Path.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Math.h>
  7. #include <AK/StringBuilder.h>
  8. #include <AK/TypeCasts.h>
  9. #include <LibGfx/BoundingBox.h>
  10. #include <LibGfx/Font/ScaledFont.h>
  11. #include <LibGfx/Painter.h>
  12. #include <LibGfx/Path.h>
  13. #include <LibGfx/TextLayout.h>
  14. namespace Gfx {
  15. void Path::approximate_elliptical_arc_with_cubic_beziers(FloatPoint center, FloatSize radii, float x_axis_rotation, float theta, float theta_delta)
  16. {
  17. float sin_x_rotation;
  18. float cos_x_rotation;
  19. AK::sincos(x_axis_rotation, sin_x_rotation, cos_x_rotation);
  20. auto arc_point_and_derivative = [&](float t, FloatPoint& point, FloatPoint& derivative) {
  21. float sin_angle;
  22. float cos_angle;
  23. AK::sincos(t, sin_angle, cos_angle);
  24. point = FloatPoint {
  25. center.x()
  26. + radii.width() * cos_x_rotation * cos_angle
  27. - radii.height() * sin_x_rotation * sin_angle,
  28. center.y()
  29. + radii.width() * sin_x_rotation * cos_angle
  30. + radii.height() * cos_x_rotation * sin_angle,
  31. };
  32. derivative = FloatPoint {
  33. -radii.width() * cos_x_rotation * sin_angle
  34. - radii.height() * sin_x_rotation * cos_angle,
  35. -radii.width() * sin_x_rotation * sin_angle
  36. + radii.height() * cos_x_rotation * cos_angle,
  37. };
  38. };
  39. auto approximate_arc_between = [&](float start_angle, float end_angle) {
  40. auto t = AK::tan((end_angle - start_angle) / 2);
  41. auto alpha = AK::sin(end_angle - start_angle) * ((AK::sqrt(4 + 3 * t * t) - 1) / 3);
  42. FloatPoint p1, d1;
  43. FloatPoint p2, d2;
  44. arc_point_and_derivative(start_angle, p1, d1);
  45. arc_point_and_derivative(end_angle, p2, d2);
  46. auto q1 = p1 + d1.scaled(alpha, alpha);
  47. auto q2 = p2 - d2.scaled(alpha, alpha);
  48. cubic_bezier_curve_to(q1, q2, p2);
  49. };
  50. // FIXME: Come up with a more mathematically sound step size (using some error calculation).
  51. auto step = theta_delta;
  52. int step_count = 1;
  53. while (fabs(step) > AK::Pi<float> / 4) {
  54. step /= 2;
  55. step_count *= 2;
  56. }
  57. float prev = theta;
  58. float t = prev + step;
  59. for (int i = 0; i < step_count; i++, prev = t, t += step)
  60. approximate_arc_between(prev, t);
  61. }
  62. void Path::elliptical_arc_to(FloatPoint point, FloatSize radii, float x_axis_rotation, bool large_arc, bool sweep)
  63. {
  64. auto next_point = point;
  65. double rx = radii.width();
  66. double ry = radii.height();
  67. double x_axis_rotation_s;
  68. double x_axis_rotation_c;
  69. AK::sincos(static_cast<double>(x_axis_rotation), x_axis_rotation_s, x_axis_rotation_c);
  70. FloatPoint last_point = this->last_point();
  71. // Step 1 of out-of-range radii correction
  72. if (rx == 0.0 || ry == 0.0) {
  73. append_segment<PathSegment::LineTo>(next_point);
  74. return;
  75. }
  76. // Step 2 of out-of-range radii correction
  77. if (rx < 0)
  78. rx *= -1.0;
  79. if (ry < 0)
  80. ry *= -1.0;
  81. // POSSIBLY HACK: Handle the case where both points are the same.
  82. auto same_endpoints = next_point == last_point;
  83. if (same_endpoints) {
  84. if (!large_arc) {
  85. // Nothing is going to be drawn anyway.
  86. return;
  87. }
  88. // Move the endpoint by a small amount to avoid division by zero.
  89. next_point.translate_by(0.01f, 0.01f);
  90. }
  91. // Find (cx, cy), theta_1, theta_delta
  92. // Step 1: Compute (x1', y1')
  93. auto x_avg = static_cast<double>(last_point.x() - next_point.x()) / 2.0;
  94. auto y_avg = static_cast<double>(last_point.y() - next_point.y()) / 2.0;
  95. auto x1p = x_axis_rotation_c * x_avg + x_axis_rotation_s * y_avg;
  96. auto y1p = -x_axis_rotation_s * x_avg + x_axis_rotation_c * y_avg;
  97. // Step 2: Compute (cx', cy')
  98. double x1p_sq = x1p * x1p;
  99. double y1p_sq = y1p * y1p;
  100. double rx_sq = rx * rx;
  101. double ry_sq = ry * ry;
  102. // Step 3 of out-of-range radii correction
  103. double lambda = x1p_sq / rx_sq + y1p_sq / ry_sq;
  104. double multiplier;
  105. if (lambda > 1.0) {
  106. auto lambda_sqrt = AK::sqrt(lambda);
  107. rx *= lambda_sqrt;
  108. ry *= lambda_sqrt;
  109. multiplier = 0.0;
  110. } else {
  111. double numerator = rx_sq * ry_sq - rx_sq * y1p_sq - ry_sq * x1p_sq;
  112. double denominator = rx_sq * y1p_sq + ry_sq * x1p_sq;
  113. multiplier = AK::sqrt(AK::max(0., numerator) / denominator);
  114. }
  115. if (large_arc == sweep)
  116. multiplier *= -1.0;
  117. double cxp = multiplier * rx * y1p / ry;
  118. double cyp = multiplier * -ry * x1p / rx;
  119. // Step 3: Compute (cx, cy) from (cx', cy')
  120. x_avg = (last_point.x() + next_point.x()) / 2.0f;
  121. y_avg = (last_point.y() + next_point.y()) / 2.0f;
  122. double cx = x_axis_rotation_c * cxp - x_axis_rotation_s * cyp + x_avg;
  123. double cy = x_axis_rotation_s * cxp + x_axis_rotation_c * cyp + y_avg;
  124. double theta_1 = AK::atan2((y1p - cyp) / ry, (x1p - cxp) / rx);
  125. double theta_2 = AK::atan2((-y1p - cyp) / ry, (-x1p - cxp) / rx);
  126. auto theta_delta = theta_2 - theta_1;
  127. if (!sweep && theta_delta > 0.0) {
  128. theta_delta -= 2 * AK::Pi<double>;
  129. } else if (sweep && theta_delta < 0) {
  130. theta_delta += 2 * AK::Pi<double>;
  131. }
  132. approximate_elliptical_arc_with_cubic_beziers(
  133. { cx, cy },
  134. { rx, ry },
  135. x_axis_rotation,
  136. theta_1,
  137. theta_delta);
  138. }
  139. void Path::text(Utf8View text, Font const& font)
  140. {
  141. if (!is<ScaledFont>(font)) {
  142. // FIXME: This API only accepts Gfx::Font for ease of use.
  143. dbgln("Cannot path-ify bitmap fonts!");
  144. return;
  145. }
  146. auto& scaled_font = static_cast<ScaledFont const&>(font);
  147. auto font_list = Gfx::FontCascadeList::create();
  148. font_list->add(scaled_font);
  149. for_each_glyph_position(
  150. last_point(), text, font_list, [&](DrawGlyphOrEmoji glyph_or_emoji) {
  151. if (glyph_or_emoji.has<DrawGlyph>()) {
  152. auto& glyph = glyph_or_emoji.get<DrawGlyph>();
  153. move_to(glyph.position);
  154. auto glyph_id = scaled_font.glyph_id_for_code_point(glyph.code_point);
  155. scaled_font.append_glyph_path_to(*this, glyph_id);
  156. }
  157. },
  158. IncludeLeftBearing::Yes);
  159. }
  160. Path Path::place_text_along(Utf8View text, Font const& font) const
  161. {
  162. if (!is<ScaledFont>(font)) {
  163. // FIXME: This API only accepts Gfx::Font for ease of use.
  164. dbgln("Cannot path-ify bitmap fonts!");
  165. return {};
  166. }
  167. auto lines = split_lines();
  168. auto next_point_for_offset = [&, line_index = 0U, distance_along_path = 0.0f, last_line_length = 0.0f](float offset) mutable -> Optional<FloatPoint> {
  169. while (line_index < lines.size() && offset > distance_along_path) {
  170. last_line_length = lines[line_index++].length();
  171. distance_along_path += last_line_length;
  172. }
  173. if (offset > distance_along_path)
  174. return {};
  175. if (last_line_length > 1) {
  176. // If the last line segment was fairly long, compute the point in the line.
  177. float p = (last_line_length + offset - distance_along_path) / last_line_length;
  178. auto current_line = lines[line_index - 1];
  179. return current_line.a() + (current_line.b() - current_line.a()).scaled(p);
  180. }
  181. if (line_index >= lines.size())
  182. return {};
  183. return lines[line_index].a();
  184. };
  185. auto font_list = Gfx::FontCascadeList::create();
  186. font_list->add(font);
  187. auto& scaled_font = static_cast<Gfx::ScaledFont const&>(font);
  188. Gfx::Path result_path;
  189. Gfx::for_each_glyph_position(
  190. {}, text, font_list, [&](Gfx::DrawGlyphOrEmoji glyph_or_emoji) {
  191. auto* glyph = glyph_or_emoji.get_pointer<Gfx::DrawGlyph>();
  192. if (!glyph)
  193. return;
  194. auto offset = glyph->position.x();
  195. auto width = font.glyph_width(glyph->code_point);
  196. auto start = next_point_for_offset(offset);
  197. if (!start.has_value())
  198. return;
  199. auto end = next_point_for_offset(offset + width);
  200. if (!end.has_value())
  201. return;
  202. // Find the angle between the start and end points on the path.
  203. auto delta = *end - *start;
  204. auto angle = AK::atan2(delta.y(), delta.x());
  205. Gfx::Path glyph_path;
  206. // Rotate the glyph then move it to start point.
  207. auto glyph_id = scaled_font.glyph_id_for_code_point(glyph->code_point);
  208. scaled_font.append_glyph_path_to(glyph_path, glyph_id);
  209. auto transform = Gfx::AffineTransform {}
  210. .translate(*start)
  211. .multiply(Gfx::AffineTransform {}.rotate_radians(angle))
  212. .multiply(Gfx::AffineTransform {}.translate({ 0, -scaled_font.pixel_metrics().ascent }));
  213. glyph_path = glyph_path.copy_transformed(transform);
  214. result_path.append_path(glyph_path);
  215. },
  216. Gfx::IncludeLeftBearing::Yes);
  217. return result_path;
  218. }
  219. void Path::close()
  220. {
  221. // If there's no `moveto` starting this subpath assume the start is (0, 0).
  222. FloatPoint first_point_in_subpath = { 0, 0 };
  223. for (auto it = end(); it-- != begin();) {
  224. auto segment = *it;
  225. if (segment.command() == PathSegment::MoveTo) {
  226. first_point_in_subpath = segment.point();
  227. break;
  228. }
  229. }
  230. if (first_point_in_subpath != last_point())
  231. line_to(first_point_in_subpath);
  232. }
  233. void Path::close_all_subpaths()
  234. {
  235. auto it = begin();
  236. // Note: Get the end outside the loop as closing subpaths will move the end.
  237. auto end = this->end();
  238. while (it < end) {
  239. // If there's no `moveto` starting this subpath assume the start is (0, 0).
  240. FloatPoint first_point_in_subpath = { 0, 0 };
  241. auto segment = *it;
  242. if (segment.command() == PathSegment::MoveTo) {
  243. first_point_in_subpath = segment.point();
  244. ++it;
  245. }
  246. // Find the end of the current subpath.
  247. FloatPoint cursor = first_point_in_subpath;
  248. while (it < end) {
  249. auto segment = *it;
  250. if (segment.command() == PathSegment::MoveTo)
  251. break;
  252. cursor = segment.point();
  253. ++it;
  254. }
  255. // Close the subpath.
  256. if (first_point_in_subpath != cursor) {
  257. move_to(cursor);
  258. line_to(first_point_in_subpath);
  259. }
  260. }
  261. }
  262. ByteString Path::to_byte_string() const
  263. {
  264. // Dumps this path as an SVG compatible string.
  265. StringBuilder builder;
  266. if (is_empty() || m_commands.first() != PathSegment::MoveTo)
  267. builder.append("M 0,0"sv);
  268. for (auto segment : *this) {
  269. if (!builder.is_empty())
  270. builder.append(' ');
  271. switch (segment.command()) {
  272. case PathSegment::MoveTo:
  273. builder.append('M');
  274. break;
  275. case PathSegment::LineTo:
  276. builder.append('L');
  277. break;
  278. case PathSegment::QuadraticBezierCurveTo:
  279. builder.append('Q');
  280. break;
  281. case PathSegment::CubicBezierCurveTo:
  282. builder.append('C');
  283. break;
  284. }
  285. for (auto point : segment.points())
  286. builder.appendff(" {},{}", point.x(), point.y());
  287. }
  288. return builder.to_byte_string();
  289. }
  290. void Path::segmentize_path()
  291. {
  292. Vector<FloatLine> segments;
  293. FloatBoundingBox bounding_box;
  294. auto add_line = [&](auto const& p0, auto const& p1) {
  295. segments.append({ p0, p1 });
  296. bounding_box.add_point(p1);
  297. };
  298. FloatPoint cursor { 0, 0 };
  299. for (auto segment : *this) {
  300. switch (segment.command()) {
  301. case PathSegment::MoveTo:
  302. bounding_box.add_point(segment.point());
  303. break;
  304. case PathSegment::LineTo: {
  305. add_line(cursor, segment.point());
  306. break;
  307. }
  308. case PathSegment::QuadraticBezierCurveTo: {
  309. Painter::for_each_line_segment_on_bezier_curve(segment.through(), cursor, segment.point(), [&](FloatPoint p0, FloatPoint p1) {
  310. add_line(p0, p1);
  311. });
  312. break;
  313. }
  314. case PathSegment::CubicBezierCurveTo: {
  315. Painter::for_each_line_segment_on_cubic_bezier_curve(segment.through_0(), segment.through_1(), cursor, segment.point(), [&](FloatPoint p0, FloatPoint p1) {
  316. add_line(p0, p1);
  317. });
  318. break;
  319. }
  320. }
  321. cursor = segment.point();
  322. }
  323. m_split_lines = SplitLines { move(segments), bounding_box };
  324. }
  325. Path Path::copy_transformed(Gfx::AffineTransform const& transform) const
  326. {
  327. Path result;
  328. result.m_commands = m_commands;
  329. result.m_points.ensure_capacity(m_points.size());
  330. for (auto point : m_points)
  331. result.m_points.unchecked_append(transform.map(point));
  332. return result;
  333. }
  334. template<typename T>
  335. struct RoundTrip {
  336. RoundTrip(ReadonlySpan<T> span)
  337. : m_span(span)
  338. {
  339. }
  340. size_t size() const
  341. {
  342. return m_span.size() * 2 - 1;
  343. }
  344. T const& operator[](size_t index) const
  345. {
  346. // Follow the path:
  347. if (index < m_span.size())
  348. return m_span[index];
  349. // Then in reverse:
  350. if (index < size())
  351. return m_span[size() - index - 1];
  352. // Then wrap around again:
  353. return m_span[index - size() + 1];
  354. }
  355. private:
  356. ReadonlySpan<T> m_span;
  357. };
  358. Path Path::stroke_to_fill(float thickness) const
  359. {
  360. // Note: This convolves a polygon with the path using the algorithm described
  361. // in https://keithp.com/~keithp/talks/cairo2003.pdf (3.1 Stroking Splines via Convolution)
  362. VERIFY(thickness > 0);
  363. auto lines = split_lines();
  364. if (lines.is_empty())
  365. return Path {};
  366. // Paths can be disconnected, which a pain to deal with, so split it up.
  367. Vector<Vector<FloatPoint>> segments;
  368. segments.append({ lines.first().a() });
  369. for (auto& line : lines) {
  370. if (line.a() == segments.last().last()) {
  371. segments.last().append(line.b());
  372. } else {
  373. segments.append({ line.a(), line.b() });
  374. }
  375. }
  376. constexpr auto flatness = 0.15f;
  377. auto pen_vertex_count = 4;
  378. if (thickness > flatness) {
  379. pen_vertex_count = max(
  380. static_cast<int>(ceilf(AK::Pi<float>
  381. / acosf(1 - (2 * flatness) / thickness))),
  382. pen_vertex_count);
  383. }
  384. if (pen_vertex_count % 2 == 1)
  385. pen_vertex_count += 1;
  386. Vector<FloatPoint, 128> pen_vertices;
  387. pen_vertices.ensure_capacity(pen_vertex_count);
  388. // Generate vertices for the pen (going counterclockwise). The pen does not necessarily need
  389. // to be a circle (or an approximation of one), but other shapes are untested.
  390. float theta = 0;
  391. float theta_delta = (AK::Pi<float> * 2) / pen_vertex_count;
  392. for (int i = 0; i < pen_vertex_count; i++) {
  393. float sin_theta;
  394. float cos_theta;
  395. AK::sincos(theta, sin_theta, cos_theta);
  396. pen_vertices.unchecked_append({ cos_theta * thickness / 2, sin_theta * thickness / 2 });
  397. theta -= theta_delta;
  398. }
  399. auto wrapping_index = [](auto& vertices, auto index) {
  400. return vertices[(index + vertices.size()) % vertices.size()];
  401. };
  402. auto angle_between = [](auto p1, auto p2) {
  403. auto delta = p2 - p1;
  404. return atan2f(delta.y(), delta.x());
  405. };
  406. struct ActiveRange {
  407. float start;
  408. float end;
  409. bool in_range(float angle) const
  410. {
  411. // Note: Since active ranges go counterclockwise start > end unless we wrap around at 180 degrees
  412. return ((angle <= start && angle >= end)
  413. || (start < end && angle <= start)
  414. || (start < end && angle >= end));
  415. }
  416. };
  417. Vector<ActiveRange, 128> active_ranges;
  418. active_ranges.ensure_capacity(pen_vertices.size());
  419. for (auto i = 0; i < pen_vertex_count; i++) {
  420. active_ranges.unchecked_append({ angle_between(wrapping_index(pen_vertices, i - 1), pen_vertices[i]),
  421. angle_between(pen_vertices[i], wrapping_index(pen_vertices, i + 1)) });
  422. }
  423. auto clockwise = [](float current_angle, float target_angle) {
  424. if (target_angle < 0)
  425. target_angle += AK::Pi<float> * 2;
  426. if (current_angle < 0)
  427. current_angle += AK::Pi<float> * 2;
  428. if (target_angle < current_angle)
  429. target_angle += AK::Pi<float> * 2;
  430. return (target_angle - current_angle) <= AK::Pi<float>;
  431. };
  432. Path convolution;
  433. for (auto& segment : segments) {
  434. RoundTrip<FloatPoint> shape { segment };
  435. bool first = true;
  436. auto add_vertex = [&](auto v) {
  437. if (first) {
  438. convolution.move_to(v);
  439. first = false;
  440. } else {
  441. convolution.line_to(v);
  442. }
  443. };
  444. auto shape_idx = 0u;
  445. auto slope = [&] {
  446. return angle_between(shape[shape_idx], shape[shape_idx + 1]);
  447. };
  448. auto start_slope = slope();
  449. // Note: At least one range must be active.
  450. auto active = *active_ranges.find_first_index_if([&](auto& range) {
  451. return range.in_range(start_slope);
  452. });
  453. while (shape_idx < shape.size()) {
  454. add_vertex(shape[shape_idx] + pen_vertices[active]);
  455. auto slope_now = slope();
  456. auto range = active_ranges[active];
  457. if (range.in_range(slope_now)) {
  458. shape_idx++;
  459. } else {
  460. if (clockwise(slope_now, range.end)) {
  461. if (active == static_cast<size_t>(pen_vertex_count - 1))
  462. active = 0;
  463. else
  464. active++;
  465. } else {
  466. if (active == 0)
  467. active = pen_vertex_count - 1;
  468. else
  469. active--;
  470. }
  471. }
  472. }
  473. }
  474. return convolution;
  475. }
  476. }