Date.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740
  1. /*
  2. * Copyright (c) 2020-2023, Linus Groh <linusg@serenityos.org>
  3. * Copyright (c) 2022-2023, Tim Flynn <trflynn89@serenityos.org>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/NumericLimits.h>
  8. #include <AK/StringBuilder.h>
  9. #include <AK/Time.h>
  10. #include <LibJS/Runtime/AbstractOperations.h>
  11. #include <LibJS/Runtime/Date.h>
  12. #include <LibJS/Runtime/GlobalObject.h>
  13. #include <LibJS/Runtime/Temporal/ISO8601.h>
  14. #include <LibTimeZone/TimeZone.h>
  15. #include <LibUnicode/TimeZone.h>
  16. #include <time.h>
  17. namespace JS {
  18. JS_DEFINE_ALLOCATOR(Date);
  19. static Crypto::SignedBigInteger const s_one_billion_bigint { 1'000'000'000 };
  20. static Crypto::SignedBigInteger const s_one_million_bigint { 1'000'000 };
  21. static Crypto::SignedBigInteger const s_one_thousand_bigint { 1'000 };
  22. Crypto::SignedBigInteger const ns_per_day_bigint { static_cast<i64>(ns_per_day) };
  23. NonnullGCPtr<Date> Date::create(Realm& realm, double date_value)
  24. {
  25. return realm.heap().allocate<Date>(realm, date_value, realm.intrinsics().date_prototype());
  26. }
  27. Date::Date(double date_value, Object& prototype)
  28. : Object(ConstructWithPrototypeTag::Tag, prototype)
  29. , m_date_value(date_value)
  30. {
  31. }
  32. Date::~Date() = default;
  33. ErrorOr<String> Date::iso_date_string() const
  34. {
  35. int year = year_from_time(m_date_value);
  36. StringBuilder builder;
  37. if (year < 0)
  38. builder.appendff("-{:06}", -year);
  39. else if (year > 9999)
  40. builder.appendff("+{:06}", year);
  41. else
  42. builder.appendff("{:04}", year);
  43. builder.append('-');
  44. builder.appendff("{:02}", month_from_time(m_date_value) + 1);
  45. builder.append('-');
  46. builder.appendff("{:02}", date_from_time(m_date_value));
  47. builder.append('T');
  48. builder.appendff("{:02}", hour_from_time(m_date_value));
  49. builder.append(':');
  50. builder.appendff("{:02}", min_from_time(m_date_value));
  51. builder.append(':');
  52. builder.appendff("{:02}", sec_from_time(m_date_value));
  53. builder.append('.');
  54. builder.appendff("{:03}", ms_from_time(m_date_value));
  55. builder.append('Z');
  56. return builder.to_string();
  57. }
  58. // 21.4.1.3 Day ( t ), https://tc39.es/ecma262/#sec-day
  59. double day(double time_value)
  60. {
  61. // 1. Return 𝔽(floor(ℝ(t / msPerDay))).
  62. return floor(time_value / ms_per_day);
  63. }
  64. // 21.4.1.4 TimeWithinDay ( t ), https://tc39.es/ecma262/#sec-timewithinday
  65. double time_within_day(double time)
  66. {
  67. // 1. Return 𝔽(ℝ(t) modulo ℝ(msPerDay)).
  68. return modulo(time, ms_per_day);
  69. }
  70. // 21.4.1.5 DaysInYear ( y ), https://tc39.es/ecma262/#sec-daysinyear
  71. u16 days_in_year(i32 y)
  72. {
  73. // 1. Let ry be ℝ(y).
  74. auto ry = static_cast<double>(y);
  75. // 2. If (ry modulo 400) = 0, return 366𝔽.
  76. if (modulo(ry, 400.0) == 0)
  77. return 366;
  78. // 3. If (ry modulo 100) = 0, return 365𝔽.
  79. if (modulo(ry, 100.0) == 0)
  80. return 365;
  81. // 4. If (ry modulo 4) = 0, return 366𝔽.
  82. if (modulo(ry, 4.0) == 0)
  83. return 366;
  84. // 5. Return 365𝔽.
  85. return 365;
  86. }
  87. // 21.4.1.6 DayFromYear ( y ), https://tc39.es/ecma262/#sec-dayfromyear
  88. double day_from_year(i32 y)
  89. {
  90. // 1. Let ry be ℝ(y).
  91. auto ry = static_cast<double>(y);
  92. // 2. NOTE: In the following steps, each _numYearsN_ is the number of years divisible by N that occur between the
  93. // epoch and the start of year y. (The number is negative if y is before the epoch.)
  94. // 3. Let numYears1 be (ry - 1970).
  95. auto num_years_1 = ry - 1970;
  96. // 4. Let numYears4 be floor((ry - 1969) / 4).
  97. auto num_years_4 = floor((ry - 1969) / 4.0);
  98. // 5. Let numYears100 be floor((ry - 1901) / 100).
  99. auto num_years_100 = floor((ry - 1901) / 100.0);
  100. // 6. Let numYears400 be floor((ry - 1601) / 400).
  101. auto num_years_400 = floor((ry - 1601) / 400.0);
  102. // 7. Return 𝔽(365 × numYears1 + numYears4 - numYears100 + numYears400).
  103. return 365.0 * num_years_1 + num_years_4 - num_years_100 + num_years_400;
  104. }
  105. // 21.4.1.7 TimeFromYear ( y ), https://tc39.es/ecma262/#sec-timefromyear
  106. double time_from_year(i32 y)
  107. {
  108. // 1. Return msPerDay × DayFromYear(y).
  109. return ms_per_day * day_from_year(y);
  110. }
  111. // 21.4.1.8 YearFromTime ( t ), https://tc39.es/ecma262/#sec-yearfromtime
  112. i32 year_from_time(double t)
  113. {
  114. // 1. Return the largest integral Number y (closest to +∞) such that TimeFromYear(y) ≤ t.
  115. if (!Value(t).is_finite_number())
  116. return NumericLimits<i32>::max();
  117. // Approximation using average number of milliseconds per year. We might have to adjust this guess afterwards.
  118. auto year = static_cast<i32>(floor(t / (365.2425 * ms_per_day) + 1970));
  119. auto year_t = time_from_year(year);
  120. if (year_t > t)
  121. year--;
  122. else if (year_t + days_in_year(year) * ms_per_day <= t)
  123. year++;
  124. return year;
  125. }
  126. // 21.4.1.9 DayWithinYear ( t ), https://tc39.es/ecma262/#sec-daywithinyear
  127. u16 day_within_year(double t)
  128. {
  129. if (!Value(t).is_finite_number())
  130. return 0;
  131. // 1. Return Day(t) - DayFromYear(YearFromTime(t)).
  132. return static_cast<u16>(day(t) - day_from_year(year_from_time(t)));
  133. }
  134. // 21.4.1.10 InLeapYear ( t ), https://tc39.es/ecma262/#sec-inleapyear
  135. bool in_leap_year(double t)
  136. {
  137. // 1. If DaysInYear(YearFromTime(t)) is 366𝔽, return 1𝔽; else return +0𝔽.
  138. return days_in_year(year_from_time(t)) == 366;
  139. }
  140. // 21.4.1.11 MonthFromTime ( t ), https://tc39.es/ecma262/#sec-monthfromtime
  141. u8 month_from_time(double t)
  142. {
  143. // 1. Let inLeapYear be InLeapYear(t).
  144. auto in_leap_year = static_cast<unsigned>(JS::in_leap_year(t));
  145. // 2. Let dayWithinYear be DayWithinYear(t).
  146. auto day_within_year = JS::day_within_year(t);
  147. // 3. If dayWithinYear < 31𝔽, return +0𝔽.
  148. if (day_within_year < 31)
  149. return 0;
  150. // 4. If dayWithinYear < 59𝔽 + inLeapYear, return 1𝔽.
  151. if (day_within_year < (59 + in_leap_year))
  152. return 1;
  153. // 5. If dayWithinYear < 90𝔽 + inLeapYear, return 2𝔽.
  154. if (day_within_year < (90 + in_leap_year))
  155. return 2;
  156. // 6. If dayWithinYear < 120𝔽 + inLeapYear, return 3𝔽.
  157. if (day_within_year < (120 + in_leap_year))
  158. return 3;
  159. // 7. If dayWithinYear < 151𝔽 + inLeapYear, return 4𝔽.
  160. if (day_within_year < (151 + in_leap_year))
  161. return 4;
  162. // 8. If dayWithinYear < 181𝔽 + inLeapYear, return 5𝔽.
  163. if (day_within_year < (181 + in_leap_year))
  164. return 5;
  165. // 9. If dayWithinYear < 212𝔽 + inLeapYear, return 6𝔽.
  166. if (day_within_year < (212 + in_leap_year))
  167. return 6;
  168. // 10. If dayWithinYear < 243𝔽 + inLeapYear, return 7𝔽.
  169. if (day_within_year < (243 + in_leap_year))
  170. return 7;
  171. // 11. If dayWithinYear < 273𝔽 + inLeapYear, return 8𝔽.
  172. if (day_within_year < (273 + in_leap_year))
  173. return 8;
  174. // 12. If dayWithinYear < 304𝔽 + inLeapYear, return 9𝔽.
  175. if (day_within_year < (304 + in_leap_year))
  176. return 9;
  177. // 13. If dayWithinYear < 334𝔽 + inLeapYear, return 10𝔽.
  178. if (day_within_year < (334 + in_leap_year))
  179. return 10;
  180. // 14. Assert: dayWithinYear < 365𝔽 + inLeapYear.
  181. VERIFY(day_within_year < (365 + in_leap_year));
  182. // 15. Return 11𝔽.
  183. return 11;
  184. }
  185. // 21.4.1.12 DateFromTime ( t ), https://tc39.es/ecma262/#sec-datefromtime
  186. u8 date_from_time(double t)
  187. {
  188. // 1. Let inLeapYear be InLeapYear(t).
  189. auto in_leap_year = static_cast<unsigned>(JS::in_leap_year(t));
  190. // 2. Let dayWithinYear be DayWithinYear(t).
  191. auto day_within_year = JS::day_within_year(t);
  192. // 3. Let month be MonthFromTime(t).
  193. auto month = month_from_time(t);
  194. // 4. If month is +0𝔽, return dayWithinYear + 1𝔽.
  195. if (month == 0)
  196. return day_within_year + 1;
  197. // 5. If month is 1𝔽, return dayWithinYear - 30𝔽.
  198. if (month == 1)
  199. return day_within_year - 30;
  200. // 6. If month is 2𝔽, return dayWithinYear - 58𝔽 - inLeapYear.
  201. if (month == 2)
  202. return day_within_year - 58 - in_leap_year;
  203. // 7. If month is 3𝔽, return dayWithinYear - 89𝔽 - inLeapYear.
  204. if (month == 3)
  205. return day_within_year - 89 - in_leap_year;
  206. // 8. If month is 4𝔽, return dayWithinYear - 119𝔽 - inLeapYear.
  207. if (month == 4)
  208. return day_within_year - 119 - in_leap_year;
  209. // 9. If month is 5𝔽, return dayWithinYear - 150𝔽 - inLeapYear.
  210. if (month == 5)
  211. return day_within_year - 150 - in_leap_year;
  212. // 10. If month is 6𝔽, return dayWithinYear - 180𝔽 - inLeapYear.
  213. if (month == 6)
  214. return day_within_year - 180 - in_leap_year;
  215. // 11. If month is 7𝔽, return dayWithinYear - 211𝔽 - inLeapYear.
  216. if (month == 7)
  217. return day_within_year - 211 - in_leap_year;
  218. // 12. If month is 8𝔽, return dayWithinYear - 242𝔽 - inLeapYear.
  219. if (month == 8)
  220. return day_within_year - 242 - in_leap_year;
  221. // 13. If month is 9𝔽, return dayWithinYear - 272𝔽 - inLeapYear.
  222. if (month == 9)
  223. return day_within_year - 272 - in_leap_year;
  224. // 14. If month is 10𝔽, return dayWithinYear - 303𝔽 - inLeapYear.
  225. if (month == 10)
  226. return day_within_year - 303 - in_leap_year;
  227. // 15. Assert: month is 11𝔽.
  228. VERIFY(month == 11);
  229. // 16. Return dayWithinYear - 333𝔽 - inLeapYear.
  230. return day_within_year - 333 - in_leap_year;
  231. }
  232. // 21.4.1.13 WeekDay ( t ), https://tc39.es/ecma262/#sec-weekday
  233. u8 week_day(double t)
  234. {
  235. if (!Value(t).is_finite_number())
  236. return 0;
  237. // 1. Return 𝔽(ℝ(Day(t) + 4𝔽) modulo 7).
  238. return static_cast<u8>(modulo(day(t) + 4, 7));
  239. }
  240. // 21.4.1.14 HourFromTime ( t ), https://tc39.es/ecma262/#sec-hourfromtime
  241. u8 hour_from_time(double t)
  242. {
  243. if (!Value(t).is_finite_number())
  244. return 0;
  245. // 1. Return 𝔽(floor(ℝ(t / msPerHour)) modulo HoursPerDay).
  246. return static_cast<u8>(modulo(floor(t / ms_per_hour), hours_per_day));
  247. }
  248. // 21.4.1.15 MinFromTime ( t ), https://tc39.es/ecma262/#sec-minfromtime
  249. u8 min_from_time(double t)
  250. {
  251. if (!Value(t).is_finite_number())
  252. return 0;
  253. // 1. Return 𝔽(floor(ℝ(t / msPerMinute)) modulo MinutesPerHour).
  254. return static_cast<u8>(modulo(floor(t / ms_per_minute), minutes_per_hour));
  255. }
  256. // 21.4.1.16 SecFromTime ( t ), https://tc39.es/ecma262/#sec-secfromtime
  257. u8 sec_from_time(double t)
  258. {
  259. if (!Value(t).is_finite_number())
  260. return 0;
  261. // 1. Return 𝔽(floor(ℝ(t / msPerSecond)) modulo SecondsPerMinute).
  262. return static_cast<u8>(modulo(floor(t / ms_per_second), seconds_per_minute));
  263. }
  264. // 21.4.1.17 msFromTime ( t ), https://tc39.es/ecma262/#sec-msfromtime
  265. u16 ms_from_time(double t)
  266. {
  267. if (!Value(t).is_finite_number())
  268. return 0;
  269. // 1. Return 𝔽(ℝ(t) modulo ℝ(msPerSecond)).
  270. return static_cast<u16>(modulo(t, ms_per_second));
  271. }
  272. // 21.4.1.18 GetUTCEpochNanoseconds ( year, month, day, hour, minute, second, millisecond, microsecond, nanosecond ), https://tc39.es/ecma262/#sec-getutcepochnanoseconds
  273. Crypto::SignedBigInteger get_utc_epoch_nanoseconds(i32 year, u8 month, u8 day, u8 hour, u8 minute, u8 second, u16 millisecond, u16 microsecond, u16 nanosecond)
  274. {
  275. // 1. Let date be MakeDay(𝔽(year), 𝔽(month - 1), 𝔽(day)).
  276. auto date = make_day(year, month - 1, day);
  277. // 2. Let time be MakeTime(𝔽(hour), 𝔽(minute), 𝔽(second), 𝔽(millisecond)).
  278. auto time = make_time(hour, minute, second, millisecond);
  279. // 3. Let ms be MakeDate(date, time).
  280. auto ms = make_date(date, time);
  281. // 4. Assert: ms is an integral Number.
  282. VERIFY(ms == trunc(ms));
  283. // 5. Return ℤ(ℝ(ms) × 10^6 + microsecond × 10^3 + nanosecond).
  284. auto result = Crypto::SignedBigInteger { ms }.multiplied_by(s_one_million_bigint);
  285. result = result.plus(Crypto::SignedBigInteger { static_cast<i32>(microsecond) }.multiplied_by(s_one_thousand_bigint));
  286. result = result.plus(Crypto::SignedBigInteger { static_cast<i32>(nanosecond) });
  287. return result;
  288. }
  289. static i64 clip_bigint_to_sane_time(Crypto::SignedBigInteger const& value)
  290. {
  291. static Crypto::SignedBigInteger const min_bigint { NumericLimits<i64>::min() };
  292. static Crypto::SignedBigInteger const max_bigint { NumericLimits<i64>::max() };
  293. // The provided epoch (nano)seconds value is potentially out of range for AK::Duration and subsequently
  294. // get_time_zone_offset(). We can safely assume that the TZDB has no useful information that far
  295. // into the past and future anyway, so clamp it to the i64 range.
  296. if (value < min_bigint)
  297. return NumericLimits<i64>::min();
  298. if (value > max_bigint)
  299. return NumericLimits<i64>::max();
  300. // FIXME: Can we do this without string conversion?
  301. return value.to_base_deprecated(10).to_number<i64>().value();
  302. }
  303. // 21.4.1.20 GetNamedTimeZoneEpochNanoseconds ( timeZoneIdentifier, year, month, day, hour, minute, second, millisecond, microsecond, nanosecond ), https://tc39.es/ecma262/#sec-getnamedtimezoneepochnanoseconds
  304. Vector<Crypto::SignedBigInteger> get_named_time_zone_epoch_nanoseconds(StringView time_zone_identifier, i32 year, u8 month, u8 day, u8 hour, u8 minute, u8 second, u16 millisecond, u16 microsecond, u16 nanosecond)
  305. {
  306. auto local_nanoseconds = get_utc_epoch_nanoseconds(year, month, day, hour, minute, second, millisecond, microsecond, nanosecond);
  307. auto local_time = UnixDateTime::from_nanoseconds_since_epoch(clip_bigint_to_sane_time(local_nanoseconds));
  308. // FIXME: LibTimeZone does not behave exactly as the spec expects. It does not consider repeated or skipped time points.
  309. auto offset = TimeZone::get_time_zone_offset(time_zone_identifier, local_time);
  310. // Can only fail if the time zone identifier is invalid, which cannot be the case here.
  311. VERIFY(offset.has_value());
  312. return { local_nanoseconds.minus(Crypto::SignedBigInteger { offset->seconds }.multiplied_by(s_one_billion_bigint)) };
  313. }
  314. // 21.4.1.21 GetNamedTimeZoneOffsetNanoseconds ( timeZoneIdentifier, epochNanoseconds ), https://tc39.es/ecma262/#sec-getnamedtimezoneoffsetnanoseconds
  315. i64 get_named_time_zone_offset_nanoseconds(StringView time_zone_identifier, Crypto::SignedBigInteger const& epoch_nanoseconds)
  316. {
  317. // Only called with validated time zone identifier as argument.
  318. auto time_zone = TimeZone::time_zone_from_string(time_zone_identifier);
  319. VERIFY(time_zone.has_value());
  320. // Since UnixDateTime::from_seconds_since_epoch() and UnixDateTime::from_nanoseconds_since_epoch() both take an i64, converting to
  321. // seconds first gives us a greater range. The TZDB doesn't have sub-second offsets.
  322. auto seconds = epoch_nanoseconds.divided_by(s_one_billion_bigint).quotient;
  323. auto time = UnixDateTime::from_seconds_since_epoch(clip_bigint_to_sane_time(seconds));
  324. auto offset = TimeZone::get_time_zone_offset(*time_zone, time);
  325. VERIFY(offset.has_value());
  326. return offset->seconds * 1'000'000'000;
  327. }
  328. // 21.4.1.23 AvailableNamedTimeZoneIdentifiers ( ), https://tc39.es/ecma262/#sec-time-zone-identifier-record
  329. Vector<TimeZoneIdentifier> available_named_time_zone_identifiers()
  330. {
  331. // 1. If the implementation does not include local political rules for any time zones, then
  332. // a. Return « the Time Zone Identifier Record { [[Identifier]]: "UTC", [[PrimaryIdentifier]]: "UTC" } ».
  333. // NOTE: This step is not applicable as LibTimeZone will always return at least UTC, even if the TZDB is disabled.
  334. // 2. Let identifiers be the List of unique available named time zone identifiers.
  335. auto identifiers = TimeZone::all_time_zones();
  336. // 3. Sort identifiers into the same order as if an Array of the same values had been sorted using %Array.prototype.sort% with undefined as comparefn.
  337. // NOTE: LibTimeZone provides the identifiers already sorted.
  338. // 4. Let result be a new empty List.
  339. Vector<TimeZoneIdentifier> result;
  340. result.ensure_capacity(identifiers.size());
  341. bool found_utc = false;
  342. // 5. For each element identifier of identifiers, do
  343. for (auto identifier : identifiers) {
  344. // a. Let primary be identifier.
  345. auto primary = identifier.name;
  346. // b. If identifier is a non-primary time zone identifier in this implementation and identifier is not "UTC", then
  347. if (identifier.is_link == TimeZone::IsLink::Yes && identifier.name != "UTC"sv) {
  348. // i. Set primary to the primary time zone identifier associated with identifier.
  349. // ii. NOTE: An implementation may need to resolve identifier iteratively to obtain the primary time zone identifier.
  350. primary = TimeZone::canonicalize_time_zone(identifier.name).value();
  351. }
  352. // c. Let record be the Time Zone Identifier Record { [[Identifier]]: identifier, [[PrimaryIdentifier]]: primary }.
  353. TimeZoneIdentifier record { .identifier = identifier.name, .primary_identifier = primary };
  354. // d. Append record to result.
  355. result.unchecked_append(record);
  356. if (!found_utc && identifier.name == "UTC"sv && primary == "UTC"sv)
  357. found_utc = true;
  358. }
  359. // 6. Assert: result contains a Time Zone Identifier Record r such that r.[[Identifier]] is "UTC" and r.[[PrimaryIdentifier]] is "UTC".
  360. VERIFY(found_utc);
  361. // 7. Return result.
  362. return result;
  363. }
  364. // 21.4.1.24 SystemTimeZoneIdentifier ( ), https://tc39.es/ecma262/#sec-systemtimezoneidentifier
  365. String system_time_zone_identifier()
  366. {
  367. return Unicode::current_time_zone();
  368. }
  369. // 21.4.1.25 LocalTime ( t ), https://tc39.es/ecma262/#sec-localtime
  370. double local_time(double time)
  371. {
  372. // 1. Let systemTimeZoneIdentifier be SystemTimeZoneIdentifier().
  373. auto system_time_zone_identifier = JS::system_time_zone_identifier();
  374. double offset_nanoseconds { 0 };
  375. // 2. If IsTimeZoneOffsetString(systemTimeZoneIdentifier) is true, then
  376. if (is_time_zone_offset_string(system_time_zone_identifier)) {
  377. // a. Let offsetNs be ParseTimeZoneOffsetString(systemTimeZoneIdentifier).
  378. offset_nanoseconds = parse_time_zone_offset_string(system_time_zone_identifier);
  379. }
  380. // 3. Else,
  381. else {
  382. // a. Let offsetNs be GetNamedTimeZoneOffsetNanoseconds(systemTimeZoneIdentifier, ℤ(ℝ(t) × 10^6)).
  383. auto time_bigint = Crypto::SignedBigInteger { time }.multiplied_by(s_one_million_bigint);
  384. offset_nanoseconds = get_named_time_zone_offset_nanoseconds(system_time_zone_identifier, time_bigint);
  385. }
  386. // 4. Let offsetMs be truncate(offsetNs / 10^6).
  387. auto offset_milliseconds = trunc(offset_nanoseconds / 1e6);
  388. // 5. Return t + 𝔽(offsetMs).
  389. return time + offset_milliseconds;
  390. }
  391. // 21.4.1.26 UTC ( t ), https://tc39.es/ecma262/#sec-utc-t
  392. double utc_time(double time)
  393. {
  394. // 1. Let systemTimeZoneIdentifier be SystemTimeZoneIdentifier().
  395. auto system_time_zone_identifier = JS::system_time_zone_identifier();
  396. double offset_nanoseconds { 0 };
  397. // 2. If IsTimeZoneOffsetString(systemTimeZoneIdentifier) is true, then
  398. if (is_time_zone_offset_string(system_time_zone_identifier)) {
  399. // a. Let offsetNs be ParseTimeZoneOffsetString(systemTimeZoneIdentifier).
  400. offset_nanoseconds = parse_time_zone_offset_string(system_time_zone_identifier);
  401. }
  402. // 3. Else,
  403. else {
  404. // a. Let possibleInstants be GetNamedTimeZoneEpochNanoseconds(systemTimeZoneIdentifier, ℝ(YearFromTime(t)), ℝ(MonthFromTime(t)) + 1, ℝ(DateFromTime(t)), ℝ(HourFromTime(t)), ℝ(MinFromTime(t)), ℝ(SecFromTime(t)), ℝ(msFromTime(t)), 0, 0).
  405. auto possible_instants = get_named_time_zone_epoch_nanoseconds(system_time_zone_identifier, year_from_time(time), month_from_time(time) + 1, date_from_time(time), hour_from_time(time), min_from_time(time), sec_from_time(time), ms_from_time(time), 0, 0);
  406. // b. NOTE: The following steps ensure that when t represents local time repeating multiple times at a negative time zone transition (e.g. when the daylight saving time ends or the time zone offset is decreased due to a time zone rule change) or skipped local time at a positive time zone transition (e.g. when the daylight saving time starts or the time zone offset is increased due to a time zone rule change), t is interpreted using the time zone offset before the transition.
  407. Crypto::SignedBigInteger disambiguated_instant;
  408. // c. If possibleInstants is not empty, then
  409. if (!possible_instants.is_empty()) {
  410. // i. Let disambiguatedInstant be possibleInstants[0].
  411. disambiguated_instant = move(possible_instants.first());
  412. }
  413. // d. Else,
  414. else {
  415. // i. NOTE: t represents a local time skipped at a positive time zone transition (e.g. due to daylight saving time starting or a time zone rule change increasing the UTC offset).
  416. // ii. Let possibleInstantsBefore be GetNamedTimeZoneEpochNanoseconds(systemTimeZoneIdentifier, ℝ(YearFromTime(tBefore)), ℝ(MonthFromTime(tBefore)) + 1, ℝ(DateFromTime(tBefore)), ℝ(HourFromTime(tBefore)), ℝ(MinFromTime(tBefore)), ℝ(SecFromTime(tBefore)), ℝ(msFromTime(tBefore)), 0, 0), where tBefore is the largest integral Number < t for which possibleInstantsBefore is not empty (i.e., tBefore represents the last local time before the transition).
  417. // iii. Let disambiguatedInstant be the last element of possibleInstantsBefore.
  418. // FIXME: This branch currently cannot be reached with our implementation, because LibTimeZone does not handle skipped time points.
  419. // When GetNamedTimeZoneEpochNanoseconds is updated to use a LibTimeZone API which does handle them, implement these steps.
  420. VERIFY_NOT_REACHED();
  421. }
  422. // e. Let offsetNs be GetNamedTimeZoneOffsetNanoseconds(systemTimeZoneIdentifier, disambiguatedInstant).
  423. offset_nanoseconds = get_named_time_zone_offset_nanoseconds(system_time_zone_identifier, disambiguated_instant);
  424. }
  425. // 4. Let offsetMs be truncate(offsetNs / 10^6).
  426. auto offset_milliseconds = trunc(offset_nanoseconds / 1e6);
  427. // 5. Return t - 𝔽(offsetMs).
  428. return time - offset_milliseconds;
  429. }
  430. // 21.4.1.27 MakeTime ( hour, min, sec, ms ), https://tc39.es/ecma262/#sec-maketime
  431. double make_time(double hour, double min, double sec, double ms)
  432. {
  433. // 1. If hour is not finite or min is not finite or sec is not finite or ms is not finite, return NaN.
  434. if (!isfinite(hour) || !isfinite(min) || !isfinite(sec) || !isfinite(ms))
  435. return NAN;
  436. // 2. Let h be 𝔽(! ToIntegerOrInfinity(hour)).
  437. auto h = to_integer_or_infinity(hour);
  438. // 3. Let m be 𝔽(! ToIntegerOrInfinity(min)).
  439. auto m = to_integer_or_infinity(min);
  440. // 4. Let s be 𝔽(! ToIntegerOrInfinity(sec)).
  441. auto s = to_integer_or_infinity(sec);
  442. // 5. Let milli be 𝔽(! ToIntegerOrInfinity(ms)).
  443. auto milli = to_integer_or_infinity(ms);
  444. // 6. Let t be ((h * msPerHour + m * msPerMinute) + s * msPerSecond) + milli, performing the arithmetic according to IEEE 754-2019 rules (that is, as if using the ECMAScript operators * and +).
  445. // NOTE: C++ arithmetic abides by IEEE 754 rules
  446. auto t = ((h * ms_per_hour + m * ms_per_minute) + s * ms_per_second) + milli;
  447. // 7. Return t.
  448. return t;
  449. }
  450. // 21.4.1.28 MakeDay ( year, month, date ), https://tc39.es/ecma262/#sec-makeday
  451. double make_day(double year, double month, double date)
  452. {
  453. // 1. If year is not finite or month is not finite or date is not finite, return NaN.
  454. if (!isfinite(year) || !isfinite(month) || !isfinite(date))
  455. return NAN;
  456. // 2. Let y be 𝔽(! ToIntegerOrInfinity(year)).
  457. auto y = to_integer_or_infinity(year);
  458. // 3. Let m be 𝔽(! ToIntegerOrInfinity(month)).
  459. auto m = to_integer_or_infinity(month);
  460. // 4. Let dt be 𝔽(! ToIntegerOrInfinity(date)).
  461. auto dt = to_integer_or_infinity(date);
  462. // 5. Let ym be y + 𝔽(floor(ℝ(m) / 12)).
  463. auto ym = y + floor(m / 12);
  464. // 6. If ym is not finite, return NaN.
  465. if (!isfinite(ym))
  466. return NAN;
  467. // 7. Let mn be 𝔽(ℝ(m) modulo 12).
  468. auto mn = modulo(m, 12);
  469. // 8. Find a finite time value t such that YearFromTime(t) is ym and MonthFromTime(t) is mn and DateFromTime(t) is 1𝔽; but if this is not possible (because some argument is out of range), return NaN.
  470. if (!AK::is_within_range<int>(ym) || !AK::is_within_range<int>(mn + 1))
  471. return NAN;
  472. auto t = days_since_epoch(static_cast<int>(ym), static_cast<int>(mn) + 1, 1) * ms_per_day;
  473. // 9. Return Day(t) + dt - 1𝔽.
  474. return day(static_cast<double>(t)) + dt - 1;
  475. }
  476. // 21.4.1.29 MakeDate ( day, time ), https://tc39.es/ecma262/#sec-makedate
  477. double make_date(double day, double time)
  478. {
  479. // 1. If day is not finite or time is not finite, return NaN.
  480. if (!isfinite(day) || !isfinite(time))
  481. return NAN;
  482. // 2. Let tv be day × msPerDay + time.
  483. auto tv = day * ms_per_day + time;
  484. // 3. If tv is not finite, return NaN.
  485. if (!isfinite(tv))
  486. return NAN;
  487. // 4. Return tv.
  488. return tv;
  489. }
  490. // 21.4.1.31 TimeClip ( time ), https://tc39.es/ecma262/#sec-timeclip
  491. double time_clip(double time)
  492. {
  493. // 1. If time is not finite, return NaN.
  494. if (!isfinite(time))
  495. return NAN;
  496. // 2. If abs(ℝ(time)) > 8.64 × 10^15, return NaN.
  497. if (fabs(time) > 8.64E15)
  498. return NAN;
  499. // 3. Return 𝔽(! ToIntegerOrInfinity(time)).
  500. return to_integer_or_infinity(time);
  501. }
  502. // 21.4.1.33.1 IsTimeZoneOffsetString ( offsetString ), https://tc39.es/ecma262/#sec-istimezoneoffsetstring
  503. bool is_time_zone_offset_string(StringView offset_string)
  504. {
  505. // 1. Let parseResult be ParseText(StringToCodePoints(offsetString), UTCOffset).
  506. auto parse_result = Temporal::parse_iso8601(Temporal::Production::TimeZoneNumericUTCOffset, offset_string);
  507. // 2. If parseResult is a List of errors, return false.
  508. // 3. Return true.
  509. return parse_result.has_value();
  510. }
  511. // 21.4.1.33.2 ParseTimeZoneOffsetString ( offsetString ), https://tc39.es/ecma262/#sec-parsetimezoneoffsetstring
  512. double parse_time_zone_offset_string(StringView offset_string)
  513. {
  514. // 1. Let parseResult be ParseText(StringToCodePoints(offsetString), UTCOffset).
  515. auto parse_result = Temporal::parse_iso8601(Temporal::Production::TimeZoneNumericUTCOffset, offset_string);
  516. // 2. Assert: parseResult is not a List of errors.
  517. VERIFY(parse_result.has_value());
  518. // 3. Assert: parseResult contains a TemporalSign Parse Node.
  519. VERIFY(parse_result->time_zone_utc_offset_sign.has_value());
  520. // 4. Let parsedSign be the source text matched by the TemporalSign Parse Node contained within parseResult.
  521. auto parsed_sign = *parse_result->time_zone_utc_offset_sign;
  522. i8 sign { 0 };
  523. // 5. If parsedSign is the single code point U+002D (HYPHEN-MINUS) or U+2212 (MINUS SIGN), then
  524. if (parsed_sign.is_one_of("-"sv, "\xE2\x88\x92"sv)) {
  525. // a. Let sign be -1.
  526. sign = -1;
  527. }
  528. // 6. Else,
  529. else {
  530. // a. Let sign be 1.
  531. sign = 1;
  532. }
  533. // 7. NOTE: Applications of StringToNumber below do not lose precision, since each of the parsed values is guaranteed to be a sufficiently short string of decimal digits.
  534. // 8. Assert: parseResult contains an Hour Parse Node.
  535. VERIFY(parse_result->time_zone_utc_offset_hour.has_value());
  536. // 9. Let parsedHours be the source text matched by the Hour Parse Node contained within parseResult.
  537. auto parsed_hours = *parse_result->time_zone_utc_offset_hour;
  538. // 10. Let hours be ℝ(StringToNumber(CodePointsToString(parsedHours))).
  539. auto hours = string_to_number(parsed_hours);
  540. double minutes { 0 };
  541. double seconds { 0 };
  542. double nanoseconds { 0 };
  543. // 11. If parseResult does not contain a MinuteSecond Parse Node, then
  544. if (!parse_result->time_zone_utc_offset_minute.has_value()) {
  545. // a. Let minutes be 0.
  546. minutes = 0;
  547. }
  548. // 12. Else,
  549. else {
  550. // a. Let parsedMinutes be the source text matched by the first MinuteSecond Parse Node contained within parseResult.
  551. auto parsed_minutes = *parse_result->time_zone_utc_offset_minute;
  552. // b. Let minutes be ℝ(StringToNumber(CodePointsToString(parsedMinutes))).
  553. minutes = string_to_number(parsed_minutes);
  554. }
  555. // 13. If parseResult does not contain two MinuteSecond Parse Nodes, then
  556. if (!parse_result->time_zone_utc_offset_second.has_value()) {
  557. // a. Let seconds be 0.
  558. seconds = 0;
  559. }
  560. // 14. Else,
  561. else {
  562. // a. Let parsedSeconds be the source text matched by the second secondSecond Parse Node contained within parseResult.
  563. auto parsed_seconds = *parse_result->time_zone_utc_offset_second;
  564. // b. Let seconds be ℝ(StringToNumber(CodePointsToString(parsedSeconds))).
  565. seconds = string_to_number(parsed_seconds);
  566. }
  567. // 15. If parseResult does not contain a TemporalDecimalFraction Parse Node, then
  568. if (!parse_result->time_zone_utc_offset_fraction.has_value()) {
  569. // a. Let nanoseconds be 0.
  570. nanoseconds = 0;
  571. }
  572. // 16. Else,
  573. else {
  574. // a. Let parsedFraction be the source text matched by the TemporalDecimalFraction Parse Node contained within parseResult.
  575. auto parsed_fraction = *parse_result->time_zone_utc_offset_fraction;
  576. // b. Let fraction be the string-concatenation of CodePointsToString(parsedFraction) and "000000000".
  577. auto fraction = ByteString::formatted("{}000000000", parsed_fraction);
  578. // c. Let nanosecondsString be the substring of fraction from 1 to 10.
  579. auto nanoseconds_string = fraction.substring_view(1, 9);
  580. // d. Let nanoseconds be ℝ(StringToNumber(nanosecondsString)).
  581. nanoseconds = string_to_number(nanoseconds_string);
  582. }
  583. // 17. Return sign × (((hours × 60 + minutes) × 60 + seconds) × 10^9 + nanoseconds).
  584. // NOTE: Using scientific notation (1e9) ensures the result of this expression is a double,
  585. // which is important - otherwise it's all integers and the result overflows!
  586. return sign * (((hours * 60 + minutes) * 60 + seconds) * 1e9 + nanoseconds);
  587. }
  588. }