123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977 |
- /*
- * Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@serenityos.org>
- * Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include <AK/Function.h>
- #include <AK/SIMDExtras.h>
- #include <AK/SIMDMath.h>
- #include <LibCore/ElapsedTimer.h>
- #include <LibGfx/Painter.h>
- #include <LibGfx/Vector2.h>
- #include <LibGfx/Vector3.h>
- #include <LibSoftGPU/Config.h>
- #include <LibSoftGPU/Device.h>
- #include <LibSoftGPU/PixelQuad.h>
- #include <LibSoftGPU/SIMD.h>
- namespace SoftGPU {
- static long long g_num_rasterized_triangles;
- static long long g_num_pixels;
- static long long g_num_pixels_shaded;
- static long long g_num_pixels_blended;
- static long long g_num_sampler_calls;
- static long long g_num_quads;
- using IntVector2 = Gfx::Vector2<int>;
- using IntVector3 = Gfx::Vector3<int>;
- using AK::SIMD::exp;
- using AK::SIMD::expand4;
- using AK::SIMD::f32x4;
- using AK::SIMD::i32x4;
- using AK::SIMD::load4_masked;
- using AK::SIMD::maskbits;
- using AK::SIMD::maskcount;
- using AK::SIMD::none;
- using AK::SIMD::store4_masked;
- using AK::SIMD::to_f32x4;
- using AK::SIMD::to_u32x4;
- using AK::SIMD::u32x4;
- constexpr static int edge_function(const IntVector2& a, const IntVector2& b, const IntVector2& c)
- {
- return ((c.x() - a.x()) * (b.y() - a.y()) - (c.y() - a.y()) * (b.x() - a.x()));
- }
- constexpr static i32x4 edge_function4(const IntVector2& a, const IntVector2& b, const Vector2<i32x4>& c)
- {
- return ((c.x() - a.x()) * (b.y() - a.y()) - (c.y() - a.y()) * (b.x() - a.x()));
- }
- template<typename T, typename U>
- constexpr static auto interpolate(const T& v0, const T& v1, const T& v2, const Vector3<U>& barycentric_coords)
- {
- return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z();
- }
- ALWAYS_INLINE static u32x4 to_rgba32(const Vector4<f32x4>& v)
- {
- auto clamped = v.clamped(expand4(0.0f), expand4(1.0f));
- auto r = to_u32x4(clamped.x() * 255);
- auto g = to_u32x4(clamped.y() * 255);
- auto b = to_u32x4(clamped.z() * 255);
- auto a = to_u32x4(clamped.w() * 255);
- return a << 24 | r << 16 | g << 8 | b;
- }
- static Vector4<f32x4> to_vec4(u32x4 rgba)
- {
- auto constexpr one_over_255 = expand4(1.0f / 255);
- return {
- to_f32x4((rgba >> 16) & 0xff) * one_over_255,
- to_f32x4((rgba >> 8) & 0xff) * one_over_255,
- to_f32x4(rgba & 0xff) * one_over_255,
- to_f32x4((rgba >> 24) & 0xff) * one_over_255,
- };
- }
- static Gfx::IntRect scissor_box_to_window_coordinates(Gfx::IntRect const& scissor_box, Gfx::IntRect const& window_rect)
- {
- return scissor_box.translated(0, window_rect.height() - 2 * scissor_box.y() - scissor_box.height());
- }
- static constexpr void setup_blend_factors(BlendFactor mode, FloatVector4& constant, float& src_alpha, float& dst_alpha, float& src_color, float& dst_color)
- {
- constant = { 0.0f, 0.0f, 0.0f, 0.0f };
- src_alpha = 0;
- dst_alpha = 0;
- src_color = 0;
- dst_color = 0;
- switch (mode) {
- case BlendFactor::Zero:
- break;
- case BlendFactor::One:
- constant = { 1.0f, 1.0f, 1.0f, 1.0f };
- break;
- case BlendFactor::SrcColor:
- src_color = 1;
- break;
- case BlendFactor::OneMinusSrcColor:
- constant = { 1.0f, 1.0f, 1.0f, 1.0f };
- src_color = -1;
- break;
- case BlendFactor::SrcAlpha:
- src_alpha = 1;
- break;
- case BlendFactor::OneMinusSrcAlpha:
- constant = { 1.0f, 1.0f, 1.0f, 1.0f };
- src_alpha = -1;
- break;
- case BlendFactor::DstAlpha:
- dst_alpha = 1;
- break;
- case BlendFactor::OneMinusDstAlpha:
- constant = { 1.0f, 1.0f, 1.0f, 1.0f };
- dst_alpha = -1;
- break;
- case BlendFactor::DstColor:
- dst_color = 1;
- break;
- case BlendFactor::OneMinusDstColor:
- constant = { 1.0f, 1.0f, 1.0f, 1.0f };
- dst_color = -1;
- break;
- case BlendFactor::SrcAlphaSaturate:
- // FIXME: How do we implement this?
- break;
- default:
- VERIFY_NOT_REACHED();
- }
- }
- template<typename PS>
- static void rasterize_triangle(const RasterizerOptions& options, Gfx::Bitmap& render_target, DepthBuffer& depth_buffer, const Triangle& triangle, PS pixel_shader)
- {
- INCREASE_STATISTICS_COUNTER(g_num_rasterized_triangles, 1);
- // Since the algorithm is based on blocks of uniform size, we need
- // to ensure that our render_target size is actually a multiple of the block size
- VERIFY((render_target.width() % 2) == 0);
- VERIFY((render_target.height() % 2) == 0);
- // Return if alpha testing is a no-op
- if (options.enable_alpha_test && options.alpha_test_func == AlphaTestFunction::Never)
- return;
- // Vertices
- Vertex const vertex0 = triangle.vertices[0];
- Vertex const vertex1 = triangle.vertices[1];
- Vertex const vertex2 = triangle.vertices[2];
- constexpr int subpixel_factor = 1 << SUBPIXEL_BITS;
- // Calculate area of the triangle for later tests
- IntVector2 const v0 { static_cast<int>(vertex0.window_coordinates.x() * subpixel_factor), static_cast<int>(vertex0.window_coordinates.y() * subpixel_factor) };
- IntVector2 const v1 { static_cast<int>(vertex1.window_coordinates.x() * subpixel_factor), static_cast<int>(vertex1.window_coordinates.y() * subpixel_factor) };
- IntVector2 const v2 { static_cast<int>(vertex2.window_coordinates.x() * subpixel_factor), static_cast<int>(vertex2.window_coordinates.y() * subpixel_factor) };
- int area = edge_function(v0, v1, v2);
- if (area == 0)
- return;
- auto const one_over_area = 1.0f / area;
- FloatVector4 src_constant {};
- float src_factor_src_alpha = 0;
- float src_factor_dst_alpha = 0;
- float src_factor_src_color = 0;
- float src_factor_dst_color = 0;
- FloatVector4 dst_constant {};
- float dst_factor_src_alpha = 0;
- float dst_factor_dst_alpha = 0;
- float dst_factor_src_color = 0;
- float dst_factor_dst_color = 0;
- if (options.enable_blending) {
- setup_blend_factors(
- options.blend_source_factor,
- src_constant,
- src_factor_src_alpha,
- src_factor_dst_alpha,
- src_factor_src_color,
- src_factor_dst_color);
- setup_blend_factors(
- options.blend_destination_factor,
- dst_constant,
- dst_factor_src_alpha,
- dst_factor_dst_alpha,
- dst_factor_src_color,
- dst_factor_dst_color);
- }
- auto render_bounds = render_target.rect();
- auto window_scissor_rect = scissor_box_to_window_coordinates(options.scissor_box, render_target.rect());
- if (options.scissor_enabled)
- render_bounds.intersect(window_scissor_rect);
- // Obey top-left rule:
- // This sets up "zero" for later pixel coverage tests.
- // Depending on where on the triangle the edge is located
- // it is either tested against 0 or 1, effectively
- // turning "< 0" into "<= 0"
- IntVector3 zero { 1, 1, 1 };
- if (v1.y() > v0.y() || (v1.y() == v0.y() && v1.x() < v0.x()))
- zero.set_z(0);
- if (v2.y() > v1.y() || (v2.y() == v1.y() && v2.x() < v1.x()))
- zero.set_x(0);
- if (v0.y() > v2.y() || (v0.y() == v2.y() && v0.x() < v2.x()))
- zero.set_y(0);
- // This function calculates the 3 edge values for the pixel relative to the triangle.
- auto calculate_edge_values4 = [v0, v1, v2](const Vector2<i32x4>& p) -> Vector3<i32x4> {
- return {
- edge_function4(v1, v2, p),
- edge_function4(v2, v0, p),
- edge_function4(v0, v1, p),
- };
- };
- // This function tests whether a point as identified by its 3 edge values lies within the triangle
- auto test_point4 = [zero](const Vector3<i32x4>& edges) -> i32x4 {
- return edges.x() >= zero.x()
- && edges.y() >= zero.y()
- && edges.z() >= zero.z();
- };
- auto test_scissor4 = [window_scissor_rect](const Vector2<i32x4>& screen_coordinates) -> i32x4 {
- return screen_coordinates.x() >= window_scissor_rect.x()
- && screen_coordinates.x() < window_scissor_rect.x() + window_scissor_rect.width()
- && screen_coordinates.y() >= window_scissor_rect.y()
- && screen_coordinates.y() < window_scissor_rect.y() + window_scissor_rect.height();
- };
- // Calculate block-based bounds
- // clang-format off
- int const bx0 = max(render_bounds.left(), min(min(v0.x(), v1.x()), v2.x()) / subpixel_factor) & ~1;
- int const bx1 = (min(render_bounds.right(), max(max(v0.x(), v1.x()), v2.x()) / subpixel_factor) & ~1) + 2;
- int const by0 = max(render_bounds.top(), min(min(v0.y(), v1.y()), v2.y()) / subpixel_factor) & ~1;
- int const by1 = (min(render_bounds.bottom(), max(max(v0.y(), v1.y()), v2.y()) / subpixel_factor) & ~1) + 2;
- // clang-format on
- // Fog depths
- float const vertex0_eye_absz = fabs(vertex0.eye_coordinates.z());
- float const vertex1_eye_absz = fabs(vertex1.eye_coordinates.z());
- float const vertex2_eye_absz = fabs(vertex2.eye_coordinates.z());
- // FIXME: implement stencil testing
- // Iterate over all blocks within the bounds of the triangle
- for (int by = by0; by < by1; by += 2) {
- for (int bx = bx0; bx < bx1; bx += 2) {
- PixelQuad quad;
- quad.screen_coordinates = {
- i32x4 { bx, bx + 1, bx, bx + 1 },
- i32x4 { by, by, by + 1, by + 1 },
- };
- auto edge_values = calculate_edge_values4(quad.screen_coordinates * subpixel_factor);
- // Generate triangle coverage mask
- quad.mask = test_point4(edge_values);
- if (options.scissor_enabled) {
- quad.mask &= test_scissor4(quad.screen_coordinates);
- }
- if (none(quad.mask))
- continue;
- INCREASE_STATISTICS_COUNTER(g_num_quads, 1);
- INCREASE_STATISTICS_COUNTER(g_num_pixels, maskcount(quad.mask));
- // Calculate barycentric coordinates from previously calculated edge values
- quad.barycentrics = Vector3<f32x4> {
- to_f32x4(edge_values.x()),
- to_f32x4(edge_values.y()),
- to_f32x4(edge_values.z()),
- } * one_over_area;
- float* depth_ptrs[4] = {
- &depth_buffer.scanline(by)[bx],
- &depth_buffer.scanline(by)[bx + 1],
- &depth_buffer.scanline(by + 1)[bx],
- &depth_buffer.scanline(by + 1)[bx + 1],
- };
- // AND the depth mask onto the coverage mask
- if (options.enable_depth_test) {
- auto depth = load4_masked(depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask);
- quad.depth = interpolate(vertex0.window_coordinates.z(), vertex1.window_coordinates.z(), vertex2.window_coordinates.z(), quad.barycentrics);
- // FIXME: Also apply depth_offset_factor which depends on the depth gradient
- quad.depth += options.depth_offset_constant * NumericLimits<float>::epsilon();
- switch (options.depth_func) {
- case DepthTestFunction::Always:
- break;
- case DepthTestFunction::Never:
- quad.mask ^= quad.mask;
- break;
- case DepthTestFunction::Greater:
- quad.mask &= quad.depth > depth;
- break;
- case DepthTestFunction::GreaterOrEqual:
- quad.mask &= quad.depth >= depth;
- break;
- case DepthTestFunction::NotEqual:
- #ifdef __SSE__
- quad.mask &= quad.depth != depth;
- #else
- quad.mask[0] = bit_cast<u32>(quad.depth[0]) != bit_cast<u32>(depth[0]) ? -1 : 0;
- quad.mask[1] = bit_cast<u32>(quad.depth[1]) != bit_cast<u32>(depth[1]) ? -1 : 0;
- quad.mask[2] = bit_cast<u32>(quad.depth[2]) != bit_cast<u32>(depth[2]) ? -1 : 0;
- quad.mask[3] = bit_cast<u32>(quad.depth[3]) != bit_cast<u32>(depth[3]) ? -1 : 0;
- #endif
- break;
- case DepthTestFunction::Equal:
- #ifdef __SSE__
- quad.mask &= quad.depth == depth;
- #else
- //
- // This is an interesting quirk that occurs due to us using the x87 FPU when Serenity is
- // compiled for the i386 target. When we calculate our depth value to be stored in the buffer,
- // it is an 80-bit x87 floating point number, however, when stored into the DepthBuffer, this is
- // truncated to 32 bits. This 38 bit loss of precision means that when x87 `FCOMP` is eventually
- // used here the comparison fails.
- // This could be solved by using a `long double` for the depth buffer, however this would take
- // up significantly more space and is completely overkill for a depth buffer. As such, comparing
- // the first 32-bits of this depth value is "good enough" that if we get a hit on it being
- // equal, we can pretty much guarantee that it's actually equal.
- //
- quad.mask[0] = bit_cast<u32>(quad.depth[0]) == bit_cast<u32>(depth[0]) ? -1 : 0;
- quad.mask[1] = bit_cast<u32>(quad.depth[1]) == bit_cast<u32>(depth[1]) ? -1 : 0;
- quad.mask[2] = bit_cast<u32>(quad.depth[2]) == bit_cast<u32>(depth[2]) ? -1 : 0;
- quad.mask[3] = bit_cast<u32>(quad.depth[3]) == bit_cast<u32>(depth[3]) ? -1 : 0;
- #endif
- break;
- case DepthTestFunction::LessOrEqual:
- quad.mask &= quad.depth <= depth;
- break;
- case DepthTestFunction::Less:
- quad.mask &= quad.depth < depth;
- break;
- }
- // Nice, no pixels passed the depth test -> block rejected by early z
- if (none(quad.mask))
- continue;
- }
- INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, maskcount(quad.mask));
- // Draw the pixels according to the previously generated mask
- auto const w_coordinates = Vector3<f32x4> {
- expand4(vertex0.window_coordinates.w()),
- expand4(vertex1.window_coordinates.w()),
- expand4(vertex2.window_coordinates.w()),
- };
- auto const interpolated_reciprocal_w = interpolate(w_coordinates.x(), w_coordinates.y(), w_coordinates.z(), quad.barycentrics);
- auto const interpolated_w = 1.0f / interpolated_reciprocal_w;
- quad.barycentrics = quad.barycentrics * w_coordinates * interpolated_w;
- // FIXME: make this more generic. We want to interpolate more than just color and uv
- if (options.shade_smooth) {
- quad.vertex_color = interpolate(expand4(vertex0.color), expand4(vertex1.color), expand4(vertex2.color), quad.barycentrics);
- } else {
- quad.vertex_color = expand4(vertex0.color);
- }
- quad.uv = interpolate(expand4(vertex0.tex_coord), expand4(vertex1.tex_coord), expand4(vertex2.tex_coord), quad.barycentrics);
- if (options.fog_enabled) {
- // Calculate depth of fragment for fog
- //
- // OpenGL 1.5 spec chapter 3.10: "An implementation may choose to approximate the
- // eye-coordinate distance from the eye to each fragment center by |Ze|."
- quad.fog_depth = interpolate(expand4(vertex0_eye_absz), expand4(vertex1_eye_absz), expand4(vertex2_eye_absz), quad.barycentrics);
- }
- pixel_shader(quad);
- if (options.enable_alpha_test && options.alpha_test_func != AlphaTestFunction::Always) {
- switch (options.alpha_test_func) {
- case AlphaTestFunction::Less:
- quad.mask &= quad.out_color.w() < options.alpha_test_ref_value;
- break;
- case AlphaTestFunction::Equal:
- quad.mask &= quad.out_color.w() == options.alpha_test_ref_value;
- break;
- case AlphaTestFunction::LessOrEqual:
- quad.mask &= quad.out_color.w() <= options.alpha_test_ref_value;
- break;
- case AlphaTestFunction::Greater:
- quad.mask &= quad.out_color.w() > options.alpha_test_ref_value;
- break;
- case AlphaTestFunction::NotEqual:
- quad.mask &= quad.out_color.w() != options.alpha_test_ref_value;
- break;
- case AlphaTestFunction::GreaterOrEqual:
- quad.mask &= quad.out_color.w() >= options.alpha_test_ref_value;
- break;
- case AlphaTestFunction::Never:
- case AlphaTestFunction::Always:
- VERIFY_NOT_REACHED();
- }
- }
- // Write to depth buffer
- if (options.enable_depth_test && options.enable_depth_write) {
- store4_masked(quad.depth, depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask);
- }
- // We will not update the color buffer at all
- if (!options.color_mask || !options.enable_color_write)
- continue;
- Gfx::RGBA32* color_ptrs[4] = {
- &render_target.scanline(by)[bx],
- &render_target.scanline(by)[bx + 1],
- &render_target.scanline(by + 1)[bx],
- &render_target.scanline(by + 1)[bx + 1],
- };
- u32x4 dst_u32;
- if (options.enable_blending || options.color_mask != 0xffffffff)
- dst_u32 = load4_masked(color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
- if (options.enable_blending) {
- INCREASE_STATISTICS_COUNTER(g_num_pixels_blended, maskcount(quad.mask));
- // Blend color values from pixel_staging into render_target
- Vector4<f32x4> const& src = quad.out_color;
- auto dst = to_vec4(dst_u32);
- auto src_factor = expand4(src_constant)
- + src * src_factor_src_color
- + Vector4<f32x4> { src.w(), src.w(), src.w(), src.w() } * src_factor_src_alpha
- + dst * src_factor_dst_color
- + Vector4<f32x4> { dst.w(), dst.w(), dst.w(), dst.w() } * src_factor_dst_alpha;
- auto dst_factor = expand4(dst_constant)
- + src * dst_factor_src_color
- + Vector4<f32x4> { src.w(), src.w(), src.w(), src.w() } * dst_factor_src_alpha
- + dst * dst_factor_dst_color
- + Vector4<f32x4> { dst.w(), dst.w(), dst.w(), dst.w() } * dst_factor_dst_alpha;
- quad.out_color = src * src_factor + dst * dst_factor;
- }
- if (options.color_mask == 0xffffffff)
- store4_masked(to_rgba32(quad.out_color), color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
- else
- store4_masked((to_rgba32(quad.out_color) & options.color_mask) | (dst_u32 & ~options.color_mask), color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
- }
- }
- }
- static Gfx::IntSize closest_multiple(const Gfx::IntSize& min_size, size_t step)
- {
- int width = ((min_size.width() + step - 1) / step) * step;
- int height = ((min_size.height() + step - 1) / step) * step;
- return { width, height };
- }
- Device::Device(const Gfx::IntSize& min_size)
- : m_render_target { Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, 2)).release_value_but_fixme_should_propagate_errors() }
- , m_depth_buffer { adopt_own(*new DepthBuffer(closest_multiple(min_size, 2))) }
- {
- m_options.scissor_box = m_render_target->rect();
- }
- DeviceInfo Device::info() const
- {
- return {
- .vendor_name = "SerenityOS",
- .device_name = "SoftGPU",
- .num_texture_units = NUM_SAMPLERS
- };
- }
- static void generate_texture_coordinates(Vertex& vertex, RasterizerOptions const& options)
- {
- auto generate_coordinate = [&](size_t config_index) -> float {
- auto mode = options.texcoord_generation_config[config_index].mode;
- switch (mode) {
- case TexCoordGenerationMode::ObjectLinear: {
- auto coefficients = options.texcoord_generation_config[config_index].coefficients;
- return coefficients.dot(vertex.position);
- }
- case TexCoordGenerationMode::EyeLinear: {
- auto coefficients = options.texcoord_generation_config[config_index].coefficients;
- return coefficients.dot(vertex.eye_coordinates);
- }
- case TexCoordGenerationMode::SphereMap: {
- auto const eye_unit = vertex.eye_coordinates.normalized();
- FloatVector3 const eye_unit_xyz = { eye_unit.x(), eye_unit.y(), eye_unit.z() };
- auto const normal = vertex.normal;
- auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz);
- reflection.set_z(reflection.z() + 1);
- auto const reflection_value = (config_index == 0) ? reflection.x() : reflection.y();
- return reflection_value / (2 * reflection.length()) + 0.5f;
- }
- case TexCoordGenerationMode::ReflectionMap: {
- auto const eye_unit = vertex.eye_coordinates.normalized();
- FloatVector3 const eye_unit_xyz = { eye_unit.x(), eye_unit.y(), eye_unit.z() };
- auto const normal = vertex.normal;
- auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz);
- switch (config_index) {
- case 0:
- return reflection.x();
- case 1:
- return reflection.y();
- case 2:
- return reflection.z();
- default:
- VERIFY_NOT_REACHED();
- }
- }
- case TexCoordGenerationMode::NormalMap: {
- auto const normal = vertex.normal;
- switch (config_index) {
- case 0:
- return normal.x();
- case 1:
- return normal.y();
- case 2:
- return normal.z();
- default:
- VERIFY_NOT_REACHED();
- }
- }
- default:
- VERIFY_NOT_REACHED();
- }
- };
- auto const enabled_coords = options.texcoord_generation_enabled_coordinates;
- vertex.tex_coord = {
- ((enabled_coords & TexCoordGenerationCoordinate::S) > 0) ? generate_coordinate(0) : vertex.tex_coord.x(),
- ((enabled_coords & TexCoordGenerationCoordinate::T) > 0) ? generate_coordinate(1) : vertex.tex_coord.y(),
- ((enabled_coords & TexCoordGenerationCoordinate::R) > 0) ? generate_coordinate(2) : vertex.tex_coord.z(),
- ((enabled_coords & TexCoordGenerationCoordinate::Q) > 0) ? generate_coordinate(3) : vertex.tex_coord.w(),
- };
- }
- void Device::draw_primitives(PrimitiveType primitive_type, FloatMatrix4x4 const& model_view_transform, FloatMatrix3x3 const& normal_transform,
- FloatMatrix4x4 const& projection_transform, FloatMatrix4x4 const& texture_transform, Vector<Vertex> const& vertices,
- Vector<size_t> const& enabled_texture_units)
- {
- // At this point, the user has effectively specified that they are done with defining the geometry
- // of what they want to draw. We now need to do a few things (https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview):
- //
- // 1. Transform all of the vertices in the current vertex list into eye space by multiplying the model-view matrix
- // 2. Transform all of the vertices from eye space into clip space by multiplying by the projection matrix
- // 3. If culling is enabled, we cull the desired faces (https://learnopengl.com/Advanced-OpenGL/Face-culling)
- // 4. Each element of the vertex is then divided by w to bring the positions into NDC (Normalized Device Coordinates)
- // 5. The vertices are sorted (for the rasterizer, how are we doing this? 3Dfx did this top to bottom in terms of vertex y coordinates)
- // 6. The vertices are then sent off to the rasterizer and drawn to the screen
- float scr_width = m_render_target->width();
- float scr_height = m_render_target->height();
- m_triangle_list.clear_with_capacity();
- m_processed_triangles.clear_with_capacity();
- // Let's construct some triangles
- if (primitive_type == PrimitiveType::Triangles) {
- Triangle triangle;
- for (size_t i = 0; i < vertices.size(); i += 3) {
- triangle.vertices[0] = vertices.at(i);
- triangle.vertices[1] = vertices.at(i + 1);
- triangle.vertices[2] = vertices.at(i + 2);
- m_triangle_list.append(triangle);
- }
- } else if (primitive_type == PrimitiveType::Quads) {
- // We need to construct two triangles to form the quad
- Triangle triangle;
- VERIFY(vertices.size() % 4 == 0);
- for (size_t i = 0; i < vertices.size(); i += 4) {
- // Triangle 1
- triangle.vertices[0] = vertices.at(i);
- triangle.vertices[1] = vertices.at(i + 1);
- triangle.vertices[2] = vertices.at(i + 2);
- m_triangle_list.append(triangle);
- // Triangle 2
- triangle.vertices[0] = vertices.at(i + 2);
- triangle.vertices[1] = vertices.at(i + 3);
- triangle.vertices[2] = vertices.at(i);
- m_triangle_list.append(triangle);
- }
- } else if (primitive_type == PrimitiveType::TriangleFan) {
- Triangle triangle;
- triangle.vertices[0] = vertices.at(0); // Root vertex is always the vertex defined first
- for (size_t i = 1; i < vertices.size() - 1; i++) // This is technically `n-2` triangles. We start at index 1
- {
- triangle.vertices[1] = vertices.at(i);
- triangle.vertices[2] = vertices.at(i + 1);
- m_triangle_list.append(triangle);
- }
- } else if (primitive_type == PrimitiveType::TriangleStrip) {
- Triangle triangle;
- for (size_t i = 0; i < vertices.size() - 2; i++) {
- if (i % 2 == 0) {
- triangle.vertices[0] = vertices.at(i);
- triangle.vertices[1] = vertices.at(i + 1);
- triangle.vertices[2] = vertices.at(i + 2);
- } else {
- triangle.vertices[0] = vertices.at(i + 1);
- triangle.vertices[1] = vertices.at(i);
- triangle.vertices[2] = vertices.at(i + 2);
- }
- m_triangle_list.append(triangle);
- }
- }
- // Now let's transform each triangle and send that to the GPU
- auto const depth_half_range = (m_options.depth_max - m_options.depth_min) / 2;
- auto const depth_halfway = (m_options.depth_min + m_options.depth_max) / 2;
- for (auto& triangle : m_triangle_list) {
- // Transform vertices into eye coordinates using the model-view transform
- triangle.vertices[0].eye_coordinates = model_view_transform * triangle.vertices[0].position;
- triangle.vertices[1].eye_coordinates = model_view_transform * triangle.vertices[1].position;
- triangle.vertices[2].eye_coordinates = model_view_transform * triangle.vertices[2].position;
- // Transform eye coordinates into clip coordinates using the projection transform
- triangle.vertices[0].clip_coordinates = projection_transform * triangle.vertices[0].eye_coordinates;
- triangle.vertices[1].clip_coordinates = projection_transform * triangle.vertices[1].eye_coordinates;
- triangle.vertices[2].clip_coordinates = projection_transform * triangle.vertices[2].eye_coordinates;
- // At this point, we're in clip space
- // Here's where we do the clipping. This is a really crude implementation of the
- // https://learnopengl.com/Getting-started/Coordinate-Systems
- // "Note that if only a part of a primitive e.g. a triangle is outside the clipping volume OpenGL
- // will reconstruct the triangle as one or more triangles to fit inside the clipping range. "
- //
- // ALL VERTICES ARE DEFINED IN A CLOCKWISE ORDER
- // Okay, let's do some face culling first
- m_clipped_vertices.clear_with_capacity();
- m_clipped_vertices.append(triangle.vertices[0]);
- m_clipped_vertices.append(triangle.vertices[1]);
- m_clipped_vertices.append(triangle.vertices[2]);
- m_clipper.clip_triangle_against_frustum(m_clipped_vertices);
- if (m_clipped_vertices.size() < 3)
- continue;
- for (auto& vec : m_clipped_vertices) {
- // To normalized device coordinates (NDC)
- auto const one_over_w = 1 / vec.clip_coordinates.w();
- auto const ndc_coordinates = FloatVector4 {
- vec.clip_coordinates.x() * one_over_w,
- vec.clip_coordinates.y() * one_over_w,
- vec.clip_coordinates.z() * one_over_w,
- one_over_w,
- };
- // To window coordinates
- // FIXME: implement viewport functionality
- vec.window_coordinates = {
- scr_width / 2 + ndc_coordinates.x() * scr_width / 2,
- scr_height / 2 - ndc_coordinates.y() * scr_height / 2,
- depth_half_range * ndc_coordinates.z() + depth_halfway,
- ndc_coordinates.w(),
- };
- }
- Triangle tri;
- tri.vertices[0] = m_clipped_vertices[0];
- for (size_t i = 1; i < m_clipped_vertices.size() - 1; i++) {
- tri.vertices[1] = m_clipped_vertices[i];
- tri.vertices[2] = m_clipped_vertices[i + 1];
- m_processed_triangles.append(tri);
- }
- }
- for (auto& triangle : m_processed_triangles) {
- // Let's calculate the (signed) area of the triangle
- // https://cp-algorithms.com/geometry/oriented-triangle-area.html
- float dxAB = triangle.vertices[0].window_coordinates.x() - triangle.vertices[1].window_coordinates.x(); // A.x - B.x
- float dxBC = triangle.vertices[1].window_coordinates.x() - triangle.vertices[2].window_coordinates.x(); // B.X - C.x
- float dyAB = triangle.vertices[0].window_coordinates.y() - triangle.vertices[1].window_coordinates.y();
- float dyBC = triangle.vertices[1].window_coordinates.y() - triangle.vertices[2].window_coordinates.y();
- float area = (dxAB * dyBC) - (dxBC * dyAB);
- if (area == 0.0f)
- continue;
- if (m_options.enable_culling) {
- bool is_front = (m_options.front_face == WindingOrder::CounterClockwise ? area < 0 : area > 0);
- if (!is_front && m_options.cull_back)
- continue;
- if (is_front && m_options.cull_front)
- continue;
- }
- if (area > 0)
- swap(triangle.vertices[0], triangle.vertices[1]);
- // Transform normals
- triangle.vertices[0].normal = normal_transform * triangle.vertices[0].normal;
- triangle.vertices[1].normal = normal_transform * triangle.vertices[1].normal;
- triangle.vertices[2].normal = normal_transform * triangle.vertices[2].normal;
- if (m_options.normalization_enabled) {
- triangle.vertices[0].normal.normalize();
- triangle.vertices[1].normal.normalize();
- triangle.vertices[2].normal.normalize();
- }
- // Generate texture coordinates if at least one coordinate is enabled
- if (m_options.texcoord_generation_enabled_coordinates != TexCoordGenerationCoordinate::None) {
- generate_texture_coordinates(triangle.vertices[0], m_options);
- generate_texture_coordinates(triangle.vertices[1], m_options);
- generate_texture_coordinates(triangle.vertices[2], m_options);
- }
- // Apply texture transformation
- // FIXME: implement multi-texturing: texcoords should be stored per texture unit
- triangle.vertices[0].tex_coord = texture_transform * triangle.vertices[0].tex_coord;
- triangle.vertices[1].tex_coord = texture_transform * triangle.vertices[1].tex_coord;
- triangle.vertices[2].tex_coord = texture_transform * triangle.vertices[2].tex_coord;
- submit_triangle(triangle, enabled_texture_units);
- }
- }
- void Device::submit_triangle(const Triangle& triangle, Vector<size_t> const& enabled_texture_units)
- {
- rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [this, &enabled_texture_units](PixelQuad& quad) {
- quad.out_color = quad.vertex_color;
- for (size_t i : enabled_texture_units) {
- // FIXME: implement GL_TEXTURE_1D, GL_TEXTURE_3D and GL_TEXTURE_CUBE_MAP
- auto const& sampler = m_samplers[i];
- auto texel = sampler.sample_2d({ quad.uv.x(), quad.uv.y() });
- INCREASE_STATISTICS_COUNTER(g_num_sampler_calls, 1);
- // FIXME: Implement more blend modes
- switch (sampler.config().fixed_function_texture_env_mode) {
- case TextureEnvMode::Modulate:
- quad.out_color = quad.out_color * texel;
- break;
- case TextureEnvMode::Replace:
- quad.out_color = texel;
- break;
- case TextureEnvMode::Decal: {
- auto src_alpha = quad.out_color.w();
- quad.out_color.set_x(mix(quad.out_color.x(), texel.x(), src_alpha));
- quad.out_color.set_y(mix(quad.out_color.y(), texel.y(), src_alpha));
- quad.out_color.set_z(mix(quad.out_color.z(), texel.z(), src_alpha));
- break;
- }
- default:
- VERIFY_NOT_REACHED();
- }
- }
- // Calculate fog
- // Math from here: https://opengl-notes.readthedocs.io/en/latest/topics/texturing/aliasing.html
- // FIXME: exponential fog is not vectorized, we should add a SIMD exp function that calculates an approximation.
- if (m_options.fog_enabled) {
- auto factor = expand4(0.0f);
- switch (m_options.fog_mode) {
- case FogMode::Linear:
- factor = (m_options.fog_end - quad.fog_depth) / (m_options.fog_end - m_options.fog_start);
- break;
- case FogMode::Exp: {
- auto argument = -m_options.fog_density * quad.fog_depth;
- factor = exp(argument);
- } break;
- case FogMode::Exp2: {
- auto argument = m_options.fog_density * quad.fog_depth;
- argument *= -argument;
- factor = exp(argument);
- } break;
- default:
- VERIFY_NOT_REACHED();
- }
- // Mix texel's RGB with fog's RBG - leave alpha alone
- auto fog_color = expand4(m_options.fog_color);
- quad.out_color.set_x(mix(fog_color.x(), quad.out_color.x(), factor));
- quad.out_color.set_y(mix(fog_color.y(), quad.out_color.y(), factor));
- quad.out_color.set_z(mix(fog_color.z(), quad.out_color.z(), factor));
- }
- });
- }
- void Device::resize(const Gfx::IntSize& min_size)
- {
- wait_for_all_threads();
- m_render_target = Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, 2)).release_value_but_fixme_should_propagate_errors();
- m_depth_buffer = adopt_own(*new DepthBuffer(m_render_target->size()));
- }
- void Device::clear_color(const FloatVector4& color)
- {
- wait_for_all_threads();
- uint8_t r = static_cast<uint8_t>(clamp(color.x(), 0.0f, 1.0f) * 255);
- uint8_t g = static_cast<uint8_t>(clamp(color.y(), 0.0f, 1.0f) * 255);
- uint8_t b = static_cast<uint8_t>(clamp(color.z(), 0.0f, 1.0f) * 255);
- uint8_t a = static_cast<uint8_t>(clamp(color.w(), 0.0f, 1.0f) * 255);
- auto const fill_color = Gfx::Color(r, g, b, a);
- if (m_options.scissor_enabled) {
- auto fill_rect = m_render_target->rect();
- fill_rect.intersect(scissor_box_to_window_coordinates(m_options.scissor_box, fill_rect));
- Gfx::Painter painter { *m_render_target };
- painter.fill_rect(fill_rect, fill_color);
- return;
- }
- m_render_target->fill(fill_color);
- }
- void Device::clear_depth(float depth)
- {
- wait_for_all_threads();
- if (m_options.scissor_enabled) {
- m_depth_buffer->clear(scissor_box_to_window_coordinates(m_options.scissor_box, m_render_target->rect()), depth);
- return;
- }
- m_depth_buffer->clear(depth);
- }
- void Device::blit(Gfx::Bitmap const& source, int x, int y)
- {
- wait_for_all_threads();
- INCREASE_STATISTICS_COUNTER(g_num_pixels, source.width() * source.height());
- INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, source.width() * source.height());
- Gfx::Painter painter { *m_render_target };
- painter.blit({ x, y }, source, source.rect(), 1.0f, true);
- }
- void Device::blit_to(Gfx::Bitmap& target)
- {
- wait_for_all_threads();
- Gfx::Painter painter { target };
- painter.blit({ 0, 0 }, *m_render_target, m_render_target->rect(), 1.0f, false);
- if constexpr (ENABLE_STATISTICS_OVERLAY)
- draw_statistics_overlay(target);
- }
- void Device::draw_statistics_overlay(Gfx::Bitmap& target)
- {
- static Core::ElapsedTimer timer;
- static String debug_string;
- static int frame_counter;
- frame_counter++;
- int milliseconds = 0;
- if (timer.is_valid())
- milliseconds = timer.elapsed();
- else
- timer.start();
- Gfx::Painter painter { target };
- if (milliseconds > 500) {
- if (g_num_pixels == 0)
- g_num_pixels = 1;
- int num_rendertarget_pixels = m_render_target->width() * m_render_target->height();
- StringBuilder builder;
- builder.append(String::formatted("Timings : {:.1}ms {:.1}FPS\n",
- static_cast<double>(milliseconds) / frame_counter,
- (milliseconds > 0) ? 1000.0 * frame_counter / milliseconds : 9999.0));
- builder.append(String::formatted("Triangles : {}\n", g_num_rasterized_triangles));
- builder.append(String::formatted("SIMD usage : {}%\n", g_num_quads > 0 ? g_num_pixels_shaded * 25 / g_num_quads : 0));
- builder.append(String::formatted("Pixels : {}, Shaded: {}%, Blended: {}%, Overdraw: {}%\n",
- g_num_pixels,
- g_num_pixels_shaded * 100 / g_num_pixels,
- g_num_pixels_blended * 100 / g_num_pixels_shaded,
- g_num_pixels_shaded * 100 / num_rendertarget_pixels - 100));
- builder.append(String::formatted("Sampler calls: {}\n", g_num_sampler_calls));
- debug_string = builder.to_string();
- frame_counter = 0;
- timer.start();
- }
- g_num_rasterized_triangles = 0;
- g_num_pixels = 0;
- g_num_pixels_shaded = 0;
- g_num_pixels_blended = 0;
- g_num_sampler_calls = 0;
- g_num_quads = 0;
- auto& font = Gfx::FontDatabase::default_fixed_width_font();
- for (int y = -1; y < 2; y++)
- for (int x = -1; x < 2; x++)
- if (x != 0 && y != 0)
- painter.draw_text(target.rect().translated(x + 2, y + 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::Black);
- painter.draw_text(target.rect().translated(2, 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::White);
- }
- void Device::wait_for_all_threads() const
- {
- // FIXME: Wait for all render threads to finish when multithreading is being implemented
- }
- void Device::set_options(const RasterizerOptions& options)
- {
- wait_for_all_threads();
- m_options = options;
- // FIXME: Recreate or reinitialize render threads here when multithreading is being implemented
- }
- Gfx::RGBA32 Device::get_backbuffer_pixel(int x, int y)
- {
- // FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
- if (x < 0 || y < 0 || x >= m_render_target->width() || y >= m_render_target->height())
- return 0;
- return m_render_target->scanline(y)[x];
- }
- float Device::get_depthbuffer_value(int x, int y)
- {
- // FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
- if (x < 0 || y < 0 || x >= m_render_target->width() || y >= m_render_target->height())
- return 1.0f;
- return m_depth_buffer->scanline(y)[x];
- }
- NonnullRefPtr<Image> Device::create_image(ImageFormat format, unsigned width, unsigned height, unsigned depth, unsigned levels, unsigned layers)
- {
- VERIFY(width > 0);
- VERIFY(height > 0);
- VERIFY(depth > 0);
- VERIFY(levels > 0);
- VERIFY(layers > 0);
- return adopt_ref(*new Image(format, width, height, depth, levels, layers));
- }
- void Device::set_sampler_config(unsigned sampler, SamplerConfig const& config)
- {
- m_samplers[sampler].set_config(config);
- }
- }
|