MemoryManager.cpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include "CMOS.h"
  27. #include "Process.h"
  28. #include <AK/Assertions.h>
  29. #include <AK/Memory.h>
  30. #include <Kernel/Arch/i386/CPU.h>
  31. #include <Kernel/FileSystem/Inode.h>
  32. #include <Kernel/Multiboot.h>
  33. #include <Kernel/VM/AnonymousVMObject.h>
  34. #include <Kernel/VM/ContiguousVMObject.h>
  35. #include <Kernel/VM/MemoryManager.h>
  36. #include <Kernel/VM/PageDirectory.h>
  37. #include <Kernel/VM/PhysicalRegion.h>
  38. #include <Kernel/VM/PurgeableVMObject.h>
  39. #include <Kernel/VM/SharedInodeVMObject.h>
  40. #include <LibBareMetal/StdLib.h>
  41. //#define MM_DEBUG
  42. //#define PAGE_FAULT_DEBUG
  43. extern FlatPtr start_of_kernel_text;
  44. extern FlatPtr start_of_kernel_data;
  45. extern FlatPtr end_of_kernel_bss;
  46. namespace Kernel {
  47. static MemoryManager* s_the;
  48. MemoryManager& MM
  49. {
  50. return *s_the;
  51. }
  52. MemoryManager::MemoryManager()
  53. {
  54. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  55. parse_memory_map();
  56. write_cr3(kernel_page_directory().cr3());
  57. setup_low_identity_mapping();
  58. protect_kernel_image();
  59. m_shared_zero_page = allocate_user_physical_page();
  60. }
  61. MemoryManager::~MemoryManager()
  62. {
  63. }
  64. void MemoryManager::protect_kernel_image()
  65. {
  66. // Disable writing to the kernel text and rodata segments.
  67. for (size_t i = (FlatPtr)&start_of_kernel_text; i < (FlatPtr)&start_of_kernel_data; i += PAGE_SIZE) {
  68. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  69. pte.set_writable(false);
  70. }
  71. if (g_cpu_supports_nx) {
  72. // Disable execution of the kernel data and bss segments.
  73. for (size_t i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_bss; i += PAGE_SIZE) {
  74. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  75. pte.set_execute_disabled(true);
  76. }
  77. }
  78. }
  79. void MemoryManager::setup_low_identity_mapping()
  80. {
  81. m_low_page_table = allocate_user_physical_page(ShouldZeroFill::Yes);
  82. auto* pd_zero = quickmap_pd(kernel_page_directory(), 0);
  83. pd_zero[1].set_present(false);
  84. pd_zero[2].set_present(false);
  85. pd_zero[3].set_present(false);
  86. auto& pde_zero = pd_zero[0];
  87. pde_zero.set_page_table_base(m_low_page_table->paddr().get());
  88. pde_zero.set_present(true);
  89. pde_zero.set_huge(false);
  90. pde_zero.set_writable(true);
  91. pde_zero.set_user_allowed(false);
  92. if (g_cpu_supports_nx)
  93. pde_zero.set_execute_disabled(true);
  94. for (FlatPtr offset = (1 * MB); offset < (2 * MB); offset += PAGE_SIZE) {
  95. auto& page_table_page = m_low_page_table;
  96. auto& pte = quickmap_pt(page_table_page->paddr())[offset / PAGE_SIZE];
  97. pte.set_physical_page_base(offset);
  98. pte.set_user_allowed(false);
  99. pte.set_present(offset != 0);
  100. pte.set_writable(offset < (1 * MB));
  101. }
  102. }
  103. void MemoryManager::parse_memory_map()
  104. {
  105. RefPtr<PhysicalRegion> region;
  106. bool region_is_super = false;
  107. auto* mmap = (multiboot_memory_map_t*)(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
  108. for (; (unsigned long)mmap < (low_physical_to_virtual(multiboot_info_ptr->mmap_addr)) + (multiboot_info_ptr->mmap_length); mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  109. klog() << "MM: Multiboot mmap: base_addr = " << String::format("0x%08x", mmap->addr) << ", length = " << String::format("0x%08x", mmap->len) << ", type = 0x" << String::format("%x", mmap->type);
  110. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  111. continue;
  112. // FIXME: Maybe make use of stuff below the 1MB mark?
  113. if (mmap->addr < (1 * MB))
  114. continue;
  115. if ((mmap->addr + mmap->len) > 0xffffffff)
  116. continue;
  117. auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
  118. if (diff != 0) {
  119. klog() << "MM: got an unaligned region base from the bootloader; correcting " << String::format("%p", mmap->addr) << " by " << diff << " bytes";
  120. diff = PAGE_SIZE - diff;
  121. mmap->addr += diff;
  122. mmap->len -= diff;
  123. }
  124. if ((mmap->len % PAGE_SIZE) != 0) {
  125. klog() << "MM: got an unaligned region length from the bootloader; correcting " << mmap->len << " by " << (mmap->len % PAGE_SIZE) << " bytes";
  126. mmap->len -= mmap->len % PAGE_SIZE;
  127. }
  128. if (mmap->len < PAGE_SIZE) {
  129. klog() << "MM: memory region from bootloader is too small; we want >= " << PAGE_SIZE << " bytes, but got " << mmap->len << " bytes";
  130. continue;
  131. }
  132. #ifdef MM_DEBUG
  133. klog() << "MM: considering memory at " << String::format("%p", (FlatPtr)mmap->addr) << " - " << String::format("%p", (FlatPtr)(mmap->addr + mmap->len));
  134. #endif
  135. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  136. auto addr = PhysicalAddress(page_base);
  137. if (page_base < 7 * MB) {
  138. // nothing
  139. } else if (page_base >= 7 * MB && page_base < 8 * MB) {
  140. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  141. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  142. region = m_super_physical_regions.last();
  143. region_is_super = true;
  144. } else {
  145. region->expand(region->lower(), addr);
  146. }
  147. } else {
  148. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  149. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  150. region = m_user_physical_regions.last();
  151. region_is_super = false;
  152. } else {
  153. region->expand(region->lower(), addr);
  154. }
  155. }
  156. }
  157. }
  158. for (auto& region : m_super_physical_regions)
  159. m_super_physical_pages += region.finalize_capacity();
  160. for (auto& region : m_user_physical_regions)
  161. m_user_physical_pages += region.finalize_capacity();
  162. }
  163. const PageTableEntry* MemoryManager::pte(const PageDirectory& page_directory, VirtualAddress vaddr)
  164. {
  165. ASSERT_INTERRUPTS_DISABLED();
  166. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  167. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  168. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  169. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  170. const PageDirectoryEntry& pde = pd[page_directory_index];
  171. if (!pde.is_present())
  172. return nullptr;
  173. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  174. }
  175. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  176. {
  177. ASSERT_INTERRUPTS_DISABLED();
  178. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  179. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  180. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  181. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  182. PageDirectoryEntry& pde = pd[page_directory_index];
  183. if (!pde.is_present()) {
  184. #ifdef MM_DEBUG
  185. dbg() << "MM: PDE " << page_directory_index << " not present (requested for " << vaddr << "), allocating";
  186. #endif
  187. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes);
  188. #ifdef MM_DEBUG
  189. dbg() << "MM: PD K" << &page_directory << " (" << (&page_directory == m_kernel_page_directory ? "Kernel" : "User") << ") at " << PhysicalAddress(page_directory.cr3()) << " allocated page table #" << page_directory_index << " (for " << vaddr << ") at " << page_table->paddr();
  190. #endif
  191. pde.set_page_table_base(page_table->paddr().get());
  192. pde.set_user_allowed(true);
  193. pde.set_present(true);
  194. pde.set_writable(true);
  195. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  196. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  197. }
  198. return quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  199. }
  200. void MemoryManager::initialize()
  201. {
  202. s_the = new MemoryManager;
  203. }
  204. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  205. {
  206. if (vaddr.get() < 0xc0000000)
  207. return nullptr;
  208. for (auto& region : MM.m_kernel_regions) {
  209. if (region.contains(vaddr))
  210. return &region;
  211. }
  212. return nullptr;
  213. }
  214. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  215. {
  216. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  217. for (auto& region : process.m_regions) {
  218. if (region.contains(vaddr))
  219. return &region;
  220. }
  221. #ifdef MM_DEBUG
  222. dbg() << process << " Couldn't find user region for " << vaddr;
  223. #endif
  224. return nullptr;
  225. }
  226. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  227. {
  228. if (auto* region = kernel_region_from_vaddr(vaddr))
  229. return region;
  230. return user_region_from_vaddr(process, vaddr);
  231. }
  232. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  233. {
  234. if (auto* region = kernel_region_from_vaddr(vaddr))
  235. return region;
  236. return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  237. }
  238. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  239. {
  240. if (auto* region = kernel_region_from_vaddr(vaddr))
  241. return region;
  242. auto page_directory = PageDirectory::find_by_cr3(read_cr3());
  243. if (!page_directory)
  244. return nullptr;
  245. ASSERT(page_directory->process());
  246. return user_region_from_vaddr(*page_directory->process(), vaddr);
  247. }
  248. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  249. {
  250. ASSERT_INTERRUPTS_DISABLED();
  251. ASSERT(Thread::current);
  252. if (g_in_irq) {
  253. dbg() << "BUG! Page fault while handling IRQ! code=" << fault.code() << ", vaddr=" << fault.vaddr();
  254. dump_kernel_regions();
  255. }
  256. #ifdef PAGE_FAULT_DEBUG
  257. dbg() << "MM: handle_page_fault(" << String::format("%w", fault.code()) << ") at " << fault.vaddr();
  258. #endif
  259. auto* region = region_from_vaddr(fault.vaddr());
  260. if (!region) {
  261. klog() << "NP(error) fault at invalid address " << fault.vaddr();
  262. return PageFaultResponse::ShouldCrash;
  263. }
  264. return region->handle_fault(fault);
  265. }
  266. OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  267. {
  268. ASSERT(!(size % PAGE_SIZE));
  269. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  270. if (!range.is_valid())
  271. return nullptr;
  272. auto vmobject = ContiguousVMObject::create_with_size(size);
  273. auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  274. if (!region)
  275. return nullptr;
  276. return region;
  277. }
  278. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit, bool cacheable)
  279. {
  280. ASSERT(!(size % PAGE_SIZE));
  281. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  282. if (!range.is_valid())
  283. return nullptr;
  284. auto vmobject = AnonymousVMObject::create_with_size(size);
  285. auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  286. if (!region)
  287. return nullptr;
  288. if (should_commit)
  289. region->commit();
  290. return region;
  291. }
  292. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  293. {
  294. ASSERT(!(size % PAGE_SIZE));
  295. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  296. if (!range.is_valid())
  297. return nullptr;
  298. auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
  299. if (!vmobject)
  300. return nullptr;
  301. return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
  302. }
  303. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access, bool cacheable)
  304. {
  305. return allocate_kernel_region(size, name, access, true, true, cacheable);
  306. }
  307. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(const Range& range, VMObject& vmobject, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  308. {
  309. InterruptDisabler disabler;
  310. OwnPtr<Region> region;
  311. if (user_accessible)
  312. region = Region::create_user_accessible(range, vmobject, 0, name, access, cacheable);
  313. else
  314. region = Region::create_kernel_only(range, vmobject, 0, name, access, cacheable);
  315. if (region)
  316. region->map(kernel_page_directory());
  317. return region;
  318. }
  319. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  320. {
  321. ASSERT(!(size % PAGE_SIZE));
  322. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  323. if (!range.is_valid())
  324. return nullptr;
  325. return allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  326. }
  327. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  328. {
  329. for (auto& region : m_user_physical_regions) {
  330. if (!region.contains(page)) {
  331. klog() << "MM: deallocate_user_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
  332. continue;
  333. }
  334. region.return_page(move(page));
  335. --m_user_physical_pages_used;
  336. return;
  337. }
  338. klog() << "MM: deallocate_user_physical_page couldn't figure out region for user page @ " << page.paddr();
  339. ASSERT_NOT_REACHED();
  340. }
  341. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  342. {
  343. RefPtr<PhysicalPage> page;
  344. for (auto& region : m_user_physical_regions) {
  345. page = region.take_free_page(false);
  346. if (!page.is_null())
  347. break;
  348. }
  349. return page;
  350. }
  351. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  352. {
  353. InterruptDisabler disabler;
  354. RefPtr<PhysicalPage> page = find_free_user_physical_page();
  355. if (!page) {
  356. if (m_user_physical_regions.is_empty()) {
  357. klog() << "MM: no user physical regions available (?)";
  358. }
  359. for_each_vmobject([&](auto& vmobject) {
  360. if (vmobject.is_purgeable()) {
  361. auto& purgeable_vmobject = static_cast<PurgeableVMObject&>(vmobject);
  362. int purged_page_count = purgeable_vmobject.purge_with_interrupts_disabled({});
  363. if (purged_page_count) {
  364. klog() << "MM: Purge saved the day! Purged " << purged_page_count << " pages from PurgeableVMObject{" << &purgeable_vmobject << "}";
  365. page = find_free_user_physical_page();
  366. ASSERT(page);
  367. return IterationDecision::Break;
  368. }
  369. }
  370. return IterationDecision::Continue;
  371. });
  372. if (!page) {
  373. klog() << "MM: no user physical pages available";
  374. ASSERT_NOT_REACHED();
  375. return {};
  376. }
  377. }
  378. #ifdef MM_DEBUG
  379. dbg() << "MM: allocate_user_physical_page vending " << page->paddr();
  380. #endif
  381. if (should_zero_fill == ShouldZeroFill::Yes) {
  382. auto* ptr = quickmap_page(*page);
  383. memset(ptr, 0, PAGE_SIZE);
  384. unquickmap_page();
  385. }
  386. ++m_user_physical_pages_used;
  387. return page;
  388. }
  389. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  390. {
  391. for (auto& region : m_super_physical_regions) {
  392. if (!region.contains(page)) {
  393. klog() << "MM: deallocate_supervisor_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
  394. continue;
  395. }
  396. region.return_page(move(page));
  397. --m_super_physical_pages_used;
  398. return;
  399. }
  400. klog() << "MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ " << page.paddr();
  401. ASSERT_NOT_REACHED();
  402. }
  403. Vector<RefPtr<PhysicalPage>> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
  404. {
  405. ASSERT(!(size % PAGE_SIZE));
  406. InterruptDisabler disabler;
  407. size_t count = ceil_div(size, PAGE_SIZE);
  408. Vector<RefPtr<PhysicalPage>> physical_pages;
  409. physical_pages.ensure_capacity(count);
  410. for (auto& region : m_super_physical_regions) {
  411. physical_pages = region.take_contiguous_free_pages((count), true);
  412. if (physical_pages.is_empty())
  413. continue;
  414. }
  415. if (physical_pages.is_empty()) {
  416. if (m_super_physical_regions.is_empty()) {
  417. klog() << "MM: no super physical regions available (?)";
  418. }
  419. klog() << "MM: no super physical pages available";
  420. ASSERT_NOT_REACHED();
  421. return {};
  422. }
  423. auto cleanup_region = MM.allocate_kernel_region(physical_pages[0]->paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
  424. fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
  425. m_super_physical_pages_used += count;
  426. return physical_pages;
  427. }
  428. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  429. {
  430. InterruptDisabler disabler;
  431. RefPtr<PhysicalPage> page;
  432. for (auto& region : m_super_physical_regions) {
  433. page = region.take_free_page(true);
  434. if (page.is_null())
  435. continue;
  436. }
  437. if (!page) {
  438. if (m_super_physical_regions.is_empty()) {
  439. klog() << "MM: no super physical regions available (?)";
  440. }
  441. klog() << "MM: no super physical pages available";
  442. ASSERT_NOT_REACHED();
  443. return {};
  444. }
  445. #ifdef MM_DEBUG
  446. dbg() << "MM: allocate_supervisor_physical_page vending " << page->paddr();
  447. #endif
  448. fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  449. ++m_super_physical_pages_used;
  450. return page;
  451. }
  452. void MemoryManager::enter_process_paging_scope(Process& process)
  453. {
  454. ASSERT(Thread::current);
  455. InterruptDisabler disabler;
  456. Thread::current->tss().cr3 = process.page_directory().cr3();
  457. write_cr3(process.page_directory().cr3());
  458. }
  459. void MemoryManager::flush_entire_tlb()
  460. {
  461. write_cr3(read_cr3());
  462. }
  463. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  464. {
  465. #ifdef MM_DEBUG
  466. dbg() << "MM: Flush page " << vaddr;
  467. #endif
  468. asm volatile("invlpg %0"
  469. :
  470. : "m"(*(char*)vaddr.get())
  471. : "memory");
  472. }
  473. extern "C" PageTableEntry boot_pd3_pde1023_pt[1024];
  474. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  475. {
  476. auto& pte = boot_pd3_pde1023_pt[4];
  477. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  478. if (pte.physical_page_base() != pd_paddr.as_ptr()) {
  479. #ifdef MM_DEBUG
  480. dbg() << "quickmap_pd: Mapping P" << (void*)directory.m_directory_pages[pdpt_index]->paddr().as_ptr() << " at 0xffe04000 in pte @ " << &pte;
  481. #endif
  482. pte.set_physical_page_base(pd_paddr.get());
  483. pte.set_present(true);
  484. pte.set_writable(true);
  485. pte.set_user_allowed(false);
  486. flush_tlb(VirtualAddress(0xffe04000));
  487. }
  488. return (PageDirectoryEntry*)0xffe04000;
  489. }
  490. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  491. {
  492. auto& pte = boot_pd3_pde1023_pt[8];
  493. if (pte.physical_page_base() != pt_paddr.as_ptr()) {
  494. #ifdef MM_DEBUG
  495. dbg() << "quickmap_pt: Mapping P" << (void*)pt_paddr.as_ptr() << " at 0xffe08000 in pte @ " << &pte;
  496. #endif
  497. pte.set_physical_page_base(pt_paddr.get());
  498. pte.set_present(true);
  499. pte.set_writable(true);
  500. pte.set_user_allowed(false);
  501. flush_tlb(VirtualAddress(0xffe08000));
  502. }
  503. return (PageTableEntry*)0xffe08000;
  504. }
  505. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  506. {
  507. ASSERT_INTERRUPTS_DISABLED();
  508. ASSERT(!m_quickmap_in_use);
  509. m_quickmap_in_use = true;
  510. auto& pte = boot_pd3_pde1023_pt[0];
  511. if (pte.physical_page_base() != physical_page.paddr().as_ptr()) {
  512. #ifdef MM_DEBUG
  513. dbg() << "quickmap_page: Mapping P" << (void*)physical_page.paddr().as_ptr() << " at 0xffe00000 in pte @ " << &pte;
  514. #endif
  515. pte.set_physical_page_base(physical_page.paddr().get());
  516. pte.set_present(true);
  517. pte.set_writable(true);
  518. pte.set_user_allowed(false);
  519. flush_tlb(VirtualAddress(0xffe00000));
  520. }
  521. return (u8*)0xffe00000;
  522. }
  523. void MemoryManager::unquickmap_page()
  524. {
  525. ASSERT_INTERRUPTS_DISABLED();
  526. ASSERT(m_quickmap_in_use);
  527. auto& pte = boot_pd3_pde1023_pt[0];
  528. pte.clear();
  529. flush_tlb(VirtualAddress(0xffe00000));
  530. m_quickmap_in_use = false;
  531. }
  532. template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
  533. bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
  534. {
  535. ASSERT(size);
  536. if (base_vaddr > base_vaddr.offset(size)) {
  537. dbg() << "Shenanigans! Asked to validate wrappy " << base_vaddr << " size=" << size;
  538. return false;
  539. }
  540. VirtualAddress vaddr = base_vaddr.page_base();
  541. VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
  542. if (end_vaddr < vaddr) {
  543. dbg() << "Shenanigans! Asked to validate " << base_vaddr << " size=" << size;
  544. return false;
  545. }
  546. const Region* region = nullptr;
  547. while (vaddr <= end_vaddr) {
  548. if (!region || !region->contains(vaddr)) {
  549. if (space == AccessSpace::Kernel)
  550. region = kernel_region_from_vaddr(vaddr);
  551. if (!region || !region->contains(vaddr))
  552. region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  553. if (!region
  554. || (space == AccessSpace::User && !region->is_user_accessible())
  555. || (access_type == AccessType::Read && !region->is_readable())
  556. || (access_type == AccessType::Write && !region->is_writable())) {
  557. return false;
  558. }
  559. }
  560. vaddr = vaddr.offset(PAGE_SIZE);
  561. }
  562. return true;
  563. }
  564. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  565. {
  566. if (!is_user_address(vaddr))
  567. return false;
  568. auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  569. return region && region->is_user_accessible() && region->is_stack();
  570. }
  571. bool MemoryManager::validate_kernel_read(const Process& process, VirtualAddress vaddr, size_t size) const
  572. {
  573. return validate_range<AccessSpace::Kernel, AccessType::Read>(process, vaddr, size);
  574. }
  575. bool MemoryManager::can_read_without_faulting(const Process& process, VirtualAddress vaddr, size_t size) const
  576. {
  577. // FIXME: Use the size argument!
  578. UNUSED_PARAM(size);
  579. auto* pte = const_cast<MemoryManager*>(this)->pte(process.page_directory(), vaddr);
  580. if (!pte)
  581. return false;
  582. return pte->is_present();
  583. }
  584. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr, size_t size) const
  585. {
  586. if (!is_user_address(vaddr))
  587. return false;
  588. return validate_range<AccessSpace::User, AccessType::Read>(process, vaddr, size);
  589. }
  590. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr, size_t size) const
  591. {
  592. if (!is_user_address(vaddr))
  593. return false;
  594. return validate_range<AccessSpace::User, AccessType::Write>(process, vaddr, size);
  595. }
  596. void MemoryManager::register_vmobject(VMObject& vmobject)
  597. {
  598. InterruptDisabler disabler;
  599. m_vmobjects.append(&vmobject);
  600. }
  601. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  602. {
  603. InterruptDisabler disabler;
  604. m_vmobjects.remove(&vmobject);
  605. }
  606. void MemoryManager::register_region(Region& region)
  607. {
  608. InterruptDisabler disabler;
  609. if (region.vaddr().get() >= 0xc0000000)
  610. m_kernel_regions.append(&region);
  611. else
  612. m_user_regions.append(&region);
  613. }
  614. void MemoryManager::unregister_region(Region& region)
  615. {
  616. InterruptDisabler disabler;
  617. if (region.vaddr().get() >= 0xc0000000)
  618. m_kernel_regions.remove(&region);
  619. else
  620. m_user_regions.remove(&region);
  621. }
  622. void MemoryManager::dump_kernel_regions()
  623. {
  624. klog() << "Kernel regions:";
  625. klog() << "BEGIN END SIZE ACCESS NAME";
  626. for (auto& region : MM.m_kernel_regions) {
  627. klog() << String::format("%08x", region.vaddr().get()) << " -- " << String::format("%08x", region.vaddr().offset(region.size() - 1).get()) << " " << String::format("%08x", region.size()) << " " << (region.is_readable() ? 'R' : ' ') << (region.is_writable() ? 'W' : ' ') << (region.is_executable() ? 'X' : ' ') << (region.is_shared() ? 'S' : ' ') << (region.is_stack() ? 'T' : ' ') << (region.vmobject().is_purgeable() ? 'P' : ' ') << " " << region.name().characters();
  628. }
  629. }
  630. }