MathObject.cpp 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
  4. * All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without
  7. * modification, are permitted provided that the following conditions are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright notice, this
  10. * list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form must reproduce the above copyright notice,
  13. * this list of conditions and the following disclaimer in the documentation
  14. * and/or other materials provided with the distribution.
  15. *
  16. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  19. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  20. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  25. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. */
  27. #include <AK/FlyString.h>
  28. #include <AK/Function.h>
  29. #include <LibJS/Interpreter.h>
  30. #include <LibJS/Runtime/GlobalObject.h>
  31. #include <LibJS/Runtime/MathObject.h>
  32. #include <math.h>
  33. namespace JS {
  34. MathObject::MathObject(GlobalObject& global_object)
  35. : Object(*global_object.object_prototype())
  36. {
  37. }
  38. void MathObject::initialize(GlobalObject& global_object)
  39. {
  40. Object::initialize(global_object);
  41. u8 attr = Attribute::Writable | Attribute::Configurable;
  42. define_native_function("abs", abs, 1, attr);
  43. define_native_function("random", random, 0, attr);
  44. define_native_function("sqrt", sqrt, 1, attr);
  45. define_native_function("floor", floor, 1, attr);
  46. define_native_function("ceil", ceil, 1, attr);
  47. define_native_function("round", round, 1, attr);
  48. define_native_function("max", max, 2, attr);
  49. define_native_function("min", min, 2, attr);
  50. define_native_function("trunc", trunc, 1, attr);
  51. define_native_function("sin", sin, 1, attr);
  52. define_native_function("cos", cos, 1, attr);
  53. define_native_function("tan", tan, 1, attr);
  54. define_native_function("pow", pow, 2, attr);
  55. define_native_function("exp", exp, 1, attr);
  56. define_native_function("expm1", expm1, 1, attr);
  57. define_native_function("sign", sign, 1, attr);
  58. define_native_function("clz32", clz32, 1, attr);
  59. define_native_function("acosh", acosh, 1, attr);
  60. define_native_function("asinh", asinh, 1, attr);
  61. define_native_function("atanh", atanh, 1, attr);
  62. define_native_function("log1p", log1p, 1, attr);
  63. define_native_function("cbrt", cbrt, 1, attr);
  64. define_property("E", Value(M_E), 0);
  65. define_property("LN2", Value(M_LN2), 0);
  66. define_property("LN10", Value(M_LN10), 0);
  67. define_property("LOG2E", Value(log2(M_E)), 0);
  68. define_property("LOG10E", Value(log10(M_E)), 0);
  69. define_property("PI", Value(M_PI), 0);
  70. define_property("SQRT1_2", Value(M_SQRT1_2), 0);
  71. define_property("SQRT2", Value(M_SQRT2), 0);
  72. define_property(global_object.vm().well_known_symbol_to_string_tag(), js_string(global_object.heap(), "Math"), Attribute::Configurable);
  73. }
  74. MathObject::~MathObject()
  75. {
  76. }
  77. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  78. {
  79. auto number = interpreter.argument(0).to_number(interpreter);
  80. if (interpreter.exception())
  81. return {};
  82. if (number.is_nan())
  83. return js_nan();
  84. return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
  85. }
  86. Value MathObject::random(Interpreter&, GlobalObject&)
  87. {
  88. #ifdef __serenity__
  89. double r = (double)arc4random() / (double)UINT32_MAX;
  90. #else
  91. double r = (double)rand() / (double)RAND_MAX;
  92. #endif
  93. return Value(r);
  94. }
  95. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  96. {
  97. auto number = interpreter.argument(0).to_number(interpreter);
  98. if (interpreter.exception())
  99. return {};
  100. if (number.is_nan())
  101. return js_nan();
  102. return Value(::sqrt(number.as_double()));
  103. }
  104. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  105. {
  106. auto number = interpreter.argument(0).to_number(interpreter);
  107. if (interpreter.exception())
  108. return {};
  109. if (number.is_nan())
  110. return js_nan();
  111. return Value(::floor(number.as_double()));
  112. }
  113. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  114. {
  115. auto number = interpreter.argument(0).to_number(interpreter);
  116. if (interpreter.exception())
  117. return {};
  118. if (number.is_nan())
  119. return js_nan();
  120. auto number_double = number.as_double();
  121. if (number_double < 0 && number_double > -1)
  122. return Value(-0.f);
  123. return Value(::ceil(number.as_double()));
  124. }
  125. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  126. {
  127. auto number = interpreter.argument(0).to_number(interpreter);
  128. if (interpreter.exception())
  129. return {};
  130. if (number.is_nan())
  131. return js_nan();
  132. return Value(::round(number.as_double()));
  133. }
  134. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  135. {
  136. if (!interpreter.argument_count())
  137. return js_negative_infinity();
  138. auto max = interpreter.argument(0).to_number(interpreter);
  139. if (interpreter.exception())
  140. return {};
  141. for (size_t i = 1; i < interpreter.argument_count(); ++i) {
  142. auto cur = interpreter.argument(i).to_number(interpreter);
  143. if (interpreter.exception())
  144. return {};
  145. max = Value(cur.as_double() > max.as_double() ? cur : max);
  146. }
  147. return max;
  148. }
  149. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  150. {
  151. if (!interpreter.argument_count())
  152. return js_infinity();
  153. auto min = interpreter.argument(0).to_number(interpreter);
  154. if (interpreter.exception())
  155. return {};
  156. for (size_t i = 1; i < interpreter.argument_count(); ++i) {
  157. auto cur = interpreter.argument(i).to_number(interpreter);
  158. if (interpreter.exception())
  159. return {};
  160. min = Value(cur.as_double() < min.as_double() ? cur : min);
  161. }
  162. return min;
  163. }
  164. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  165. {
  166. auto number = interpreter.argument(0).to_number(interpreter);
  167. if (interpreter.exception())
  168. return {};
  169. if (number.is_nan())
  170. return js_nan();
  171. if (number.as_double() < 0)
  172. return MathObject::ceil(interpreter, global_object);
  173. return MathObject::floor(interpreter, global_object);
  174. }
  175. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  176. {
  177. auto number = interpreter.argument(0).to_number(interpreter);
  178. if (interpreter.exception())
  179. return {};
  180. if (number.is_nan())
  181. return js_nan();
  182. return Value(::sin(number.as_double()));
  183. }
  184. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  185. {
  186. auto number = interpreter.argument(0).to_number(interpreter);
  187. if (interpreter.exception())
  188. return {};
  189. if (number.is_nan())
  190. return js_nan();
  191. return Value(::cos(number.as_double()));
  192. }
  193. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  194. {
  195. auto number = interpreter.argument(0).to_number(interpreter);
  196. if (interpreter.exception())
  197. return {};
  198. if (number.is_nan())
  199. return js_nan();
  200. return Value(::tan(number.as_double()));
  201. }
  202. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  203. {
  204. return JS::exp(interpreter, interpreter.argument(0), interpreter.argument(1));
  205. }
  206. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  207. {
  208. auto number = interpreter.argument(0).to_number(interpreter);
  209. if (interpreter.exception())
  210. return {};
  211. if (number.is_nan())
  212. return js_nan();
  213. return Value(::exp(number.as_double()));
  214. }
  215. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  216. {
  217. auto number = interpreter.argument(0).to_number(interpreter);
  218. if (interpreter.exception())
  219. return {};
  220. if (number.is_nan())
  221. return js_nan();
  222. return Value(::expm1(number.as_double()));
  223. }
  224. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  225. {
  226. auto number = interpreter.argument(0).to_number(interpreter);
  227. if (interpreter.exception())
  228. return {};
  229. if (number.is_positive_zero())
  230. return Value(0);
  231. if (number.is_negative_zero())
  232. return Value(-0.0);
  233. if (number.as_double() > 0)
  234. return Value(1);
  235. if (number.as_double() < 0)
  236. return Value(-1);
  237. return js_nan();
  238. }
  239. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  240. {
  241. auto number = interpreter.argument(0).to_number(interpreter);
  242. if (interpreter.exception())
  243. return {};
  244. if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
  245. return Value(32);
  246. return Value(__builtin_clz((unsigned)number.as_double()));
  247. }
  248. JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
  249. {
  250. auto number = interpreter.argument(0).to_number(interpreter);
  251. if (interpreter.exception())
  252. return {};
  253. if (number.as_double() < 1)
  254. return JS::js_nan();
  255. return Value(::acosh(number.as_double()));
  256. }
  257. JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
  258. {
  259. auto number = interpreter.argument(0).to_number(interpreter);
  260. if (interpreter.exception())
  261. return {};
  262. return Value(::asinh(number.as_double()));
  263. }
  264. JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
  265. {
  266. auto number = interpreter.argument(0).to_number(interpreter);
  267. if (interpreter.exception())
  268. return {};
  269. if (number.as_double() > 1 || number.as_double() < -1)
  270. return JS::js_nan();
  271. return Value(::atanh(number.as_double()));
  272. }
  273. JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
  274. {
  275. auto number = interpreter.argument(0).to_number(interpreter);
  276. if (interpreter.exception())
  277. return {};
  278. if (number.as_double() < -1)
  279. return JS::js_nan();
  280. return Value(::log1p(number.as_double()));
  281. }
  282. JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
  283. {
  284. auto number = interpreter.argument(0).to_number(interpreter);
  285. if (interpreter.exception())
  286. return {};
  287. return Value(::cbrt(number.as_double()));
  288. }
  289. }