MemoryManager.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include "CMOS.h"
  27. #include "Process.h"
  28. #include <AK/Assertions.h>
  29. #include <Kernel/Arch/i386/CPU.h>
  30. #include <Kernel/FileSystem/Inode.h>
  31. #include <Kernel/Multiboot.h>
  32. #include <Kernel/VM/AnonymousVMObject.h>
  33. #include <Kernel/VM/InodeVMObject.h>
  34. #include <Kernel/VM/MemoryManager.h>
  35. #include <Kernel/VM/PageDirectory.h>
  36. #include <Kernel/VM/PhysicalRegion.h>
  37. #include <Kernel/VM/PurgeableVMObject.h>
  38. #include <LibBareMetal/StdLib.h>
  39. //#define MM_DEBUG
  40. //#define PAGE_FAULT_DEBUG
  41. extern uintptr_t start_of_kernel_text;
  42. extern uintptr_t start_of_kernel_data;
  43. extern uintptr_t end_of_kernel_bss;
  44. namespace Kernel {
  45. static MemoryManager* s_the;
  46. MemoryManager& MM
  47. {
  48. return *s_the;
  49. }
  50. MemoryManager::MemoryManager()
  51. {
  52. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  53. parse_memory_map();
  54. write_cr3(kernel_page_directory().cr3());
  55. setup_low_identity_mapping();
  56. protect_kernel_image();
  57. m_shared_zero_page = allocate_user_physical_page();
  58. }
  59. MemoryManager::~MemoryManager()
  60. {
  61. }
  62. void MemoryManager::protect_kernel_image()
  63. {
  64. // Disable writing to the kernel text and rodata segments.
  65. for (size_t i = (uintptr_t)&start_of_kernel_text; i < (uintptr_t)&start_of_kernel_data; i += PAGE_SIZE) {
  66. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  67. pte.set_writable(false);
  68. }
  69. if (g_cpu_supports_nx) {
  70. // Disable execution of the kernel data and bss segments.
  71. for (size_t i = (uintptr_t)&start_of_kernel_data; i < (uintptr_t)&end_of_kernel_bss; i += PAGE_SIZE) {
  72. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  73. pte.set_execute_disabled(true);
  74. }
  75. }
  76. }
  77. void MemoryManager::setup_low_identity_mapping()
  78. {
  79. m_low_page_table = allocate_user_physical_page(ShouldZeroFill::Yes);
  80. auto* pd_zero = quickmap_pd(kernel_page_directory(), 0);
  81. pd_zero[1].set_present(false);
  82. pd_zero[2].set_present(false);
  83. pd_zero[3].set_present(false);
  84. auto& pde_zero = pd_zero[0];
  85. pde_zero.set_page_table_base(m_low_page_table->paddr().get());
  86. pde_zero.set_present(true);
  87. pde_zero.set_huge(false);
  88. pde_zero.set_writable(true);
  89. pde_zero.set_user_allowed(false);
  90. if (g_cpu_supports_nx)
  91. pde_zero.set_execute_disabled(true);
  92. for (uintptr_t offset = (1 * MB); offset < (2 * MB); offset += PAGE_SIZE) {
  93. auto& page_table_page = m_low_page_table;
  94. auto& pte = quickmap_pt(page_table_page->paddr())[offset / PAGE_SIZE];
  95. pte.set_physical_page_base(offset);
  96. pte.set_user_allowed(false);
  97. pte.set_present(offset != 0);
  98. pte.set_writable(offset < (1 * MB));
  99. }
  100. }
  101. void MemoryManager::parse_memory_map()
  102. {
  103. RefPtr<PhysicalRegion> region;
  104. bool region_is_super = false;
  105. auto* mmap = (multiboot_memory_map_t*)(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
  106. for (; (unsigned long)mmap < (low_physical_to_virtual(multiboot_info_ptr->mmap_addr)) + (multiboot_info_ptr->mmap_length); mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  107. kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
  108. (uintptr_t)(mmap->addr >> 32),
  109. (uintptr_t)(mmap->addr & 0xffffffff),
  110. (uintptr_t)(mmap->len >> 32),
  111. (uintptr_t)(mmap->len & 0xffffffff),
  112. (uintptr_t)mmap->type);
  113. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  114. continue;
  115. // FIXME: Maybe make use of stuff below the 1MB mark?
  116. if (mmap->addr < (1 * MB))
  117. continue;
  118. if ((mmap->addr + mmap->len) > 0xffffffff)
  119. continue;
  120. auto diff = (uintptr_t)mmap->addr % PAGE_SIZE;
  121. if (diff != 0) {
  122. kprintf("MM: got an unaligned region base from the bootloader; correcting %p by %d bytes\n", mmap->addr, diff);
  123. diff = PAGE_SIZE - diff;
  124. mmap->addr += diff;
  125. mmap->len -= diff;
  126. }
  127. if ((mmap->len % PAGE_SIZE) != 0) {
  128. kprintf("MM: got an unaligned region length from the bootloader; correcting %d by %d bytes\n", mmap->len, mmap->len % PAGE_SIZE);
  129. mmap->len -= mmap->len % PAGE_SIZE;
  130. }
  131. if (mmap->len < PAGE_SIZE) {
  132. kprintf("MM: memory region from bootloader is too small; we want >= %d bytes, but got %d bytes\n", PAGE_SIZE, mmap->len);
  133. continue;
  134. }
  135. #ifdef MM_DEBUG
  136. kprintf("MM: considering memory at %p - %p\n",
  137. (uintptr_t)mmap->addr, (uintptr_t)(mmap->addr + mmap->len));
  138. #endif
  139. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  140. auto addr = PhysicalAddress(page_base);
  141. if (page_base < 7 * MB) {
  142. // nothing
  143. } else if (page_base >= 7 * MB && page_base < 8 * MB) {
  144. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  145. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  146. region = m_super_physical_regions.last();
  147. region_is_super = true;
  148. } else {
  149. region->expand(region->lower(), addr);
  150. }
  151. } else {
  152. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  153. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  154. region = m_user_physical_regions.last();
  155. region_is_super = false;
  156. } else {
  157. region->expand(region->lower(), addr);
  158. }
  159. }
  160. }
  161. }
  162. for (auto& region : m_super_physical_regions)
  163. m_super_physical_pages += region.finalize_capacity();
  164. for (auto& region : m_user_physical_regions)
  165. m_user_physical_pages += region.finalize_capacity();
  166. }
  167. const PageTableEntry* MemoryManager::pte(const PageDirectory& page_directory, VirtualAddress vaddr)
  168. {
  169. ASSERT_INTERRUPTS_DISABLED();
  170. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  171. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  172. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  173. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  174. const PageDirectoryEntry& pde = pd[page_directory_index];
  175. if (!pde.is_present())
  176. return nullptr;
  177. return &quickmap_pt(PhysicalAddress((uintptr_t)pde.page_table_base()))[page_table_index];
  178. }
  179. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  180. {
  181. ASSERT_INTERRUPTS_DISABLED();
  182. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  183. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  184. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  185. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  186. PageDirectoryEntry& pde = pd[page_directory_index];
  187. if (!pde.is_present()) {
  188. #ifdef MM_DEBUG
  189. dbg() << "MM: PDE " << page_directory_index << " not present (requested for V" << String::format("%p", vaddr.get()) << "), allocating";
  190. #endif
  191. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes);
  192. #ifdef MM_DEBUG
  193. dbg() << "MM: PD K" << &page_directory << " (" << (&page_directory == m_kernel_page_directory ? "Kernel" : "User") << ") at P" << String::format("%p", page_directory.cr3()) << " allocated page table " << String::format("#%u", page_directory_index) << " (for V" << String::format("%p", vaddr.get()) << ") at P" << String::format("%p", page_table->paddr().get());
  194. #endif
  195. pde.set_page_table_base(page_table->paddr().get());
  196. pde.set_user_allowed(true);
  197. pde.set_present(true);
  198. pde.set_writable(true);
  199. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  200. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  201. }
  202. return quickmap_pt(PhysicalAddress((uintptr_t)pde.page_table_base()))[page_table_index];
  203. }
  204. void MemoryManager::initialize()
  205. {
  206. s_the = new MemoryManager;
  207. }
  208. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  209. {
  210. if (vaddr.get() < 0xc0000000)
  211. return nullptr;
  212. for (auto& region : MM.m_kernel_regions) {
  213. if (region.contains(vaddr))
  214. return &region;
  215. }
  216. return nullptr;
  217. }
  218. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  219. {
  220. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  221. for (auto& region : process.m_regions) {
  222. if (region.contains(vaddr))
  223. return &region;
  224. }
  225. #ifdef MM_DEBUG
  226. dbg() << process << " Couldn't find user region for " << vaddr;
  227. #endif
  228. return nullptr;
  229. }
  230. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  231. {
  232. if (auto* region = kernel_region_from_vaddr(vaddr))
  233. return region;
  234. return user_region_from_vaddr(process, vaddr);
  235. }
  236. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  237. {
  238. if (auto* region = kernel_region_from_vaddr(vaddr))
  239. return region;
  240. return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  241. }
  242. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  243. {
  244. if (auto* region = kernel_region_from_vaddr(vaddr))
  245. return region;
  246. auto page_directory = PageDirectory::find_by_cr3(read_cr3());
  247. if (!page_directory)
  248. return nullptr;
  249. ASSERT(page_directory->process());
  250. return user_region_from_vaddr(*page_directory->process(), vaddr);
  251. }
  252. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  253. {
  254. ASSERT_INTERRUPTS_DISABLED();
  255. ASSERT(Thread::current);
  256. if (g_in_irq) {
  257. dbg() << "BUG! Page fault while handling IRQ! code=" << fault.code() << ", vaddr=" << fault.vaddr();
  258. dump_kernel_regions();
  259. }
  260. #ifdef PAGE_FAULT_DEBUG
  261. dbg() << "MM: handle_page_fault(" << String::format("%w", fault.code()) << ") at V" << String::format("%p", fault.vaddr().get());
  262. #endif
  263. auto* region = region_from_vaddr(fault.vaddr());
  264. if (!region) {
  265. kprintf("NP(error) fault at invalid address V%p\n", fault.vaddr().get());
  266. return PageFaultResponse::ShouldCrash;
  267. }
  268. return region->handle_fault(fault);
  269. }
  270. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit, bool cacheable)
  271. {
  272. InterruptDisabler disabler;
  273. ASSERT(!(size % PAGE_SIZE));
  274. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  275. ASSERT(range.is_valid());
  276. OwnPtr<Region> region;
  277. if (user_accessible)
  278. region = Region::create_user_accessible(range, name, access, cacheable);
  279. else
  280. region = Region::create_kernel_only(range, name, access, cacheable);
  281. region->map(kernel_page_directory());
  282. if (should_commit)
  283. region->commit();
  284. return region;
  285. }
  286. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  287. {
  288. InterruptDisabler disabler;
  289. ASSERT(!(size % PAGE_SIZE));
  290. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  291. ASSERT(range.is_valid());
  292. auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
  293. if (!vmobject)
  294. return nullptr;
  295. OwnPtr<Region> region;
  296. if (user_accessible)
  297. region = Region::create_user_accessible(range, vmobject.release_nonnull(), 0, name, access, cacheable);
  298. else
  299. region = Region::create_kernel_only(range, vmobject.release_nonnull(), 0, name, access, cacheable);
  300. region->map(kernel_page_directory());
  301. return region;
  302. }
  303. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access, bool cacheable)
  304. {
  305. return allocate_kernel_region(size, name, access, true, true, cacheable);
  306. }
  307. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  308. {
  309. InterruptDisabler disabler;
  310. ASSERT(!(size % PAGE_SIZE));
  311. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  312. ASSERT(range.is_valid());
  313. OwnPtr<Region> region;
  314. if (user_accessible)
  315. region = Region::create_user_accessible(range, vmobject, 0, name, access, cacheable);
  316. else
  317. region = Region::create_kernel_only(range, vmobject, 0, name, access, cacheable);
  318. region->map(kernel_page_directory());
  319. return region;
  320. }
  321. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  322. {
  323. for (auto& region : m_user_physical_regions) {
  324. if (!region.contains(page)) {
  325. kprintf(
  326. "MM: deallocate_user_physical_page: %p not in %p -> %p\n",
  327. page.paddr().get(), region.lower().get(), region.upper().get());
  328. continue;
  329. }
  330. region.return_page(move(page));
  331. --m_user_physical_pages_used;
  332. return;
  333. }
  334. kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr().get());
  335. ASSERT_NOT_REACHED();
  336. }
  337. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  338. {
  339. RefPtr<PhysicalPage> page;
  340. for (auto& region : m_user_physical_regions) {
  341. page = region.take_free_page(false);
  342. if (!page.is_null())
  343. break;
  344. }
  345. return page;
  346. }
  347. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  348. {
  349. InterruptDisabler disabler;
  350. RefPtr<PhysicalPage> page = find_free_user_physical_page();
  351. if (!page) {
  352. if (m_user_physical_regions.is_empty()) {
  353. kprintf("MM: no user physical regions available (?)\n");
  354. }
  355. for_each_vmobject([&](auto& vmobject) {
  356. if (vmobject.is_purgeable()) {
  357. auto& purgeable_vmobject = static_cast<PurgeableVMObject&>(vmobject);
  358. int purged_page_count = purgeable_vmobject.purge_with_interrupts_disabled({});
  359. if (purged_page_count) {
  360. kprintf("MM: Purge saved the day! Purged %d pages from PurgeableVMObject{%p}\n", purged_page_count, &purgeable_vmobject);
  361. page = find_free_user_physical_page();
  362. ASSERT(page);
  363. return IterationDecision::Break;
  364. }
  365. }
  366. return IterationDecision::Continue;
  367. });
  368. if (!page) {
  369. kprintf("MM: no user physical pages available\n");
  370. ASSERT_NOT_REACHED();
  371. return {};
  372. }
  373. }
  374. #ifdef MM_DEBUG
  375. dbg() << "MM: allocate_user_physical_page vending P" << String::format("%p", page->paddr().get());
  376. #endif
  377. if (should_zero_fill == ShouldZeroFill::Yes) {
  378. auto* ptr = quickmap_page(*page);
  379. memset(ptr, 0, PAGE_SIZE);
  380. unquickmap_page();
  381. }
  382. ++m_user_physical_pages_used;
  383. return page;
  384. }
  385. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  386. {
  387. for (auto& region : m_super_physical_regions) {
  388. if (!region.contains(page)) {
  389. kprintf(
  390. "MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
  391. page.paddr().get(), region.lower().get(), region.upper().get());
  392. continue;
  393. }
  394. region.return_page(move(page));
  395. --m_super_physical_pages_used;
  396. return;
  397. }
  398. kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr().get());
  399. ASSERT_NOT_REACHED();
  400. }
  401. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  402. {
  403. InterruptDisabler disabler;
  404. RefPtr<PhysicalPage> page;
  405. for (auto& region : m_super_physical_regions) {
  406. page = region.take_free_page(true);
  407. if (page.is_null())
  408. continue;
  409. }
  410. if (!page) {
  411. if (m_super_physical_regions.is_empty()) {
  412. kprintf("MM: no super physical regions available (?)\n");
  413. }
  414. kprintf("MM: no super physical pages available\n");
  415. ASSERT_NOT_REACHED();
  416. return {};
  417. }
  418. #ifdef MM_DEBUG
  419. dbg() << "MM: allocate_supervisor_physical_page vending P" << String::format("%p", page->paddr().get());
  420. #endif
  421. fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  422. ++m_super_physical_pages_used;
  423. return page;
  424. }
  425. void MemoryManager::enter_process_paging_scope(Process& process)
  426. {
  427. ASSERT(Thread::current);
  428. InterruptDisabler disabler;
  429. Thread::current->tss().cr3 = process.page_directory().cr3();
  430. write_cr3(process.page_directory().cr3());
  431. }
  432. void MemoryManager::flush_entire_tlb()
  433. {
  434. write_cr3(read_cr3());
  435. }
  436. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  437. {
  438. #ifdef MM_DEBUG
  439. dbg() << "MM: Flush page V" << String::format("%p", vaddr.get());
  440. #endif
  441. asm volatile("invlpg %0"
  442. :
  443. : "m"(*(char*)vaddr.get())
  444. : "memory");
  445. }
  446. extern "C" PageTableEntry boot_pd3_pde1023_pt[1024];
  447. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  448. {
  449. auto& pte = boot_pd3_pde1023_pt[4];
  450. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  451. if (pte.physical_page_base() != pd_paddr.as_ptr()) {
  452. #ifdef MM_DEBUG
  453. dbg() << "quickmap_pd: Mapping P" << (void*)directory.m_directory_pages[pdpt_index]->paddr().as_ptr() << " at 0xffe04000 in pte @ " << &pte;
  454. #endif
  455. pte.set_physical_page_base(pd_paddr.get());
  456. pte.set_present(true);
  457. pte.set_writable(true);
  458. pte.set_user_allowed(false);
  459. flush_tlb(VirtualAddress(0xffe04000));
  460. }
  461. return (PageDirectoryEntry*)0xffe04000;
  462. }
  463. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  464. {
  465. auto& pte = boot_pd3_pde1023_pt[8];
  466. if (pte.physical_page_base() != pt_paddr.as_ptr()) {
  467. #ifdef MM_DEBUG
  468. dbg() << "quickmap_pt: Mapping P" << (void*)pt_paddr.as_ptr() << " at 0xffe08000 in pte @ " << &pte;
  469. #endif
  470. pte.set_physical_page_base(pt_paddr.get());
  471. pte.set_present(true);
  472. pte.set_writable(true);
  473. pte.set_user_allowed(false);
  474. flush_tlb(VirtualAddress(0xffe08000));
  475. }
  476. return (PageTableEntry*)0xffe08000;
  477. }
  478. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  479. {
  480. ASSERT_INTERRUPTS_DISABLED();
  481. ASSERT(!m_quickmap_in_use);
  482. m_quickmap_in_use = true;
  483. auto& pte = boot_pd3_pde1023_pt[0];
  484. if (pte.physical_page_base() != physical_page.paddr().as_ptr()) {
  485. #ifdef MM_DEBUG
  486. dbg() << "quickmap_page: Mapping P" << (void*)physical_page.paddr().as_ptr() << " at 0xffe00000 in pte @ " << &pte;
  487. #endif
  488. pte.set_physical_page_base(physical_page.paddr().get());
  489. pte.set_present(true);
  490. pte.set_writable(true);
  491. pte.set_user_allowed(false);
  492. flush_tlb(VirtualAddress(0xffe00000));
  493. }
  494. return (u8*)0xffe00000;
  495. }
  496. void MemoryManager::unquickmap_page()
  497. {
  498. ASSERT_INTERRUPTS_DISABLED();
  499. ASSERT(m_quickmap_in_use);
  500. auto& pte = boot_pd3_pde1023_pt[0];
  501. pte.clear();
  502. flush_tlb(VirtualAddress(0xffe00000));
  503. m_quickmap_in_use = false;
  504. }
  505. template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
  506. bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
  507. {
  508. ASSERT(size);
  509. if (base_vaddr > base_vaddr.offset(size)) {
  510. dbg() << "Shenanigans! Asked to validate wrappy " << base_vaddr << " size=" << size;
  511. return false;
  512. }
  513. VirtualAddress vaddr = base_vaddr.page_base();
  514. VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
  515. if (end_vaddr < vaddr) {
  516. dbg() << "Shenanigans! Asked to validate " << base_vaddr << " size=" << size;
  517. return false;
  518. }
  519. const Region* region = nullptr;
  520. while (vaddr <= end_vaddr) {
  521. if (!region || !region->contains(vaddr)) {
  522. if (space == AccessSpace::Kernel)
  523. region = kernel_region_from_vaddr(vaddr);
  524. if (!region || !region->contains(vaddr))
  525. region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  526. if (!region
  527. || (space == AccessSpace::User && !region->is_user_accessible())
  528. || (access_type == AccessType::Read && !region->is_readable())
  529. || (access_type == AccessType::Write && !region->is_writable())) {
  530. return false;
  531. }
  532. }
  533. vaddr = vaddr.offset(PAGE_SIZE);
  534. }
  535. return true;
  536. }
  537. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  538. {
  539. if (!is_user_address(vaddr))
  540. return false;
  541. auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  542. return region && region->is_user_accessible() && region->is_stack();
  543. }
  544. bool MemoryManager::validate_kernel_read(const Process& process, VirtualAddress vaddr, size_t size) const
  545. {
  546. return validate_range<AccessSpace::Kernel, AccessType::Read>(process, vaddr, size);
  547. }
  548. bool MemoryManager::can_read_without_faulting(const Process& process, VirtualAddress vaddr, size_t size) const
  549. {
  550. // FIXME: Use the size argument!
  551. UNUSED_PARAM(size);
  552. auto* pte = const_cast<MemoryManager*>(this)->pte(process.page_directory(), vaddr);
  553. if (!pte)
  554. return false;
  555. return pte->is_present();
  556. }
  557. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr, size_t size) const
  558. {
  559. if (!is_user_address(vaddr))
  560. return false;
  561. return validate_range<AccessSpace::User, AccessType::Read>(process, vaddr, size);
  562. }
  563. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr, size_t size) const
  564. {
  565. if (!is_user_address(vaddr))
  566. return false;
  567. return validate_range<AccessSpace::User, AccessType::Write>(process, vaddr, size);
  568. }
  569. void MemoryManager::register_vmobject(VMObject& vmobject)
  570. {
  571. InterruptDisabler disabler;
  572. m_vmobjects.append(&vmobject);
  573. }
  574. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  575. {
  576. InterruptDisabler disabler;
  577. m_vmobjects.remove(&vmobject);
  578. }
  579. void MemoryManager::register_region(Region& region)
  580. {
  581. InterruptDisabler disabler;
  582. if (region.vaddr().get() >= 0xc0000000)
  583. m_kernel_regions.append(&region);
  584. else
  585. m_user_regions.append(&region);
  586. }
  587. void MemoryManager::unregister_region(Region& region)
  588. {
  589. InterruptDisabler disabler;
  590. if (region.vaddr().get() >= 0xc0000000)
  591. m_kernel_regions.remove(&region);
  592. else
  593. m_user_regions.remove(&region);
  594. }
  595. void MemoryManager::dump_kernel_regions()
  596. {
  597. kprintf("Kernel regions:\n");
  598. kprintf("BEGIN END SIZE ACCESS NAME\n");
  599. for (auto& region : MM.m_kernel_regions) {
  600. kprintf("%08x -- %08x %08x %c%c%c%c%c%c %s\n",
  601. region.vaddr().get(),
  602. region.vaddr().offset(region.size() - 1).get(),
  603. region.size(),
  604. region.is_readable() ? 'R' : ' ',
  605. region.is_writable() ? 'W' : ' ',
  606. region.is_executable() ? 'X' : ' ',
  607. region.is_shared() ? 'S' : ' ',
  608. region.is_stack() ? 'T' : ' ',
  609. region.vmobject().is_purgeable() ? 'P' : ' ',
  610. region.name().characters());
  611. }
  612. }
  613. ProcessPagingScope::ProcessPagingScope(Process& process)
  614. {
  615. ASSERT(Thread::current);
  616. m_previous_cr3 = read_cr3();
  617. MM.enter_process_paging_scope(process);
  618. }
  619. ProcessPagingScope::~ProcessPagingScope()
  620. {
  621. InterruptDisabler disabler;
  622. Thread::current->tss().cr3 = m_previous_cr3;
  623. write_cr3(m_previous_cr3);
  624. }
  625. }