Thread.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559
  1. #include <Kernel/FileSystem/FileDescription.h>
  2. #include <Kernel/Process.h>
  3. #include <Kernel/Scheduler.h>
  4. #include <Kernel/Thread.h>
  5. #include <Kernel/VM/MemoryManager.h>
  6. #include <LibC/signal_numbers.h>
  7. //#define SIGNAL_DEBUG
  8. HashTable<Thread*>& thread_table()
  9. {
  10. ASSERT_INTERRUPTS_DISABLED();
  11. static HashTable<Thread*>* table;
  12. if (!table)
  13. table = new HashTable<Thread*>;
  14. return *table;
  15. }
  16. Thread::SchedulerThreadList* Thread::g_runnable_threads;
  17. Thread::SchedulerThreadList* Thread::g_nonrunnable_threads;
  18. static const u32 default_kernel_stack_size = 65536;
  19. static const u32 default_userspace_stack_size = 65536;
  20. Thread::Thread(Process& process)
  21. : m_process(process)
  22. , m_tid(process.m_next_tid++)
  23. {
  24. dbgprintf("Thread{%p}: New thread TID=%u in %s(%u)\n", this, m_tid, process.name().characters(), process.pid());
  25. set_default_signal_dispositions();
  26. m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  27. memset(&m_tss, 0, sizeof(m_tss));
  28. // Only IF is set when a process boots.
  29. m_tss.eflags = 0x0202;
  30. u16 cs, ds, ss;
  31. if (m_process.is_ring0()) {
  32. cs = 0x08;
  33. ds = 0x10;
  34. ss = 0x10;
  35. } else {
  36. cs = 0x1b;
  37. ds = 0x23;
  38. ss = 0x23;
  39. }
  40. m_tss.ds = ds;
  41. m_tss.es = ds;
  42. m_tss.fs = ds;
  43. m_tss.gs = ds;
  44. m_tss.ss = ss;
  45. m_tss.cs = cs;
  46. m_tss.cr3 = m_process.page_directory().cr3();
  47. if (m_process.is_ring0()) {
  48. // FIXME: This memory is leaked.
  49. // But uh, there's also no kernel process termination, so I guess it's not technically leaked...
  50. m_kernel_stack_base = (u32)kmalloc_eternal(default_kernel_stack_size);
  51. m_tss.esp = (m_kernel_stack_base + default_kernel_stack_size) & 0xfffffff8u;
  52. } else {
  53. // Ring3 processes need a separate stack for Ring0.
  54. m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid));
  55. m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
  56. m_tss.ss0 = 0x10;
  57. m_tss.esp0 = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
  58. }
  59. // HACK: Ring2 SS in the TSS is the current PID.
  60. m_tss.ss2 = m_process.pid();
  61. m_far_ptr.offset = 0x98765432;
  62. if (m_process.pid() != 0) {
  63. InterruptDisabler disabler;
  64. thread_table().set(this);
  65. g_nonrunnable_threads->append(*this);
  66. }
  67. }
  68. Thread::~Thread()
  69. {
  70. dbgprintf("~Thread{%p}\n", this);
  71. kfree_aligned(m_fpu_state);
  72. {
  73. InterruptDisabler disabler;
  74. thread_table().remove(this);
  75. }
  76. if (g_last_fpu_thread == this)
  77. g_last_fpu_thread = nullptr;
  78. if (selector())
  79. gdt_free_entry(selector());
  80. }
  81. void Thread::unblock()
  82. {
  83. if (current == this) {
  84. set_state(Thread::Running);
  85. return;
  86. }
  87. ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
  88. set_state(Thread::Runnable);
  89. }
  90. void Thread::block_helper()
  91. {
  92. // This function mostly exists to avoid circular header dependencies. If
  93. // anything needs adding, think carefully about whether it belongs in
  94. // block() instead. Remember that we're unlocking here, so be very careful
  95. // about altering any state once we're unlocked!
  96. bool did_unlock = process().big_lock().unlock_if_locked();
  97. Scheduler::yield();
  98. if (did_unlock)
  99. process().big_lock().lock();
  100. }
  101. u64 Thread::sleep(u32 ticks)
  102. {
  103. ASSERT(state() == Thread::Running);
  104. u64 wakeup_time = g_uptime + ticks;
  105. auto ret = current->block<Thread::SleepBlocker>(wakeup_time);
  106. if (wakeup_time > g_uptime) {
  107. ASSERT(ret == Thread::BlockResult::InterruptedBySignal);
  108. }
  109. return wakeup_time;
  110. }
  111. const char* Thread::state_string() const
  112. {
  113. switch (state()) {
  114. case Thread::Invalid:
  115. return "Invalid";
  116. case Thread::Runnable:
  117. return "Runnable";
  118. case Thread::Running:
  119. return "Running";
  120. case Thread::Dying:
  121. return "Dying";
  122. case Thread::Dead:
  123. return "Dead";
  124. case Thread::Stopped:
  125. return "Stopped";
  126. case Thread::Skip1SchedulerPass:
  127. return "Skip1";
  128. case Thread::Skip0SchedulerPasses:
  129. return "Skip0";
  130. case Thread::Blocked:
  131. ASSERT(m_blocker);
  132. return m_blocker->state_string();
  133. }
  134. kprintf("to_string(Thread::State): Invalid state: %u\n", state());
  135. ASSERT_NOT_REACHED();
  136. return nullptr;
  137. }
  138. void Thread::finalize()
  139. {
  140. dbgprintf("Finalizing Thread %u in %s(%u)\n", tid(), m_process.name().characters(), pid());
  141. set_state(Thread::State::Dead);
  142. if (this == &m_process.main_thread())
  143. m_process.finalize();
  144. }
  145. void Thread::finalize_dying_threads()
  146. {
  147. Vector<Thread*, 32> dying_threads;
  148. {
  149. InterruptDisabler disabler;
  150. for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
  151. dying_threads.append(&thread);
  152. return IterationDecision::Continue;
  153. });
  154. }
  155. for (auto* thread : dying_threads)
  156. thread->finalize();
  157. }
  158. bool Thread::tick()
  159. {
  160. ++m_ticks;
  161. if (tss().cs & 3)
  162. ++m_process.m_ticks_in_user;
  163. else
  164. ++m_process.m_ticks_in_kernel;
  165. return --m_ticks_left;
  166. }
  167. void Thread::send_signal(u8 signal, Process* sender)
  168. {
  169. ASSERT(signal < 32);
  170. InterruptDisabler disabler;
  171. // FIXME: Figure out what to do for masked signals. Should we also ignore them here?
  172. if (should_ignore_signal(signal)) {
  173. dbg() << "signal " << signal << " was ignored by " << process();
  174. return;
  175. }
  176. if (sender)
  177. dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, process().name().characters(), pid());
  178. else
  179. dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, process().name().characters(), pid());
  180. m_pending_signals |= 1 << signal;
  181. }
  182. bool Thread::has_unmasked_pending_signals() const
  183. {
  184. return m_pending_signals & ~m_signal_mask;
  185. }
  186. ShouldUnblockThread Thread::dispatch_one_pending_signal()
  187. {
  188. ASSERT_INTERRUPTS_DISABLED();
  189. u32 signal_candidates = m_pending_signals & ~m_signal_mask;
  190. ASSERT(signal_candidates);
  191. u8 signal = 0;
  192. for (; signal < 32; ++signal) {
  193. if (signal_candidates & (1 << signal)) {
  194. break;
  195. }
  196. }
  197. return dispatch_signal(signal);
  198. }
  199. enum class DefaultSignalAction {
  200. Terminate,
  201. Ignore,
  202. DumpCore,
  203. Stop,
  204. Continue,
  205. };
  206. DefaultSignalAction default_signal_action(u8 signal)
  207. {
  208. ASSERT(signal && signal < NSIG);
  209. switch (signal) {
  210. case SIGHUP:
  211. case SIGINT:
  212. case SIGKILL:
  213. case SIGPIPE:
  214. case SIGALRM:
  215. case SIGUSR1:
  216. case SIGUSR2:
  217. case SIGVTALRM:
  218. case SIGSTKFLT:
  219. case SIGIO:
  220. case SIGPROF:
  221. case SIGTERM:
  222. case SIGPWR:
  223. return DefaultSignalAction::Terminate;
  224. case SIGCHLD:
  225. case SIGURG:
  226. case SIGWINCH:
  227. return DefaultSignalAction::Ignore;
  228. case SIGQUIT:
  229. case SIGILL:
  230. case SIGTRAP:
  231. case SIGABRT:
  232. case SIGBUS:
  233. case SIGFPE:
  234. case SIGSEGV:
  235. case SIGXCPU:
  236. case SIGXFSZ:
  237. case SIGSYS:
  238. return DefaultSignalAction::DumpCore;
  239. case SIGCONT:
  240. return DefaultSignalAction::Continue;
  241. case SIGSTOP:
  242. case SIGTSTP:
  243. case SIGTTIN:
  244. case SIGTTOU:
  245. return DefaultSignalAction::Stop;
  246. }
  247. ASSERT_NOT_REACHED();
  248. }
  249. bool Thread::should_ignore_signal(u8 signal) const
  250. {
  251. ASSERT(signal < 32);
  252. auto& action = m_signal_action_data[signal];
  253. if (action.handler_or_sigaction.is_null())
  254. return default_signal_action(signal) == DefaultSignalAction::Ignore;
  255. if (action.handler_or_sigaction.as_ptr() == SIG_IGN)
  256. return true;
  257. return false;
  258. }
  259. ShouldUnblockThread Thread::dispatch_signal(u8 signal)
  260. {
  261. ASSERT_INTERRUPTS_DISABLED();
  262. ASSERT(signal < 32);
  263. #ifdef SIGNAL_DEBUG
  264. kprintf("dispatch_signal %s(%u) <- %u\n", process().name().characters(), pid(), signal);
  265. #endif
  266. auto& action = m_signal_action_data[signal];
  267. // FIXME: Implement SA_SIGINFO signal handlers.
  268. ASSERT(!(action.flags & SA_SIGINFO));
  269. // Mark this signal as handled.
  270. m_pending_signals &= ~(1 << signal);
  271. if (signal == SIGSTOP) {
  272. set_state(Stopped);
  273. return ShouldUnblockThread::No;
  274. }
  275. if (signal == SIGCONT && state() == Stopped)
  276. set_state(Runnable);
  277. auto handler_vaddr = action.handler_or_sigaction;
  278. if (handler_vaddr.is_null()) {
  279. switch (default_signal_action(signal)) {
  280. case DefaultSignalAction::Stop:
  281. set_state(Stopped);
  282. return ShouldUnblockThread::No;
  283. case DefaultSignalAction::DumpCore:
  284. case DefaultSignalAction::Terminate:
  285. m_process.terminate_due_to_signal(signal);
  286. return ShouldUnblockThread::No;
  287. case DefaultSignalAction::Ignore:
  288. ASSERT_NOT_REACHED();
  289. case DefaultSignalAction::Continue:
  290. return ShouldUnblockThread::Yes;
  291. }
  292. ASSERT_NOT_REACHED();
  293. }
  294. if (handler_vaddr.as_ptr() == SIG_IGN) {
  295. #ifdef SIGNAL_DEBUG
  296. kprintf("%s(%u) ignored signal %u\n", process().name().characters(), pid(), signal);
  297. #endif
  298. return ShouldUnblockThread::Yes;
  299. }
  300. u32 old_signal_mask = m_signal_mask;
  301. u32 new_signal_mask = action.mask;
  302. if (action.flags & SA_NODEFER)
  303. new_signal_mask &= ~(1 << signal);
  304. else
  305. new_signal_mask |= 1 << signal;
  306. m_signal_mask |= new_signal_mask;
  307. Scheduler::prepare_to_modify_tss(*this);
  308. u16 ret_cs = m_tss.cs;
  309. u32 ret_eip = m_tss.eip;
  310. u32 ret_eflags = m_tss.eflags;
  311. bool interrupting_in_kernel = (ret_cs & 3) == 0;
  312. ProcessPagingScope paging_scope(m_process);
  313. if (interrupting_in_kernel) {
  314. #ifdef SIGNAL_DEBUG
  315. kprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", process().name().characters(), pid(), to_string(state()), ret_cs, ret_eip);
  316. #endif
  317. ASSERT(is_blocked());
  318. m_tss_to_resume_kernel = make<TSS32>(m_tss);
  319. #ifdef SIGNAL_DEBUG
  320. kprintf("resume tss pc: %w:%x stack: %w:%x flags: %x cr3: %x\n", m_tss_to_resume_kernel->cs, m_tss_to_resume_kernel->eip, m_tss_to_resume_kernel->ss, m_tss_to_resume_kernel->esp, m_tss_to_resume_kernel->eflags, m_tss_to_resume_kernel->cr3);
  321. #endif
  322. if (!m_signal_stack_user_region) {
  323. m_signal_stack_user_region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, String::format("User Signal Stack (Thread %d)", m_tid));
  324. ASSERT(m_signal_stack_user_region);
  325. }
  326. if (!m_kernel_stack_for_signal_handler_region)
  327. m_kernel_stack_for_signal_handler_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Signal Stack (Thread %d)", m_tid));
  328. m_tss.ss = 0x23;
  329. m_tss.esp = m_signal_stack_user_region->vaddr().offset(default_userspace_stack_size).get();
  330. m_tss.ss0 = 0x10;
  331. m_tss.esp0 = m_kernel_stack_for_signal_handler_region->vaddr().offset(default_kernel_stack_size).get();
  332. push_value_on_stack(0);
  333. } else {
  334. push_value_on_stack(ret_eip);
  335. push_value_on_stack(ret_eflags);
  336. // PUSHA
  337. u32 old_esp = m_tss.esp;
  338. push_value_on_stack(m_tss.eax);
  339. push_value_on_stack(m_tss.ecx);
  340. push_value_on_stack(m_tss.edx);
  341. push_value_on_stack(m_tss.ebx);
  342. push_value_on_stack(old_esp);
  343. push_value_on_stack(m_tss.ebp);
  344. push_value_on_stack(m_tss.esi);
  345. push_value_on_stack(m_tss.edi);
  346. // Align the stack.
  347. m_tss.esp -= 12;
  348. }
  349. // PUSH old_signal_mask
  350. push_value_on_stack(old_signal_mask);
  351. m_tss.cs = 0x1b;
  352. m_tss.ds = 0x23;
  353. m_tss.es = 0x23;
  354. m_tss.fs = 0x23;
  355. m_tss.gs = 0x23;
  356. m_tss.eip = handler_vaddr.get();
  357. // FIXME: Should we worry about the stack being 16 byte aligned when entering a signal handler?
  358. push_value_on_stack(signal);
  359. if (interrupting_in_kernel)
  360. push_value_on_stack(g_return_to_ring0_from_signal_trampoline.get());
  361. else
  362. push_value_on_stack(g_return_to_ring3_from_signal_trampoline.get());
  363. ASSERT((m_tss.esp % 16) == 0);
  364. // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
  365. set_state(Skip1SchedulerPass);
  366. #ifdef SIGNAL_DEBUG
  367. kprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", process().name().characters(), pid(), to_string(state()), m_tss.cs, m_tss.eip);
  368. #endif
  369. return ShouldUnblockThread::Yes;
  370. }
  371. void Thread::set_default_signal_dispositions()
  372. {
  373. // FIXME: Set up all the right default actions. See signal(7).
  374. memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
  375. m_signal_action_data[SIGCHLD].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
  376. m_signal_action_data[SIGWINCH].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
  377. }
  378. void Thread::push_value_on_stack(u32 value)
  379. {
  380. m_tss.esp -= 4;
  381. u32* stack_ptr = (u32*)m_tss.esp;
  382. *stack_ptr = value;
  383. }
  384. void Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment)
  385. {
  386. auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, "Stack (Main thread)");
  387. ASSERT(region);
  388. m_tss.esp = region->vaddr().offset(default_userspace_stack_size).get();
  389. char* stack_base = (char*)region->vaddr().get();
  390. int argc = arguments.size();
  391. char** argv = (char**)stack_base;
  392. char** env = argv + arguments.size() + 1;
  393. char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));
  394. size_t total_blob_size = 0;
  395. for (auto& a : arguments)
  396. total_blob_size += a.length() + 1;
  397. for (auto& e : environment)
  398. total_blob_size += e.length() + 1;
  399. size_t total_meta_size = sizeof(char*) * (arguments.size() + 1) + sizeof(char*) * (environment.size() + 1);
  400. // FIXME: It would be better if this didn't make us panic.
  401. ASSERT((total_blob_size + total_meta_size) < default_userspace_stack_size);
  402. for (int i = 0; i < arguments.size(); ++i) {
  403. argv[i] = bufptr;
  404. memcpy(bufptr, arguments[i].characters(), arguments[i].length());
  405. bufptr += arguments[i].length();
  406. *(bufptr++) = '\0';
  407. }
  408. argv[arguments.size()] = nullptr;
  409. for (int i = 0; i < environment.size(); ++i) {
  410. env[i] = bufptr;
  411. memcpy(bufptr, environment[i].characters(), environment[i].length());
  412. bufptr += environment[i].length();
  413. *(bufptr++) = '\0';
  414. }
  415. env[environment.size()] = nullptr;
  416. // NOTE: The stack needs to be 16-byte aligned.
  417. push_value_on_stack((u32)env);
  418. push_value_on_stack((u32)argv);
  419. push_value_on_stack((u32)argc);
  420. push_value_on_stack(0);
  421. }
  422. void Thread::make_userspace_stack_for_secondary_thread(void* argument)
  423. {
  424. auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, String::format("Stack (Thread %d)", tid()));
  425. ASSERT(region);
  426. m_tss.esp = region->vaddr().offset(default_userspace_stack_size).get();
  427. // NOTE: The stack needs to be 16-byte aligned.
  428. push_value_on_stack((u32)argument);
  429. push_value_on_stack(0);
  430. }
  431. Thread* Thread::clone(Process& process)
  432. {
  433. auto* clone = new Thread(process);
  434. memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
  435. clone->m_signal_mask = m_signal_mask;
  436. clone->m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  437. memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
  438. clone->m_has_used_fpu = m_has_used_fpu;
  439. return clone;
  440. }
  441. void Thread::initialize()
  442. {
  443. g_runnable_threads = new SchedulerThreadList;
  444. g_nonrunnable_threads = new SchedulerThreadList;
  445. Scheduler::initialize();
  446. }
  447. Vector<Thread*> Thread::all_threads()
  448. {
  449. Vector<Thread*> threads;
  450. InterruptDisabler disabler;
  451. threads.ensure_capacity(thread_table().size());
  452. for (auto* thread : thread_table())
  453. threads.unchecked_append(thread);
  454. return threads;
  455. }
  456. bool Thread::is_thread(void* ptr)
  457. {
  458. ASSERT_INTERRUPTS_DISABLED();
  459. return thread_table().contains((Thread*)ptr);
  460. }
  461. void Thread::set_state(State new_state)
  462. {
  463. InterruptDisabler disabler;
  464. if (new_state == Blocked) {
  465. // we should always have an m_blocker while blocked
  466. ASSERT(m_blocker != nullptr);
  467. }
  468. m_state = new_state;
  469. if (m_process.pid() != 0) {
  470. SchedulerThreadList* list = nullptr;
  471. if (is_runnable_state(new_state))
  472. list = g_runnable_threads;
  473. else
  474. list = g_nonrunnable_threads;
  475. if (list->contains(*this))
  476. return;
  477. list->append(*this);
  478. }
  479. }