MemoryManager.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762
  1. #include "MemoryManager.h"
  2. #include <AK/Assertions.h>
  3. #include <AK/kstdio.h>
  4. #include <AK/kmalloc.h>
  5. #include "i386.h"
  6. #include "StdLib.h"
  7. #include "Process.h"
  8. #include <LibC/errno_numbers.h>
  9. //#define MM_DEBUG
  10. //#define PAGE_FAULT_DEBUG
  11. #define SCRUB_DEALLOCATED_PAGE_TABLES
  12. static MemoryManager* s_the;
  13. MemoryManager& MM
  14. {
  15. return *s_the;
  16. }
  17. MemoryManager::MemoryManager()
  18. {
  19. m_kernel_page_directory = (PageDirectory*)0x4000;
  20. m_pageTableZero = (dword*)0x6000;
  21. m_pageTableOne = (dword*)0x7000;
  22. m_next_laddr.set(0xd0000000);
  23. initializePaging();
  24. }
  25. MemoryManager::~MemoryManager()
  26. {
  27. }
  28. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  29. {
  30. memset(&page_directory, 0, sizeof(PageDirectory));
  31. page_directory.entries[0] = m_kernel_page_directory->entries[0];
  32. page_directory.entries[1] = m_kernel_page_directory->entries[1];
  33. }
  34. void MemoryManager::release_page_directory(PageDirectory& page_directory)
  35. {
  36. ASSERT_INTERRUPTS_DISABLED();
  37. #ifdef MM_DEBUG
  38. dbgprintf("MM: release_page_directory for PD K%x\n", &page_directory);
  39. #endif
  40. for (size_t i = 0; i < 1024; ++i) {
  41. auto& page_table = page_directory.physical_pages[i];
  42. if (!page_table.is_null()) {
  43. #ifdef MM_DEBUG
  44. dbgprintf("MM: deallocating user page table P%x\n", page_table->paddr().get());
  45. #endif
  46. deallocate_page_table(page_directory, i);
  47. }
  48. }
  49. #ifdef SCRUB_DEALLOCATED_PAGE_TABLES
  50. memset(&page_directory, 0xc9, sizeof(PageDirectory));
  51. #endif
  52. }
  53. void MemoryManager::initializePaging()
  54. {
  55. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  56. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  57. memset(m_pageTableZero, 0, PAGE_SIZE);
  58. memset(m_pageTableOne, 0, PAGE_SIZE);
  59. memset(m_kernel_page_directory, 0, sizeof(PageDirectory));
  60. #ifdef MM_DEBUG
  61. dbgprintf("MM: Kernel page directory @ %p\n", m_kernel_page_directory);
  62. #endif
  63. // Make null dereferences crash.
  64. protectMap(LinearAddress(0), PAGE_SIZE);
  65. // The bottom 4 MB are identity mapped & supervisor only. Every process shares these mappings.
  66. create_identity_mapping(LinearAddress(PAGE_SIZE), 4 * MB);
  67. // The physical pages 4 MB through 8 MB are available for allocation.
  68. for (size_t i = (4 * MB) + PAGE_SIZE; i < (8 * MB); i += PAGE_SIZE)
  69. m_free_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i))));
  70. asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory));
  71. asm volatile(
  72. "movl %cr0, %eax\n"
  73. "orl $0x80000001, %eax\n"
  74. "movl %eax, %cr0\n"
  75. );
  76. }
  77. RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
  78. {
  79. auto& page_directory_physical_ptr = page_directory.physical_pages[index];
  80. ASSERT(!page_directory_physical_ptr);
  81. auto physical_page = allocate_physical_page();
  82. if (!physical_page)
  83. return nullptr;
  84. dword address = physical_page->paddr().get();
  85. create_identity_mapping(LinearAddress(address), PAGE_SIZE);
  86. memset((void*)address, 0, PAGE_SIZE);
  87. page_directory.physical_pages[index] = move(physical_page);
  88. return page_directory.physical_pages[index];
  89. }
  90. void MemoryManager::deallocate_page_table(PageDirectory& page_directory, unsigned index)
  91. {
  92. auto& physical_page = page_directory.physical_pages[index];
  93. ASSERT(physical_page);
  94. //FIXME: This line is buggy and effectful somehow :(
  95. //ASSERT(!m_free_physical_pages.contains_slow(physical_page));
  96. for (size_t i = 0; i < MM.m_free_physical_pages.size(); ++i) {
  97. ASSERT(MM.m_free_physical_pages[i].ptr() != physical_page.ptr());
  98. }
  99. remove_identity_mapping(LinearAddress(physical_page->paddr().get()), PAGE_SIZE);
  100. page_directory.physical_pages[index] = nullptr;
  101. }
  102. void MemoryManager::remove_identity_mapping(LinearAddress laddr, size_t size)
  103. {
  104. InterruptDisabler disabler;
  105. // FIXME: ASSERT(laddr is 4KB aligned);
  106. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  107. auto pte_address = laddr.offset(offset);
  108. auto pte = ensurePTE(m_kernel_page_directory, pte_address);
  109. pte.setPhysicalPageBase(0);
  110. pte.setUserAllowed(false);
  111. pte.setPresent(true);
  112. pte.setWritable(true);
  113. flushTLB(pte_address);
  114. }
  115. }
  116. auto MemoryManager::ensurePTE(PageDirectory* page_directory, LinearAddress laddr) -> PageTableEntry
  117. {
  118. ASSERT_INTERRUPTS_DISABLED();
  119. dword page_directory_index = (laddr.get() >> 22) & 0x3ff;
  120. dword page_table_index = (laddr.get() >> 12) & 0x3ff;
  121. PageDirectoryEntry pde = PageDirectoryEntry(&page_directory->entries[page_directory_index]);
  122. if (!pde.isPresent()) {
  123. #ifdef MM_DEBUG
  124. dbgprintf("MM: PDE %u not present, allocating\n", page_directory_index);
  125. #endif
  126. if (page_directory_index == 0) {
  127. ASSERT(page_directory == m_kernel_page_directory);
  128. pde.setPageTableBase((dword)m_pageTableZero);
  129. pde.setUserAllowed(false);
  130. pde.setPresent(true);
  131. pde.setWritable(true);
  132. } else if (page_directory_index == 1) {
  133. ASSERT(page_directory == m_kernel_page_directory);
  134. pde.setPageTableBase((dword)m_pageTableOne);
  135. pde.setUserAllowed(false);
  136. pde.setPresent(true);
  137. pde.setWritable(true);
  138. } else {
  139. auto page_table = allocate_page_table(*page_directory, page_directory_index);
  140. #ifdef MM_DEBUG
  141. dbgprintf("MM: PD K%x (%s) allocated page table #%u (for L%x) at P%x\n",
  142. page_directory,
  143. page_directory == m_kernel_page_directory ? "Kernel" : "User",
  144. page_directory_index,
  145. laddr.get(),
  146. page_table->paddr().get());
  147. #endif
  148. pde.setPageTableBase(page_table->paddr().get());
  149. pde.setUserAllowed(true);
  150. pde.setPresent(true);
  151. pde.setWritable(true);
  152. page_directory->physical_pages[page_directory_index] = move(page_table);
  153. }
  154. }
  155. return PageTableEntry(&pde.pageTableBase()[page_table_index]);
  156. }
  157. void MemoryManager::protectMap(LinearAddress linearAddress, size_t length)
  158. {
  159. InterruptDisabler disabler;
  160. // FIXME: ASSERT(linearAddress is 4KB aligned);
  161. for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
  162. auto pteAddress = linearAddress.offset(offset);
  163. auto pte = ensurePTE(m_kernel_page_directory, pteAddress);
  164. pte.setPhysicalPageBase(pteAddress.get());
  165. pte.setUserAllowed(false);
  166. pte.setPresent(false);
  167. pte.setWritable(false);
  168. flushTLB(pteAddress);
  169. }
  170. }
  171. void MemoryManager::create_identity_mapping(LinearAddress laddr, size_t size)
  172. {
  173. InterruptDisabler disabler;
  174. // FIXME: ASSERT(laddr is 4KB aligned);
  175. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  176. auto pteAddress = laddr.offset(offset);
  177. auto pte = ensurePTE(m_kernel_page_directory, pteAddress);
  178. pte.setPhysicalPageBase(pteAddress.get());
  179. pte.setUserAllowed(false);
  180. pte.setPresent(true);
  181. pte.setWritable(true);
  182. flushTLB(pteAddress);
  183. }
  184. }
  185. void MemoryManager::initialize()
  186. {
  187. s_the = new MemoryManager;
  188. }
  189. Region* MemoryManager::region_from_laddr(Process& process, LinearAddress laddr)
  190. {
  191. ASSERT_INTERRUPTS_DISABLED();
  192. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  193. for (auto& region : process.m_regions) {
  194. if (region->contains(laddr))
  195. return region.ptr();
  196. }
  197. kprintf("%s(%u) Couldn't find region for L%x\n", process.name().characters(), process.pid(), laddr.get());
  198. return nullptr;
  199. }
  200. bool MemoryManager::copy_on_write(Process& process, Region& region, unsigned page_index_in_region)
  201. {
  202. ASSERT_INTERRUPTS_DISABLED();
  203. auto& vmo = region.vmo();
  204. if (vmo.physical_pages()[page_index_in_region]->retain_count() == 1) {
  205. #ifdef PAGE_FAULT_DEBUG
  206. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  207. #endif
  208. region.cow_map.set(page_index_in_region, false);
  209. remap_region_page(process.m_page_directory, region, page_index_in_region, true);
  210. return true;
  211. }
  212. #ifdef PAGE_FAULT_DEBUG
  213. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  214. #endif
  215. auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
  216. auto physical_page = allocate_physical_page();
  217. byte* dest_ptr = quickmap_page(*physical_page);
  218. const byte* src_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr();
  219. #ifdef PAGE_FAULT_DEBUG
  220. dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  221. #endif
  222. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  223. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  224. unquickmap_page();
  225. region.cow_map.set(page_index_in_region, false);
  226. remap_region_page(process.m_page_directory, region, page_index_in_region, true);
  227. return true;
  228. }
  229. bool Region::page_in(PageDirectory& page_directory)
  230. {
  231. ASSERT(!vmo().is_anonymous());
  232. ASSERT(vmo().vnode());
  233. #ifdef MM_DEBUG
  234. dbgprintf("MM: page_in %u pages\n", page_count());
  235. #endif
  236. for (size_t i = 0; i < page_count(); ++i) {
  237. auto& vmo_page = vmo().physical_pages()[first_page_index() + i];
  238. if (vmo_page.is_null()) {
  239. bool success = MM.page_in_from_vnode(page_directory, *this, i);
  240. if (!success)
  241. return false;
  242. }
  243. MM.remap_region_page(&page_directory, *this, i, true);
  244. }
  245. return true;
  246. }
  247. bool MemoryManager::page_in_from_vnode(PageDirectory& page_directory, Region& region, unsigned page_index_in_region)
  248. {
  249. auto& vmo = region.vmo();
  250. ASSERT(!vmo.is_anonymous());
  251. ASSERT(vmo.vnode());
  252. auto& vnode = *vmo.vnode();
  253. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  254. ASSERT(vmo_page.is_null());
  255. vmo_page = allocate_physical_page();
  256. if (vmo_page.is_null()) {
  257. kprintf("MM: page_in_from_vnode was unable to allocate a physical page\n");
  258. return false;
  259. }
  260. remap_region_page(&page_directory, region, page_index_in_region, true);
  261. byte* dest_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr();
  262. #ifdef MM_DEBUG
  263. dbgprintf("MM: page_in_from_vnode ready to read from vnode, will write to L%x!\n", dest_ptr);
  264. #endif
  265. sti(); // Oh god here we go...
  266. auto nread = vnode.fileSystem()->readInodeBytes(vnode.inode, vmo.vnode_offset() + ((region.first_page_index() + page_index_in_region) * PAGE_SIZE), PAGE_SIZE, dest_ptr, nullptr);
  267. if (nread < 0) {
  268. kprintf("MM: page_in_form_vnode had error (%d) while reading!\n", nread);
  269. return false;
  270. }
  271. if (nread < PAGE_SIZE) {
  272. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  273. memset(dest_ptr + nread, 0, PAGE_SIZE - nread);
  274. }
  275. cli();
  276. return true;
  277. }
  278. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  279. {
  280. ASSERT_INTERRUPTS_DISABLED();
  281. #ifdef PAGE_FAULT_DEBUG
  282. dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.laddr().get());
  283. #endif
  284. auto* region = region_from_laddr(*current, fault.laddr());
  285. if (!region) {
  286. kprintf("NP(error) fault at invalid address L%x\n", fault.laddr().get());
  287. return PageFaultResponse::ShouldCrash;
  288. }
  289. auto page_index_in_region = region->page_index_from_address(fault.laddr());
  290. if (fault.is_not_present()) {
  291. if (region->vmo().vnode()) {
  292. dbgprintf("NP(vnode) fault in Region{%p}[%u]\n", region, page_index_in_region);
  293. page_in_from_vnode(*current->m_page_directory, *region, page_index_in_region);
  294. return PageFaultResponse::Continue;
  295. } else {
  296. kprintf("NP(error) fault in Region{%p}[%u]\n", region, page_index_in_region);
  297. }
  298. } else if (fault.is_protection_violation()) {
  299. if (region->cow_map.get(page_index_in_region)) {
  300. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
  301. bool success = copy_on_write(*current, *region, page_index_in_region);
  302. ASSERT(success);
  303. return PageFaultResponse::Continue;
  304. }
  305. kprintf("PV(error) fault in Region{%p}[%u]\n", region, page_index_in_region);
  306. } else {
  307. ASSERT_NOT_REACHED();
  308. }
  309. return PageFaultResponse::ShouldCrash;
  310. }
  311. RetainPtr<PhysicalPage> MemoryManager::allocate_physical_page()
  312. {
  313. InterruptDisabler disabler;
  314. if (1 > m_free_physical_pages.size())
  315. return { };
  316. #ifdef MM_DEBUG
  317. dbgprintf("MM: allocate_physical_page vending P%x\n", m_free_physical_pages.last()->paddr().get());
  318. #endif
  319. return m_free_physical_pages.takeLast();
  320. }
  321. void MemoryManager::enter_kernel_paging_scope()
  322. {
  323. InterruptDisabler disabler;
  324. current->m_tss.cr3 = (dword)m_kernel_page_directory;
  325. asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory):"memory");
  326. }
  327. void MemoryManager::enter_process_paging_scope(Process& process)
  328. {
  329. InterruptDisabler disabler;
  330. current->m_tss.cr3 = (dword)process.m_page_directory;
  331. asm volatile("movl %%eax, %%cr3"::"a"(process.m_page_directory):"memory");
  332. }
  333. void MemoryManager::flushEntireTLB()
  334. {
  335. asm volatile(
  336. "mov %cr3, %eax\n"
  337. "mov %eax, %cr3\n"
  338. );
  339. }
  340. void MemoryManager::flushTLB(LinearAddress laddr)
  341. {
  342. asm volatile("invlpg %0": :"m" (*(char*)laddr.get()) : "memory");
  343. }
  344. byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  345. {
  346. ASSERT_INTERRUPTS_DISABLED();
  347. auto page_laddr = LinearAddress(4 * MB);
  348. auto pte = ensurePTE(m_kernel_page_directory, page_laddr);
  349. pte.setPhysicalPageBase(physical_page.paddr().get());
  350. pte.setPresent(true); // FIXME: Maybe we should use the is_readable flag here?
  351. pte.setWritable(true);
  352. pte.setUserAllowed(false);
  353. flushTLB(page_laddr);
  354. #ifdef MM_DEBUG
  355. dbgprintf("MM: >> quickmap_page L%x => P%x\n", page_laddr, physical_page.paddr().get());
  356. #endif
  357. return page_laddr.asPtr();
  358. }
  359. void MemoryManager::unquickmap_page()
  360. {
  361. ASSERT_INTERRUPTS_DISABLED();
  362. auto page_laddr = LinearAddress(4 * MB);
  363. auto pte = ensurePTE(m_kernel_page_directory, page_laddr);
  364. #ifdef MM_DEBUG
  365. auto old_physical_address = pte.physicalPageBase();
  366. #endif
  367. pte.setPhysicalPageBase(0);
  368. pte.setPresent(false);
  369. pte.setWritable(false);
  370. pte.setUserAllowed(false);
  371. flushTLB(page_laddr);
  372. #ifdef MM_DEBUG
  373. dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_laddr, old_physical_address);
  374. #endif
  375. }
  376. void MemoryManager::remap_region_page(PageDirectory* page_directory, Region& region, unsigned page_index_in_region, bool user_allowed)
  377. {
  378. InterruptDisabler disabler;
  379. auto page_laddr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE);
  380. auto pte = ensurePTE(page_directory, page_laddr);
  381. auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
  382. ASSERT(physical_page);
  383. pte.setPhysicalPageBase(physical_page->paddr().get());
  384. pte.setPresent(true); // FIXME: Maybe we should use the is_readable flag here?
  385. if (region.cow_map.get(page_index_in_region))
  386. pte.setWritable(false);
  387. else
  388. pte.setWritable(region.is_writable);
  389. pte.setUserAllowed(user_allowed);
  390. if (page_directory->is_active())
  391. flushTLB(page_laddr);
  392. #ifdef MM_DEBUG
  393. dbgprintf("MM: >> remap_region_page (PD=%x) '%s' L%x => P%x (@%p)\n", page_directory, region.name.characters(), page_laddr.get(), physical_page->paddr().get(), physical_page.ptr());
  394. #endif
  395. }
  396. void MemoryManager::remap_region(Process& process, Region& region)
  397. {
  398. InterruptDisabler disabler;
  399. map_region_at_address(process.m_page_directory, region, region.linearAddress, true);
  400. }
  401. void MemoryManager::map_region_at_address(PageDirectory* page_directory, Region& region, LinearAddress laddr, bool user_allowed)
  402. {
  403. InterruptDisabler disabler;
  404. auto& vmo = region.vmo();
  405. #ifdef MM_DEBUG
  406. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
  407. #endif
  408. for (size_t i = region.first_page_index(); i <= region.last_page_index(); ++i) {
  409. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  410. auto pte = ensurePTE(page_directory, page_laddr);
  411. auto& physical_page = vmo.physical_pages()[i];
  412. if (physical_page) {
  413. pte.setPhysicalPageBase(physical_page->paddr().get());
  414. pte.setPresent(true); // FIXME: Maybe we should use the is_readable flag here?
  415. if (region.cow_map.get(i))
  416. pte.setWritable(false);
  417. else
  418. pte.setWritable(region.is_writable);
  419. } else {
  420. pte.setPhysicalPageBase(0);
  421. pte.setPresent(false);
  422. pte.setWritable(region.is_writable);
  423. }
  424. pte.setUserAllowed(user_allowed);
  425. if (page_directory->is_active())
  426. flushTLB(page_laddr);
  427. #ifdef MM_DEBUG
  428. dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", page_directory, region.name.characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  429. #endif
  430. }
  431. }
  432. void MemoryManager::unmap_range(PageDirectory* page_directory, LinearAddress laddr, size_t size)
  433. {
  434. ASSERT((size % PAGE_SIZE) == 0);
  435. InterruptDisabler disabler;
  436. size_t numPages = size / PAGE_SIZE;
  437. for (size_t i = 0; i < numPages; ++i) {
  438. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  439. auto pte = ensurePTE(page_directory, page_laddr);
  440. pte.setPhysicalPageBase(0);
  441. pte.setPresent(false);
  442. pte.setWritable(false);
  443. pte.setUserAllowed(false);
  444. if (page_directory->is_active())
  445. flushTLB(page_laddr);
  446. #ifdef MM_DEBUG
  447. dbgprintf("MM: << unmap_range L%x =/> 0\n", page_laddr);
  448. #endif
  449. }
  450. }
  451. LinearAddress MemoryManager::allocate_linear_address_range(size_t size)
  452. {
  453. ASSERT((size % PAGE_SIZE) == 0);
  454. // FIXME: Recycle ranges!
  455. auto laddr = m_next_laddr;
  456. m_next_laddr.set(m_next_laddr.get() + size);
  457. return laddr;
  458. }
  459. byte* MemoryManager::create_kernel_alias_for_region(Region& region)
  460. {
  461. InterruptDisabler disabler;
  462. #ifdef MM_DEBUG
  463. dbgprintf("MM: create_kernel_alias_for_region region=%p (L%x size=%u)\n", &region, region.linearAddress.get(), region.size);
  464. #endif
  465. auto laddr = allocate_linear_address_range(region.size);
  466. map_region_at_address(m_kernel_page_directory, region, laddr, false);
  467. #ifdef MM_DEBUG
  468. dbgprintf("MM: Created alias L%x for L%x\n", laddr.get(), region.linearAddress.get());
  469. #endif
  470. return laddr.asPtr();
  471. }
  472. void MemoryManager::remove_kernel_alias_for_region(Region& region, byte* addr)
  473. {
  474. #ifdef MM_DEBUG
  475. dbgprintf("remove_kernel_alias_for_region region=%p, addr=L%x\n", &region, addr);
  476. #endif
  477. unmap_range(m_kernel_page_directory, LinearAddress((dword)addr), region.size);
  478. }
  479. bool MemoryManager::unmapRegion(Process& process, Region& region)
  480. {
  481. InterruptDisabler disabler;
  482. for (size_t i = 0; i < region.page_count(); ++i) {
  483. auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
  484. auto pte = ensurePTE(process.m_page_directory, laddr);
  485. pte.setPhysicalPageBase(0);
  486. pte.setPresent(false);
  487. pte.setWritable(false);
  488. pte.setUserAllowed(false);
  489. if (process.m_page_directory->is_active())
  490. flushTLB(laddr);
  491. #ifdef MM_DEBUG
  492. auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
  493. dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0);
  494. #endif
  495. }
  496. return true;
  497. }
  498. bool MemoryManager::mapRegion(Process& process, Region& region)
  499. {
  500. map_region_at_address(process.m_page_directory, region, region.linearAddress, true);
  501. return true;
  502. }
  503. bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const
  504. {
  505. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  506. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  507. auto pde = PageDirectoryEntry(&process.m_page_directory->entries[pageDirectoryIndex]);
  508. if (!pde.isPresent())
  509. return false;
  510. auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  511. if (!pte.isPresent())
  512. return false;
  513. if (!pte.isUserAllowed())
  514. return false;
  515. return true;
  516. }
  517. bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const
  518. {
  519. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  520. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  521. auto pde = PageDirectoryEntry(&process.m_page_directory->entries[pageDirectoryIndex]);
  522. if (!pde.isPresent())
  523. return false;
  524. auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  525. if (!pte.isPresent())
  526. return false;
  527. if (!pte.isUserAllowed())
  528. return false;
  529. if (!pte.isWritable())
  530. return false;
  531. return true;
  532. }
  533. RetainPtr<Region> Region::clone()
  534. {
  535. InterruptDisabler disabler;
  536. if (is_readable && !is_writable) {
  537. // Create a new region backed by the same VMObject.
  538. return adopt(*new Region(linearAddress, size, m_vmo.copyRef(), m_offset_in_vmo, String(name), is_readable, is_writable));
  539. }
  540. // Set up a COW region. The parent (this) region becomes COW as well!
  541. for (size_t i = 0; i < page_count(); ++i)
  542. cow_map.set(i, true);
  543. MM.remap_region(*current, *this);
  544. return adopt(*new Region(linearAddress, size, m_vmo->clone(), m_offset_in_vmo, String(name), is_readable, is_writable, true));
  545. }
  546. Region::Region(LinearAddress a, size_t s, String&& n, bool r, bool w, bool cow)
  547. : linearAddress(a)
  548. , size(s)
  549. , m_vmo(VMObject::create_anonymous(s))
  550. , name(move(n))
  551. , is_readable(r)
  552. , is_writable(w)
  553. , cow_map(Bitmap::create(m_vmo->page_count(), cow))
  554. {
  555. m_vmo->set_name(name);
  556. MM.register_region(*this);
  557. }
  558. Region::Region(LinearAddress a, size_t s, RetainPtr<VirtualFileSystem::Node>&& vnode, String&& n, bool r, bool w)
  559. : linearAddress(a)
  560. , size(s)
  561. , m_vmo(VMObject::create_file_backed(move(vnode), s))
  562. , name(move(n))
  563. , is_readable(r)
  564. , is_writable(w)
  565. , cow_map(Bitmap::create(m_vmo->page_count()))
  566. {
  567. MM.register_region(*this);
  568. }
  569. Region::Region(LinearAddress a, size_t s, RetainPtr<VMObject>&& vmo, size_t offset_in_vmo, String&& n, bool r, bool w, bool cow)
  570. : linearAddress(a)
  571. , size(s)
  572. , m_offset_in_vmo(offset_in_vmo)
  573. , m_vmo(move(vmo))
  574. , name(move(n))
  575. , is_readable(r)
  576. , is_writable(w)
  577. , cow_map(Bitmap::create(m_vmo->page_count(), cow))
  578. {
  579. MM.register_region(*this);
  580. }
  581. Region::~Region()
  582. {
  583. MM.unregister_region(*this);
  584. }
  585. void PhysicalPage::return_to_freelist()
  586. {
  587. InterruptDisabler disabler;
  588. m_retain_count = 1;
  589. MM.m_free_physical_pages.append(adopt(*this));
  590. #ifdef MM_DEBUG
  591. dbgprintf("MM: P%x released to freelist\n", m_paddr.get());
  592. #endif
  593. }
  594. RetainPtr<VMObject> VMObject::create_file_backed(RetainPtr<VirtualFileSystem::Node>&& vnode, size_t size)
  595. {
  596. InterruptDisabler disabler;
  597. if (vnode->vmo())
  598. return static_cast<VMObject*>(vnode->vmo());
  599. size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
  600. auto vmo = adopt(*new VMObject(move(vnode), size));
  601. vmo->vnode()->set_vmo(vmo.ptr());
  602. return vmo;
  603. }
  604. RetainPtr<VMObject> VMObject::create_anonymous(size_t size)
  605. {
  606. size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
  607. return adopt(*new VMObject(size));
  608. }
  609. RetainPtr<VMObject> VMObject::clone()
  610. {
  611. return adopt(*new VMObject(*this));
  612. }
  613. VMObject::VMObject(VMObject& other)
  614. : m_name(other.m_name)
  615. , m_anonymous(other.m_anonymous)
  616. , m_vnode_offset(other.m_vnode_offset)
  617. , m_size(other.m_size)
  618. , m_vnode(other.m_vnode)
  619. , m_physical_pages(other.m_physical_pages)
  620. {
  621. MM.register_vmo(*this);
  622. }
  623. VMObject::VMObject(size_t size)
  624. : m_anonymous(true)
  625. , m_size(size)
  626. {
  627. MM.register_vmo(*this);
  628. m_physical_pages.resize(page_count());
  629. }
  630. VMObject::VMObject(RetainPtr<VirtualFileSystem::Node>&& vnode, size_t size)
  631. : m_size(size)
  632. , m_vnode(move(vnode))
  633. {
  634. m_physical_pages.resize(page_count());
  635. MM.register_vmo(*this);
  636. }
  637. VMObject::~VMObject()
  638. {
  639. if (m_vnode) {
  640. ASSERT(m_vnode->vmo() == this);
  641. m_vnode->set_vmo(nullptr);
  642. }
  643. MM.unregister_vmo(*this);
  644. }
  645. int Region::commit(Process& process)
  646. {
  647. InterruptDisabler disabler;
  648. #ifdef MM_DEBUG
  649. dbgprintf("MM: commit %u pages in at L%x\n", vmo().page_count(), linearAddress.get());
  650. #endif
  651. for (size_t i = first_page_index(); i <= last_page_index(); ++i) {
  652. if (!vmo().physical_pages()[i].is_null())
  653. continue;
  654. auto physical_page = MM.allocate_physical_page();
  655. if (!physical_page) {
  656. kprintf("MM: commit was unable to allocate a physical page\n");
  657. return -ENOMEM;
  658. }
  659. vmo().physical_pages()[i] = move(physical_page);
  660. MM.remap_region_page(process.m_page_directory, *this, i, true);
  661. }
  662. return 0;
  663. }
  664. void MemoryManager::register_vmo(VMObject& vmo)
  665. {
  666. InterruptDisabler disabler;
  667. m_vmos.set(&vmo);
  668. }
  669. void MemoryManager::unregister_vmo(VMObject& vmo)
  670. {
  671. InterruptDisabler disabler;
  672. m_vmos.remove(&vmo);
  673. }
  674. void MemoryManager::register_region(Region& region)
  675. {
  676. InterruptDisabler disabler;
  677. m_regions.set(&region);
  678. }
  679. void MemoryManager::unregister_region(Region& region)
  680. {
  681. InterruptDisabler disabler;
  682. m_regions.remove(&region);
  683. }
  684. inline bool PageDirectory::is_active() const
  685. {
  686. return &current->page_directory() == this;
  687. }