MemoryManager.cpp 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241
  1. #include "MemoryManager.h"
  2. #include <AK/Assertions.h>
  3. #include <AK/kstdio.h>
  4. #include <AK/kmalloc.h>
  5. #include "i386.h"
  6. #include "StdLib.h"
  7. #include "Task.h"
  8. static MemoryManager* s_the;
  9. MemoryManager& MemoryManager::the()
  10. {
  11. return *s_the;
  12. }
  13. MemoryManager::MemoryManager()
  14. {
  15. m_pageDirectory = (dword*)0x5000;
  16. m_pageTableZero = (dword*)0x6000;
  17. m_pageTableOne = (dword*)0x7000;
  18. initializePaging();
  19. }
  20. MemoryManager::~MemoryManager()
  21. {
  22. }
  23. void MemoryManager::initializePaging()
  24. {
  25. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  26. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  27. memset(m_pageTableZero, 0, 4096);
  28. memset(m_pageTableOne, 0, 4096);
  29. memset(m_pageDirectory, 0, 4096);
  30. kprintf("MM: Page directory @ %p\n", m_pageDirectory);
  31. kprintf("MM: Page table zero @ %p\n", m_pageTableZero);
  32. kprintf("MM: Page table one @ %p\n", m_pageTableOne);
  33. // Make null dereferences crash.
  34. protectMap(LinearAddress(0), 4 * KB);
  35. identityMap(LinearAddress(4096), 4 * MB);
  36. // Put pages between 4MB and 16MB in the page freelist.
  37. for (size_t i = (4 * MB) + 1024; i < (16 * MB); i += PAGE_SIZE) {
  38. m_freePages.append(PhysicalAddress(i));
  39. }
  40. asm volatile("movl %%eax, %%cr3"::"a"(m_pageDirectory));
  41. asm volatile(
  42. "movl %cr0, %eax\n"
  43. "orl $0x80000001, %eax\n"
  44. "movl %eax, %cr0\n"
  45. );
  46. }
  47. auto MemoryManager::ensurePTE(LinearAddress linearAddress) -> PageTableEntry
  48. {
  49. dword pageDirectoryIndex = (linearAddress.get() >> 22) & 0x3ff;
  50. dword pageTableIndex = (linearAddress.get() >> 12) & 0x3ff;
  51. PageDirectoryEntry pde = PageDirectoryEntry(&m_pageDirectory[pageDirectoryIndex]);
  52. if (!pde.isPresent()) {
  53. kprintf("PDE %u !present, allocating\n", pageDirectoryIndex);
  54. if (pageDirectoryIndex == 0) {
  55. pde.setPageTableBase((dword)m_pageTableZero);
  56. pde.setUserAllowed(true);
  57. pde.setPresent(true);
  58. pde.setWritable(true);
  59. } else if (pageDirectoryIndex == 1) {
  60. pde.setPageTableBase((dword)m_pageTableOne);
  61. pde.setUserAllowed(true);
  62. pde.setPresent(true);
  63. pde.setWritable(true);
  64. } else {
  65. // FIXME: We need an allocator!
  66. ASSERT_NOT_REACHED();
  67. }
  68. }
  69. return PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  70. }
  71. void MemoryManager::protectMap(LinearAddress linearAddress, size_t length)
  72. {
  73. // FIXME: ASSERT(linearAddress is 4KB aligned);
  74. for (dword offset = 0; offset < length; offset += 4096) {
  75. auto pteAddress = linearAddress.offset(offset);
  76. auto pte = ensurePTE(pteAddress);
  77. pte.setPhysicalPageBase(pteAddress.get());
  78. pte.setUserAllowed(false);
  79. pte.setPresent(false);
  80. pte.setWritable(false);
  81. }
  82. flushTLB();
  83. }
  84. void MemoryManager::identityMap(LinearAddress linearAddress, size_t length)
  85. {
  86. // FIXME: ASSERT(linearAddress is 4KB aligned);
  87. for (dword offset = 0; offset < length; offset += 4096) {
  88. auto pteAddress = linearAddress.offset(offset);
  89. auto pte = ensurePTE(pteAddress);
  90. pte.setPhysicalPageBase(pteAddress.get());
  91. pte.setUserAllowed(true);
  92. pte.setPresent(true);
  93. pte.setWritable(true);
  94. }
  95. flushTLB();
  96. }
  97. void MemoryManager::initialize()
  98. {
  99. s_the = new MemoryManager;
  100. }
  101. PageFaultResponse MemoryManager::handlePageFault(const PageFault& fault)
  102. {
  103. kprintf("MM: handlePageFault(%w) at laddr=%p\n", fault.code(), fault.address().get());
  104. if (fault.isNotPresent()) {
  105. kprintf(" >> NP fault!\n");
  106. } else if (fault.isProtectionViolation()) {
  107. kprintf(" >> PV fault!\n");
  108. }
  109. return PageFaultResponse::ShouldCrash;
  110. }
  111. RetainPtr<Zone> MemoryManager::createZone(size_t size)
  112. {
  113. auto pages = allocatePhysicalPages(ceilDiv(size, PAGE_SIZE));
  114. if (pages.isEmpty()) {
  115. kprintf("MM: createZone: no physical pages for size %u", size);
  116. return nullptr;
  117. }
  118. return adopt(*new Zone(move(pages)));
  119. }
  120. Vector<PhysicalAddress> MemoryManager::allocatePhysicalPages(size_t count)
  121. {
  122. if (count > m_freePages.size())
  123. return { };
  124. Vector<PhysicalAddress> pages;
  125. pages.ensureCapacity(count);
  126. for (size_t i = 0; i < count; ++i)
  127. pages.append(m_freePages.takeLast());
  128. return pages;
  129. }
  130. byte* MemoryManager::quickMapOnePage(PhysicalAddress physicalAddress)
  131. {
  132. auto pte = ensurePTE(LinearAddress(4 * MB));
  133. kprintf("quickmap %x @ %x {pte @ %p}\n", physicalAddress.get(), 4*MB, pte.ptr());
  134. pte.setPhysicalPageBase(physicalAddress.pageBase());
  135. pte.setPresent(true);
  136. pte.setWritable(true);
  137. flushTLB();
  138. return (byte*)(4 * MB);
  139. }
  140. void MemoryManager::flushTLB()
  141. {
  142. asm volatile(
  143. "mov %cr3, %eax\n"
  144. "mov %eax, %cr3\n"
  145. );
  146. }
  147. bool MemoryManager::unmapRegion(Task& task, Task::Region& region)
  148. {
  149. auto& zone = *region.zone;
  150. for (size_t i = 0; i < zone.m_pages.size(); ++i) {
  151. auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
  152. auto pte = ensurePTE(laddr);
  153. pte.setPhysicalPageBase(0);
  154. pte.setPresent(false);
  155. pte.setWritable(false);
  156. pte.setUserAllowed(false);
  157. // kprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, zone.m_pages[i].get());
  158. }
  159. flushTLB();
  160. return true;
  161. }
  162. bool MemoryManager::unmapRegionsForTask(Task& task)
  163. {
  164. for (auto& region : task.m_regions) {
  165. if (!unmapRegion(task, *region))
  166. return false;
  167. }
  168. return true;
  169. }
  170. bool MemoryManager::mapRegion(Task& task, Task::Region& region)
  171. {
  172. auto& zone = *region.zone;
  173. for (size_t i = 0; i < zone.m_pages.size(); ++i) {
  174. auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
  175. auto pte = ensurePTE(laddr);
  176. pte.setPhysicalPageBase(zone.m_pages[i].get());
  177. pte.setPresent(true);
  178. pte.setWritable(true);
  179. pte.setUserAllowed(!task.isRing0());
  180. //kprintf("MM: >> Mapped L%x => P%x <<\n", laddr, zone.m_pages[i].get());
  181. }
  182. flushTLB();
  183. return true;
  184. }
  185. bool MemoryManager::mapRegionsForTask(Task& task)
  186. {
  187. for (auto& region : task.m_regions) {
  188. if (!mapRegion(task, *region))
  189. return false;
  190. }
  191. return true;
  192. }
  193. bool copyToZone(Zone& zone, const void* data, size_t size)
  194. {
  195. if (zone.size() < size) {
  196. kprintf("copyToZone: can't fit %u bytes into zone with size %u\n", size, zone.size());
  197. return false;
  198. }
  199. auto* dataptr = (const byte*)data;
  200. size_t remaining = size;
  201. for (size_t i = 0; i < zone.m_pages.size(); ++i) {
  202. byte* dest = MemoryManager::the().quickMapOnePage(zone.m_pages[i]);
  203. kprintf("memcpy(%p, %p, %u)\n", dest, dataptr, min(PAGE_SIZE, remaining));
  204. memcpy(dest, dataptr, min(PAGE_SIZE, remaining));
  205. dataptr += PAGE_SIZE;
  206. remaining -= PAGE_SIZE;
  207. }
  208. return true;
  209. }