MemoryManager.cpp 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201
  1. #include "MemoryManager.h"
  2. #include <AK/Assertions.h>
  3. #include <AK/kstdio.h>
  4. #include <AK/kmalloc.h>
  5. #include "i386.h"
  6. #include "StdLib.h"
  7. #include "Task.h"
  8. static MemoryManager* s_the;
  9. MemoryManager& MemoryManager::the()
  10. {
  11. return *s_the;
  12. }
  13. MemoryManager::MemoryManager()
  14. {
  15. m_pageDirectory = (dword*)0x5000;
  16. m_pageTableZero = (dword*)0x6000;
  17. m_pageTableOne = (dword*)0x7000;
  18. initializePaging();
  19. }
  20. MemoryManager::~MemoryManager()
  21. {
  22. }
  23. void MemoryManager::initializePaging()
  24. {
  25. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  26. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  27. memset(m_pageTableZero, 0, 4096);
  28. memset(m_pageTableOne, 0, 4096);
  29. memset(m_pageDirectory, 0, 4096);
  30. kprintf("MM: Page directory @ %p\n", m_pageDirectory);
  31. kprintf("MM: Page table zero @ %p\n", m_pageTableZero);
  32. kprintf("MM: Page table one @ %p\n", m_pageTableOne);
  33. // Make null dereferences crash.
  34. protectMap(LinearAddress(0), 4 * KB);
  35. identityMap(LinearAddress(4096), 4 * MB);
  36. // Put pages between 4MB and 16MB in the page freelist.
  37. for (size_t i = (4 * MB) + 1024; i < (16 * MB); i += PAGE_SIZE) {
  38. m_freePages.append(PhysicalAddress(i));
  39. }
  40. asm volatile("movl %%eax, %%cr3"::"a"(m_pageDirectory));
  41. asm volatile(
  42. "movl %cr0, %eax\n"
  43. "orl $0x80000001, %eax\n"
  44. "movl %eax, %cr0\n"
  45. );
  46. }
  47. auto MemoryManager::ensurePTE(LinearAddress linearAddress) -> PageTableEntry
  48. {
  49. dword pageDirectoryIndex = (linearAddress.get() >> 22) & 0x3ff;
  50. dword pageTableIndex = (linearAddress.get() >> 12) & 0x3ff;
  51. PageDirectoryEntry pde = PageDirectoryEntry(&m_pageDirectory[pageDirectoryIndex]);
  52. if (!pde.isPresent()) {
  53. kprintf("PDE %u !present, allocating\n", pageDirectoryIndex);
  54. if (pageDirectoryIndex == 0) {
  55. pde.setPageTableBase((dword)m_pageTableZero);
  56. pde.setUserAllowed(true);
  57. pde.setPresent(true);
  58. pde.setWritable(true);
  59. } else if (pageDirectoryIndex == 1) {
  60. pde.setPageTableBase((dword)m_pageTableOne);
  61. pde.setUserAllowed(true);
  62. pde.setPresent(true);
  63. pde.setWritable(true);
  64. } else {
  65. // FIXME: We need an allocator!
  66. ASSERT_NOT_REACHED();
  67. }
  68. }
  69. return PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  70. }
  71. void MemoryManager::protectMap(LinearAddress linearAddress, size_t length)
  72. {
  73. // FIXME: ASSERT(linearAddress is 4KB aligned);
  74. for (dword offset = 0; offset < length; offset += 4096) {
  75. auto pteAddress = linearAddress.offset(offset);
  76. auto pte = ensurePTE(pteAddress);
  77. pte.setPhysicalPageBase(pteAddress.get());
  78. pte.setUserAllowed(false);
  79. pte.setPresent(false);
  80. pte.setWritable(false);
  81. }
  82. }
  83. void MemoryManager::identityMap(LinearAddress linearAddress, size_t length)
  84. {
  85. // FIXME: ASSERT(linearAddress is 4KB aligned);
  86. for (dword offset = 0; offset < length; offset += 4096) {
  87. auto pteAddress = linearAddress.offset(offset);
  88. auto pte = ensurePTE(pteAddress);
  89. pte.setPhysicalPageBase(pteAddress.get());
  90. pte.setUserAllowed(true);
  91. pte.setPresent(true);
  92. pte.setWritable(true);
  93. }
  94. }
  95. void MemoryManager::initialize()
  96. {
  97. s_the = new MemoryManager;
  98. }
  99. PageFaultResponse MemoryManager::handlePageFault(const PageFault& fault)
  100. {
  101. kprintf("MM: handlePageFault(%w) at laddr=%p\n", fault.code(), fault.address().get());
  102. if (fault.isNotPresent()) {
  103. kprintf(" >> NP fault!\n");
  104. } else if (fault.isProtectionViolation()) {
  105. kprintf(" >> PV fault!\n");
  106. }
  107. return PageFaultResponse::ShouldCrash;
  108. }
  109. RetainPtr<Zone> MemoryManager::createZone(size_t size)
  110. {
  111. auto pages = allocatePhysicalPages(ceilDiv(size, PAGE_SIZE));
  112. if (pages.isEmpty()) {
  113. kprintf("MM: createZone: no physical pages for size %u", size);
  114. return nullptr;
  115. }
  116. return adopt(*new Zone(move(pages)));
  117. }
  118. Vector<PhysicalAddress> MemoryManager::allocatePhysicalPages(size_t count)
  119. {
  120. if (count > m_freePages.size())
  121. return { };
  122. Vector<PhysicalAddress> pages;
  123. pages.ensureCapacity(count);
  124. for (size_t i = 0; i < count; ++i)
  125. pages.append(m_freePages.takeLast());
  126. return pages;
  127. }
  128. byte* MemoryManager::quickMapOnePage(PhysicalAddress physicalAddress)
  129. {
  130. auto pte = ensurePTE(LinearAddress(4 * MB));
  131. kprintf("quickmap %x @ %x {pte @ %p}\n", physicalAddress.get(), 4*MB, pte.ptr());
  132. pte.setPhysicalPageBase(physicalAddress.pageBase());
  133. pte.setPresent(true);
  134. pte.setWritable(true);
  135. return (byte*)(4 * MB);
  136. }
  137. bool MemoryManager::unmapRegionsForTask(Task& task)
  138. {
  139. return true;
  140. }
  141. bool MemoryManager::mapRegionsForTask(Task& task)
  142. {
  143. for (auto& region : task.m_regions) {
  144. auto& zone = *region->zone;
  145. for (size_t i = 0; i < zone.m_pages.size(); ++i) {
  146. auto laddr = region->linearAddress.offset(i * PAGE_SIZE);
  147. auto pte = ensurePTE(laddr);
  148. pte.setPhysicalPageBase(zone.m_pages[i].get());
  149. pte.setPresent(true);
  150. pte.setWritable(true);
  151. pte.setUserAllowed(!task.isRing0());
  152. kprintf("MM: >> Mapped L%x => P%x <<\n", laddr, zone.m_pages[i].get());
  153. }
  154. }
  155. return true;
  156. }
  157. bool copyToZone(Zone& zone, const void* data, size_t size)
  158. {
  159. if (zone.size() < size) {
  160. kprintf("copyToZone: can't fit %u bytes into zone with size %u\n", size, zone.size());
  161. return false;
  162. }
  163. auto* dataptr = (const byte*)data;
  164. size_t remaining = size;
  165. for (size_t i = 0; i < zone.m_pages.size(); ++i) {
  166. byte* dest = MemoryManager::the().quickMapOnePage(zone.m_pages[i]);
  167. kprintf("memcpy(%p, %p, %u)\n", dest, dataptr, min(PAGE_SIZE, remaining));
  168. memcpy(dest, dataptr, min(PAGE_SIZE, remaining));
  169. dataptr += PAGE_SIZE;
  170. remaining -= PAGE_SIZE;
  171. }
  172. return true;
  173. }