MathObject.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
  4. * All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without
  7. * modification, are permitted provided that the following conditions are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright notice, this
  10. * list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form must reproduce the above copyright notice,
  13. * this list of conditions and the following disclaimer in the documentation
  14. * and/or other materials provided with the distribution.
  15. *
  16. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  19. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  20. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  25. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. */
  27. #include <AK/FlyString.h>
  28. #include <AK/Function.h>
  29. #include <LibJS/Runtime/GlobalObject.h>
  30. #include <LibJS/Runtime/MathObject.h>
  31. #include <math.h>
  32. namespace JS {
  33. MathObject::MathObject(GlobalObject& global_object)
  34. : Object(*global_object.object_prototype())
  35. {
  36. }
  37. void MathObject::initialize(GlobalObject& global_object)
  38. {
  39. auto& vm = this->vm();
  40. Object::initialize(global_object);
  41. u8 attr = Attribute::Writable | Attribute::Configurable;
  42. define_native_function(vm.names.abs, abs, 1, attr);
  43. define_native_function(vm.names.random, random, 0, attr);
  44. define_native_function(vm.names.sqrt, sqrt, 1, attr);
  45. define_native_function(vm.names.floor, floor, 1, attr);
  46. define_native_function(vm.names.ceil, ceil, 1, attr);
  47. define_native_function(vm.names.round, round, 1, attr);
  48. define_native_function(vm.names.max, max, 2, attr);
  49. define_native_function(vm.names.min, min, 2, attr);
  50. define_native_function(vm.names.trunc, trunc, 1, attr);
  51. define_native_function(vm.names.sin, sin, 1, attr);
  52. define_native_function(vm.names.cos, cos, 1, attr);
  53. define_native_function(vm.names.tan, tan, 1, attr);
  54. define_native_function(vm.names.pow, pow, 2, attr);
  55. define_native_function(vm.names.exp, exp, 1, attr);
  56. define_native_function(vm.names.expm1, expm1, 1, attr);
  57. define_native_function(vm.names.sign, sign, 1, attr);
  58. define_native_function(vm.names.clz32, clz32, 1, attr);
  59. define_native_function(vm.names.acos, acos, 1, attr);
  60. define_native_function(vm.names.acosh, acosh, 1, attr);
  61. define_native_function(vm.names.asin, asin, 1, attr);
  62. define_native_function(vm.names.asinh, asinh, 1, attr);
  63. define_native_function(vm.names.atan, atan, 1, attr);
  64. define_native_function(vm.names.atanh, atanh, 1, attr);
  65. define_native_function(vm.names.log1p, log1p, 1, attr);
  66. define_native_function(vm.names.cbrt, cbrt, 1, attr);
  67. define_native_function(vm.names.atan2, atan2, 2, attr);
  68. define_native_function(vm.names.fround, fround, 1, attr);
  69. define_native_function(vm.names.hypot, hypot, 2, attr);
  70. define_native_function(vm.names.log, log, 1, attr);
  71. define_native_function(vm.names.log2, log2, 1, attr);
  72. define_native_function(vm.names.log10, log10, 1, attr);
  73. define_native_function(vm.names.sinh, sinh, 1, attr);
  74. define_native_function(vm.names.cosh, cosh, 1, attr);
  75. define_native_function(vm.names.tanh, tanh, 1, attr);
  76. define_property(vm.names.E, Value(M_E), 0);
  77. define_property(vm.names.LN2, Value(M_LN2), 0);
  78. define_property(vm.names.LN10, Value(M_LN10), 0);
  79. define_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
  80. define_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
  81. define_property(vm.names.PI, Value(M_PI), 0);
  82. define_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
  83. define_property(vm.names.SQRT2, Value(M_SQRT2), 0);
  84. define_property(vm.well_known_symbol_to_string_tag(), js_string(vm.heap(), "Math"), Attribute::Configurable);
  85. }
  86. MathObject::~MathObject()
  87. {
  88. }
  89. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  90. {
  91. auto number = vm.argument(0).to_number(global_object);
  92. if (vm.exception())
  93. return {};
  94. if (number.is_nan())
  95. return js_nan();
  96. return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
  97. }
  98. JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
  99. {
  100. #ifdef __serenity__
  101. double r = (double)arc4random() / (double)UINT32_MAX;
  102. #else
  103. double r = (double)rand() / (double)RAND_MAX;
  104. #endif
  105. return Value(r);
  106. }
  107. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  108. {
  109. auto number = vm.argument(0).to_number(global_object);
  110. if (vm.exception())
  111. return {};
  112. if (number.is_nan())
  113. return js_nan();
  114. return Value(::sqrt(number.as_double()));
  115. }
  116. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  117. {
  118. auto number = vm.argument(0).to_number(global_object);
  119. if (vm.exception())
  120. return {};
  121. if (number.is_nan())
  122. return js_nan();
  123. return Value(::floor(number.as_double()));
  124. }
  125. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  126. {
  127. auto number = vm.argument(0).to_number(global_object);
  128. if (vm.exception())
  129. return {};
  130. if (number.is_nan())
  131. return js_nan();
  132. auto number_double = number.as_double();
  133. if (number_double < 0 && number_double > -1)
  134. return Value(-0.f);
  135. return Value(::ceil(number.as_double()));
  136. }
  137. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  138. {
  139. auto number = vm.argument(0).to_number(global_object);
  140. if (vm.exception())
  141. return {};
  142. if (number.is_nan())
  143. return js_nan();
  144. return Value(::round(number.as_double()));
  145. }
  146. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  147. {
  148. if (!vm.argument_count())
  149. return js_negative_infinity();
  150. auto max = vm.argument(0).to_number(global_object);
  151. if (vm.exception())
  152. return {};
  153. for (size_t i = 1; i < vm.argument_count(); ++i) {
  154. auto cur = vm.argument(i).to_number(global_object);
  155. if (vm.exception())
  156. return {};
  157. max = Value(cur.as_double() > max.as_double() ? cur : max);
  158. }
  159. return max;
  160. }
  161. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  162. {
  163. if (!vm.argument_count())
  164. return js_infinity();
  165. auto min = vm.argument(0).to_number(global_object);
  166. if (vm.exception())
  167. return {};
  168. for (size_t i = 1; i < vm.argument_count(); ++i) {
  169. auto cur = vm.argument(i).to_number(global_object);
  170. if (vm.exception())
  171. return {};
  172. min = Value(cur.as_double() < min.as_double() ? cur : min);
  173. }
  174. return min;
  175. }
  176. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  177. {
  178. auto number = vm.argument(0).to_number(global_object);
  179. if (vm.exception())
  180. return {};
  181. if (number.is_nan())
  182. return js_nan();
  183. if (number.as_double() < 0)
  184. return MathObject::ceil(vm, global_object);
  185. return MathObject::floor(vm, global_object);
  186. }
  187. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  188. {
  189. auto number = vm.argument(0).to_number(global_object);
  190. if (vm.exception())
  191. return {};
  192. if (number.is_nan())
  193. return js_nan();
  194. return Value(::sin(number.as_double()));
  195. }
  196. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  197. {
  198. auto number = vm.argument(0).to_number(global_object);
  199. if (vm.exception())
  200. return {};
  201. if (number.is_nan())
  202. return js_nan();
  203. return Value(::cos(number.as_double()));
  204. }
  205. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  206. {
  207. auto number = vm.argument(0).to_number(global_object);
  208. if (vm.exception())
  209. return {};
  210. if (number.is_nan())
  211. return js_nan();
  212. return Value(::tan(number.as_double()));
  213. }
  214. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  215. {
  216. return JS::exp(global_object, vm.argument(0), vm.argument(1));
  217. }
  218. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  219. {
  220. auto number = vm.argument(0).to_number(global_object);
  221. if (vm.exception())
  222. return {};
  223. if (number.is_nan())
  224. return js_nan();
  225. return Value(::exp(number.as_double()));
  226. }
  227. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  228. {
  229. auto number = vm.argument(0).to_number(global_object);
  230. if (vm.exception())
  231. return {};
  232. if (number.is_nan())
  233. return js_nan();
  234. return Value(::expm1(number.as_double()));
  235. }
  236. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  237. {
  238. auto number = vm.argument(0).to_number(global_object);
  239. if (vm.exception())
  240. return {};
  241. if (number.is_positive_zero())
  242. return Value(0);
  243. if (number.is_negative_zero())
  244. return Value(-0.0);
  245. if (number.as_double() > 0)
  246. return Value(1);
  247. if (number.as_double() < 0)
  248. return Value(-1);
  249. return js_nan();
  250. }
  251. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  252. {
  253. auto number = vm.argument(0).to_number(global_object);
  254. if (vm.exception())
  255. return {};
  256. if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
  257. return Value(32);
  258. return Value(__builtin_clz((unsigned)number.as_double()));
  259. }
  260. JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
  261. {
  262. auto number = vm.argument(0).to_number(global_object);
  263. if (vm.exception())
  264. return {};
  265. if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
  266. return js_nan();
  267. if (number.as_double() == 1)
  268. return Value(0);
  269. return Value(::acos(number.as_double()));
  270. }
  271. JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
  272. {
  273. auto number = vm.argument(0).to_number(global_object);
  274. if (vm.exception())
  275. return {};
  276. if (number.as_double() < 1)
  277. return js_nan();
  278. return Value(::acosh(number.as_double()));
  279. }
  280. JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
  281. {
  282. auto number = vm.argument(0).to_number(global_object);
  283. if (vm.exception())
  284. return {};
  285. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  286. return number;
  287. return Value(::asin(number.as_double()));
  288. }
  289. JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
  290. {
  291. auto number = vm.argument(0).to_number(global_object);
  292. if (vm.exception())
  293. return {};
  294. return Value(::asinh(number.as_double()));
  295. }
  296. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
  297. {
  298. auto number = vm.argument(0).to_number(global_object);
  299. if (vm.exception())
  300. return {};
  301. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  302. return number;
  303. if (number.is_positive_infinity())
  304. return Value(M_PI_2);
  305. if (number.is_negative_infinity())
  306. return Value(-M_PI_2);
  307. return Value(::atan(number.as_double()));
  308. }
  309. JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
  310. {
  311. auto number = vm.argument(0).to_number(global_object);
  312. if (vm.exception())
  313. return {};
  314. if (number.as_double() > 1 || number.as_double() < -1)
  315. return js_nan();
  316. return Value(::atanh(number.as_double()));
  317. }
  318. JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
  319. {
  320. auto number = vm.argument(0).to_number(global_object);
  321. if (vm.exception())
  322. return {};
  323. if (number.as_double() < -1)
  324. return js_nan();
  325. return Value(::log1p(number.as_double()));
  326. }
  327. JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
  328. {
  329. auto number = vm.argument(0).to_number(global_object);
  330. if (vm.exception())
  331. return {};
  332. return Value(::cbrt(number.as_double()));
  333. }
  334. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
  335. {
  336. auto y = vm.argument(0).to_number(global_object), x = vm.argument(1).to_number(global_object);
  337. auto pi_4 = M_PI_2 / 2;
  338. auto three_pi_4 = pi_4 + M_PI_2;
  339. if (vm.exception())
  340. return {};
  341. if (x.is_positive_zero()) {
  342. if (y.is_positive_zero() || y.is_negative_zero())
  343. return y;
  344. else
  345. return (y.as_double() > 0) ? Value(M_PI_2) : Value(-M_PI_2);
  346. }
  347. if (x.is_negative_zero()) {
  348. if (y.is_positive_zero())
  349. return Value(M_PI);
  350. else if (y.is_negative_zero())
  351. return Value(-M_PI);
  352. else
  353. return (y.as_double() > 0) ? Value(M_PI_2) : Value(-M_PI_2);
  354. }
  355. if (x.is_positive_infinity()) {
  356. if (y.is_infinity())
  357. return (y.is_positive_infinity()) ? Value(pi_4) : Value(-pi_4);
  358. else
  359. return (y.as_double() > 0) ? Value(+0.0) : Value(-0.0);
  360. }
  361. if (x.is_negative_infinity()) {
  362. if (y.is_infinity())
  363. return (y.is_positive_infinity()) ? Value(three_pi_4) : Value(-three_pi_4);
  364. else
  365. return (y.as_double() > 0) ? Value(M_PI) : Value(-M_PI);
  366. }
  367. if (y.is_infinity())
  368. return (y.is_positive_infinity()) ? Value(M_PI_2) : Value(-M_PI_2);
  369. if (y.is_positive_zero())
  370. return (x.as_double() > 0) ? Value(+0.0) : Value(M_PI);
  371. if (y.is_negative_zero())
  372. return (x.as_double() > 0) ? Value(-0.0) : Value(-M_PI);
  373. return Value(::atan2(y.as_double(), x.as_double()));
  374. }
  375. JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
  376. {
  377. auto number = vm.argument(0).to_number(global_object);
  378. if (vm.exception())
  379. return {};
  380. if (number.is_nan())
  381. return js_nan();
  382. return Value((float)number.as_double());
  383. }
  384. JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
  385. {
  386. if (!vm.argument_count())
  387. return Value(0);
  388. auto hypot = vm.argument(0).to_number(global_object);
  389. if (vm.exception())
  390. return {};
  391. hypot = Value(hypot.as_double() * hypot.as_double());
  392. for (size_t i = 1; i < vm.argument_count(); ++i) {
  393. auto cur = vm.argument(i).to_number(global_object);
  394. if (vm.exception())
  395. return {};
  396. hypot = Value(hypot.as_double() + cur.as_double() * cur.as_double());
  397. }
  398. return Value(::sqrt(hypot.as_double()));
  399. }
  400. JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
  401. {
  402. auto number = vm.argument(0).to_number(global_object);
  403. if (vm.exception())
  404. return {};
  405. if (number.as_double() < 0)
  406. return js_nan();
  407. return Value(::log(number.as_double()));
  408. }
  409. JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
  410. {
  411. auto number = vm.argument(0).to_number(global_object);
  412. if (vm.exception())
  413. return {};
  414. if (number.as_double() < 0)
  415. return js_nan();
  416. return Value(::log2(number.as_double()));
  417. }
  418. JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
  419. {
  420. auto number = vm.argument(0).to_number(global_object);
  421. if (vm.exception())
  422. return {};
  423. if (number.as_double() < 0)
  424. return js_nan();
  425. return Value(::log10(number.as_double()));
  426. }
  427. JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
  428. {
  429. auto number = vm.argument(0).to_number(global_object);
  430. if (vm.exception())
  431. return {};
  432. if (number.is_nan())
  433. return js_nan();
  434. return Value(::sinh(number.as_double()));
  435. }
  436. JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
  437. {
  438. auto number = vm.argument(0).to_number(global_object);
  439. if (vm.exception())
  440. return {};
  441. if (number.is_nan())
  442. return js_nan();
  443. return Value(::cosh(number.as_double()));
  444. }
  445. JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
  446. {
  447. auto number = vm.argument(0).to_number(global_object);
  448. if (vm.exception())
  449. return {};
  450. if (number.is_nan())
  451. return js_nan();
  452. if (number.is_positive_infinity())
  453. return Value(1);
  454. if (number.is_negative_infinity())
  455. return Value(-1);
  456. return Value(::tanh(number.as_double()));
  457. }
  458. }