans! Asked to validate wrappy " << base_vaddr << " size=" << size;
  542. return false;
  543. }
  544. VirtualAddress vaddr = base_vaddr.page_base();
  545. VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
  546. if (end_vaddr < vaddr) {
  547. dbg() << "Shenanigans! Asked to validate " << base_vaddr << " size=" << size;
  548. return false;
  549. }
  550. const Region* region = nullptr;
  551. while (vaddr <= end_vaddr) {
  552. if (!region || !region->contains(vaddr)) {
  553. if (space == AccessSpace::Kernel)
  554. region = kernel_region_from_vaddr(vaddr);
  555. if (!region || !region->contains(vaddr))
  556. region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  557. if (!region
  558. || (space == AccessSpace::User && !region->is_user_accessible())
  559. || (access_type == AccessType::Read && !region->is_readable())
  560. || (access_type == AccessType::Write && !region->is_writable())) {
  561. return false;
  562. }
  563. }
  564. vaddr = region->range().end();
  565. }
  566. return true;
  567. }
  568. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  569. {
  570. if (!is_user_address(vaddr))
  571. return false;
  572. ScopedSpinLock lock(s_lock);
  573. auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  574. return region && region->is_user_accessible() && region->is_stack();
  575. }
  576. bool MemoryManager::validate_kernel_read(const Process& process, VirtualAddress vaddr, size_t size) const
  577. {
  578. ScopedSpinLock lock(s_lock);
  579. return validate_range<AccessSpace::Kernel, AccessType::Read>(process, vaddr, size);
  580. }
  581. bool MemoryManager::can_read_without_faulting(const Process& process, VirtualAddress vaddr, size_t size) const
  582. {
  583. // FIXME: Use the size argument!
  584. UNUSED_PARAM(size);
  585. ScopedSpinLock lock(s_lock);
  586. auto* pte = const_cast<MemoryManager*>(this)->pte(process.page_directory(), vaddr);
  587. if (!pte)
  588. return false;
  589. return pte->is_present();
  590. }
  591. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr, size_t size) const
  592. {
  593. if (!is_user_address(vaddr))
  594. return false;
  595. ScopedSpinLock lock(s_lock);
  596. return validate_range<AccessSpace::User, AccessType::Read>(process, vaddr, size);
  597. }
  598. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr, size_t size) const
  599. {
  600. if (!is_user_address(vaddr))
  601. return false;
  602. ScopedSpinLock lock(s_lock);
  603. return validate_range<AccessSpace::User, AccessType::Write>(process, vaddr, size);
  604. }
  605. void MemoryManager::register_vmobject(VMObject& vmobject)
  606. {
  607. ScopedSpinLock lock(s_lock);
  608. m_vmobjects.append(&vmobject);
  609. }
  610. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  611. {
  612. ScopedSpinLock lock(s_lock);
  613. m_vmobjects.remove(&vmobject);
  614. }
  615. void MemoryManager::register_region(Region& region)
  616. {
  617. ScopedSpinLock lock(s_lock);
  618. if (region.is_kernel())
  619. m_kernel_regions.append(&region);
  620. else
  621. m_user_regions.append(&region);
  622. }
  623. void MemoryManager::unregister_region(Region& region)
  624. {
  625. ScopedSpinLock lock(s_lock);
  626. if (region.is_kernel())
  627. m_kernel_regions.remove(&region);
  628. else
  629. m_user_regions.remove(&region);
  630. }
  631. void MemoryManager::dump_kernel_regions()
  632. {
  633. klog() << "Kernel regions:";
  634. klog() << "BEGIN END SIZE ACCESS NAME";
  635. for (auto& region : MM.m_kernel_regions) {
  636. klog() << String::format("%08x", region.vaddr().get()) << " -- " << String::format("%08x", region.vaddr().offset(region.size() - 1).get()) << " " << String::format("%08x", region.size()) << " " << (region.is_readable() ? 'R' : ' ') << (region.is_writable() ? 'W' : ' ') << (region.is_executable() ? 'X' : ' ') << (region.is_shared() ? 'S' : ' ') << (region.is_stack() ? 'T' : ' ') << (region.vmobject().is_purgeable() ? 'P' : ' ') << " " << region.name().characters();
  637. }
  638. }
  639. }