123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637 |
- /*
- * Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
- * Copyright (c) 2022, Ben Maxwell <macdue@dueutil.tech>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #if defined(__GNUC__) && !defined(__clang__)
- # pragma GCC optimize("O3")
- #endif
- #include "FillPathImplementation.h"
- #include <AK/Function.h>
- #include <AK/NumericLimits.h>
- #include <LibGfx/AntiAliasingPainter.h>
- #include <LibGfx/Path.h>
- namespace Gfx {
- // Base algorithm from https://en.wikipedia.org/wiki/Xiaolin_Wu%27s_line_algorithm,
- // because there seems to be no other known method for drawing AA'd lines (?)
- template<AntiAliasingPainter::AntiAliasPolicy policy>
- void AntiAliasingPainter::draw_anti_aliased_line(FloatPoint const& actual_from, FloatPoint const& actual_to, Color color, float thickness, Painter::LineStyle style, Color)
- {
- // FIXME: Implement this :P
- VERIFY(style == Painter::LineStyle::Solid);
- auto corrected_thickness = thickness > 1 ? thickness - 1 : thickness;
- auto size = IntSize(corrected_thickness, corrected_thickness);
- auto plot = [&](int x, int y, float c) {
- m_underlying_painter.fill_rect(IntRect::centered_on({ x, y }, size), color.with_alpha(color.alpha() * c));
- };
- auto integer_part = [](float x) { return floorf(x); };
- auto round = [&](float x) { return integer_part(x + 0.5f); };
- auto fractional_part = [&](float x) { return x - floorf(x); };
- auto one_minus_fractional_part = [&](float x) { return 1.0f - fractional_part(x); };
- auto draw_line = [&](float x0, float y0, float x1, float y1) {
- bool steep = fabsf(y1 - y0) > fabsf(x1 - x0);
- if (steep) {
- swap(x0, y0);
- swap(x1, y1);
- }
- if (x0 > x1) {
- swap(x0, x1);
- swap(y0, y1);
- }
- float dx = x1 - x0;
- float dy = y1 - y0;
- float gradient;
- if (dx == 0.0f)
- gradient = 1.0f;
- else
- gradient = dy / dx;
- // Handle first endpoint.
- int x_end = round(x0);
- int y_end = y0 + gradient * (x_end - x0);
- float x_gap = one_minus_fractional_part(x0 + 0.5f);
- int xpxl1 = x_end; // This will be used in the main loop.
- int ypxl1 = integer_part(y_end);
- if (steep) {
- plot(ypxl1, xpxl1, one_minus_fractional_part(y_end) * x_gap);
- plot(ypxl1 + 1, xpxl1, fractional_part(y_end) * x_gap);
- } else {
- plot(xpxl1, ypxl1, one_minus_fractional_part(y_end) * x_gap);
- plot(xpxl1, ypxl1 + 1, fractional_part(y_end) * x_gap);
- }
- float intery = y_end + gradient; // First y-intersection for the main loop.
- // Handle second endpoint.
- x_end = round(x1);
- y_end = y1 + gradient * (x_end - x1);
- x_gap = fractional_part(x1 + 0.5f);
- int xpxl2 = x_end; // This will be used in the main loop
- int ypxl2 = integer_part(y_end);
- if (steep) {
- plot(ypxl2, xpxl2, one_minus_fractional_part(y_end) * x_gap);
- plot(ypxl2 + 1, xpxl2, fractional_part(y_end) * x_gap);
- } else {
- plot(xpxl2, ypxl2, one_minus_fractional_part(y_end) * x_gap);
- plot(xpxl2, ypxl2 + 1, fractional_part(y_end) * x_gap);
- }
- // Main loop.
- if (steep) {
- for (int x = xpxl1 + 1; x <= xpxl2 - 1; ++x) {
- if constexpr (policy == AntiAliasPolicy::OnlyEnds) {
- plot(integer_part(intery), x, 1);
- } else {
- plot(integer_part(intery), x, one_minus_fractional_part(intery));
- }
- plot(integer_part(intery) + 1, x, fractional_part(intery));
- intery += gradient;
- }
- } else {
- for (int x = xpxl1 + 1; x <= xpxl2 - 1; ++x) {
- if constexpr (policy == AntiAliasPolicy::OnlyEnds) {
- plot(x, integer_part(intery), 1);
- } else {
- plot(x, integer_part(intery), one_minus_fractional_part(intery));
- }
- plot(x, integer_part(intery) + 1, fractional_part(intery));
- intery += gradient;
- }
- }
- };
- auto mapped_from = m_transform.map(actual_from);
- auto mapped_to = m_transform.map(actual_to);
- draw_line(mapped_from.x(), mapped_from.y(), mapped_to.x(), mapped_to.y());
- }
- void AntiAliasingPainter::draw_aliased_line(FloatPoint const& actual_from, FloatPoint const& actual_to, Color color, float thickness, Painter::LineStyle style, Color alternate_color)
- {
- draw_anti_aliased_line<AntiAliasPolicy::OnlyEnds>(actual_from, actual_to, color, thickness, style, alternate_color);
- }
- void AntiAliasingPainter::draw_dotted_line(IntPoint point1, IntPoint point2, Color color, int thickness)
- {
- // AA circles don't really work below a radius of 2px.
- if (thickness < 4)
- return m_underlying_painter.draw_line(point1, point2, color, thickness, Painter::LineStyle::Dotted);
- auto draw_spaced_dots = [&](int start, int end, auto to_point) {
- int step = thickness * 2;
- if (start > end)
- swap(start, end);
- int delta = end - start;
- int dots = delta / step;
- if (dots == 0)
- return;
- int fudge_per_dot = 0;
- int extra_fudge = 0;
- if (dots > 3) {
- // Fudge the numbers so the last dot is drawn at the `end' point (otherwise you can get lines cuts short).
- // You need at least a handful of dots to do this.
- int fudge = delta % step;
- fudge_per_dot = fudge / dots;
- extra_fudge = fudge % dots;
- }
- for (int dot = start; dot <= end; dot += (step + fudge_per_dot + (extra_fudge > 0))) {
- fill_circle(to_point(dot), thickness / 2, color);
- --extra_fudge;
- }
- };
- if (point1.y() == point2.y()) {
- draw_spaced_dots(point1.x(), point2.x(), [&](int dot_x) {
- return IntPoint { dot_x, point1.y() };
- });
- } else if (point1.x() == point2.x()) {
- draw_spaced_dots(point1.y(), point2.y(), [&](int dot_y) {
- return IntPoint { point1.x(), dot_y };
- });
- } else {
- TODO();
- }
- }
- void AntiAliasingPainter::draw_line(FloatPoint const& actual_from, FloatPoint const& actual_to, Color color, float thickness, Painter::LineStyle style, Color alternate_color)
- {
- if (style == Painter::LineStyle::Dotted)
- return draw_dotted_line(actual_from.to_rounded<int>(), actual_to.to_rounded<int>(), color, static_cast<int>(round(thickness)));
- draw_anti_aliased_line<AntiAliasPolicy::Full>(actual_from, actual_to, color, thickness, style, alternate_color);
- }
- void AntiAliasingPainter::fill_path(Path& path, Color color, Painter::WindingRule rule)
- {
- Detail::fill_path<Detail::FillPathMode::AllowFloatingPoints>(*this, path, color, rule);
- }
- void AntiAliasingPainter::stroke_path(Path const& path, Color color, float thickness)
- {
- FloatPoint cursor;
- for (auto& segment : path.segments()) {
- switch (segment.type()) {
- case Segment::Type::Invalid:
- VERIFY_NOT_REACHED();
- case Segment::Type::MoveTo:
- cursor = segment.point();
- break;
- case Segment::Type::LineTo:
- draw_line(cursor, segment.point(), color, thickness);
- cursor = segment.point();
- break;
- case Segment::Type::QuadraticBezierCurveTo: {
- auto& through = static_cast<QuadraticBezierCurveSegment const&>(segment).through();
- draw_quadratic_bezier_curve(through, cursor, segment.point(), color, thickness);
- cursor = segment.point();
- break;
- }
- case Segment::Type::CubicBezierCurveTo: {
- auto& curve = static_cast<CubicBezierCurveSegment const&>(segment);
- auto& through_0 = curve.through_0();
- auto& through_1 = curve.through_1();
- draw_cubic_bezier_curve(through_0, through_1, cursor, segment.point(), color, thickness);
- cursor = segment.point();
- break;
- }
- case Segment::Type::EllipticalArcTo:
- auto& arc = static_cast<EllipticalArcSegment const&>(segment);
- draw_elliptical_arc(cursor, segment.point(), arc.center(), arc.radii(), arc.x_axis_rotation(), arc.theta_1(), arc.theta_delta(), color, thickness);
- cursor = segment.point();
- break;
- }
- }
- }
- void AntiAliasingPainter::draw_elliptical_arc(FloatPoint const& p1, FloatPoint const& p2, FloatPoint const& center, FloatPoint const& radii, float x_axis_rotation, float theta_1, float theta_delta, Color color, float thickness, Painter::LineStyle style)
- {
- Painter::for_each_line_segment_on_elliptical_arc(p1, p2, center, radii, x_axis_rotation, theta_1, theta_delta, [&](FloatPoint const& fp1, FloatPoint const& fp2) {
- draw_line(fp1, fp2, color, thickness, style);
- });
- }
- void AntiAliasingPainter::draw_quadratic_bezier_curve(FloatPoint const& control_point, FloatPoint const& p1, FloatPoint const& p2, Color color, float thickness, Painter::LineStyle style)
- {
- Painter::for_each_line_segment_on_bezier_curve(control_point, p1, p2, [&](FloatPoint const& fp1, FloatPoint const& fp2) {
- draw_line(fp1, fp2, color, thickness, style);
- });
- }
- void AntiAliasingPainter::draw_cubic_bezier_curve(FloatPoint const& control_point_0, FloatPoint const& control_point_1, FloatPoint const& p1, FloatPoint const& p2, Color color, float thickness, Painter::LineStyle style)
- {
- Painter::for_each_line_segment_on_cubic_bezier_curve(control_point_0, control_point_1, p1, p2, [&](FloatPoint const& fp1, FloatPoint const& fp2) {
- draw_line(fp1, fp2, color, thickness, style);
- });
- }
- void AntiAliasingPainter::fill_rect(FloatRect const& float_rect, Color color)
- {
- // Draw the integer part of the rectangle:
- float right_x = float_rect.x() + float_rect.width();
- float bottom_y = float_rect.y() + float_rect.height();
- int x1 = ceilf(float_rect.x());
- int y1 = ceilf(float_rect.y());
- int x2 = floorf(right_x);
- int y2 = floorf(bottom_y);
- auto solid_rect = Gfx::IntRect::from_two_points({ x1, y1 }, { x2, y2 });
- m_underlying_painter.fill_rect(solid_rect, color);
- if (float_rect == solid_rect)
- return;
- // Draw the rest:
- float left_subpixel = x1 - float_rect.x();
- float top_subpixel = y1 - float_rect.y();
- float right_subpixel = right_x - x2;
- float bottom_subpixel = bottom_y - y2;
- float top_left_subpixel = top_subpixel * left_subpixel;
- float top_right_subpixel = top_subpixel * right_subpixel;
- float bottom_left_subpixel = bottom_subpixel * left_subpixel;
- float bottom_right_subpixel = bottom_subpixel * right_subpixel;
- auto subpixel = [&](float alpha) {
- return color.with_alpha(color.alpha() * alpha);
- };
- auto set_pixel = [&](int x, int y, float alpha) {
- m_underlying_painter.set_pixel(x, y, subpixel(alpha), true);
- };
- auto line_to_rect = [&](int x1, int y1, int x2, int y2) {
- return IntRect::from_two_points({ x1, y1 }, { x2 + 1, y2 + 1 });
- };
- set_pixel(x1 - 1, y1 - 1, top_left_subpixel);
- set_pixel(x2, y1 - 1, top_right_subpixel);
- set_pixel(x2, y2, bottom_right_subpixel);
- set_pixel(x1 - 1, y2, bottom_left_subpixel);
- m_underlying_painter.fill_rect(line_to_rect(x1, y1 - 1, x2 - 1, y1 - 1), subpixel(top_subpixel));
- m_underlying_painter.fill_rect(line_to_rect(x1, y2, x2 - 1, y2), subpixel(bottom_subpixel));
- m_underlying_painter.fill_rect(line_to_rect(x1 - 1, y1, x1 - 1, y2 - 1), subpixel(left_subpixel));
- m_underlying_painter.fill_rect(line_to_rect(x2, y1, x2, y2 - 1), subpixel(right_subpixel));
- }
- void AntiAliasingPainter::draw_ellipse(IntRect const& a_rect, Color color, int thickness)
- {
- // FIXME: Come up with an allocation-free version of this!
- // Using draw_line() for segments of an ellipse was attempted but gave really poor results :^(
- // There probably is a way to adjust the fill of draw_ellipse_part() to do this, but getting it rendering correctly is tricky.
- // The outline of the steps required to paint it efficiently is:
- // - Paint the outer ellipse without the fill (from the fill() lambda in draw_ellipse_part())
- // - Paint the inner ellipse, but in the set_pixel() invert the alpha values
- // - Somehow fill in the gap between the two ellipses (the tricky part to get right)
- // - Have to avoid overlapping pixels and accidentally painting over some of the edge pixels
- auto color_no_alpha = color;
- color_no_alpha.set_alpha(255);
- auto outline_ellipse_bitmap = ({
- auto bitmap = Bitmap::try_create(BitmapFormat::BGRA8888, a_rect.size());
- if (bitmap.is_error())
- return warnln("Failed to allocate temporary bitmap for antialiased outline ellipse!");
- bitmap.release_value();
- });
- auto outer_rect = a_rect;
- outer_rect.set_location({ 0, 0 });
- auto inner_rect = outer_rect.shrunken(thickness * 2, thickness * 2);
- Painter painter { outline_ellipse_bitmap };
- AntiAliasingPainter aa_painter { painter };
- aa_painter.fill_ellipse(outer_rect, color_no_alpha);
- aa_painter.fill_ellipse(inner_rect, color_no_alpha, BlendMode::AlphaSubtract);
- m_underlying_painter.blit(a_rect.location(), outline_ellipse_bitmap, outline_ellipse_bitmap->rect(), color.alpha() / 255.);
- }
- void AntiAliasingPainter::fill_circle(IntPoint const& center, int radius, Color color, BlendMode blend_mode)
- {
- if (radius <= 0)
- return;
- draw_ellipse_part(center, radius, radius, color, false, {}, blend_mode);
- }
- void AntiAliasingPainter::fill_ellipse(IntRect const& a_rect, Color color, BlendMode blend_mode)
- {
- auto center = a_rect.center();
- auto radius_a = a_rect.width() / 2;
- auto radius_b = a_rect.height() / 2;
- if (radius_a <= 0 || radius_b <= 0)
- return;
- if (radius_a == radius_b)
- return fill_circle(center, radius_a, color, blend_mode);
- auto x_paint_range = draw_ellipse_part(center, radius_a, radius_b, color, false, {}, blend_mode);
- // FIXME: This paints some extra fill pixels that are clipped
- draw_ellipse_part(center, radius_b, radius_a, color, true, x_paint_range, blend_mode);
- }
- FLATTEN AntiAliasingPainter::Range AntiAliasingPainter::draw_ellipse_part(
- IntPoint center, int radius_a, int radius_b, Color color, bool flip_x_and_y, Optional<Range> x_clip, BlendMode blend_mode)
- {
- /*
- Algorithm from: https://cs.uwaterloo.ca/research/tr/1984/CS-84-38.pdf
- This method can draw a whole circle with a whole circle in one call using
- 8-way symmetry, or an ellipse in two calls using 4-way symmetry.
- */
- center *= m_underlying_painter.scale();
- radius_a *= m_underlying_painter.scale();
- radius_b *= m_underlying_painter.scale();
- // If this is a ellipse everything can be drawn in one pass with 8 way symmetry
- bool const is_circle = radius_a == radius_b;
- // These happen to be the same here, but are treated separately in the paper:
- // intensity is the fill alpha
- int const intensity = 255;
- // 0 to subpixel_resolution is the range of alpha values for the circle edges
- int const subpixel_resolution = intensity;
- // Current pixel address
- int i = 0;
- int q = radius_b;
- // 1st and 2nd order differences of y
- int delta_y = 0;
- int delta2_y = 0;
- int const a_squared = radius_a * radius_a;
- int const b_squared = radius_b * radius_b;
- // Exact and predicted values of f(i) -- the ellipse equation scaled by subpixel_resolution
- int y = subpixel_resolution * radius_b;
- int y_hat = 0;
- // The value of f(i)*f(i)
- int f_squared = y * y;
- // 1st and 2nd order differences of f(i)*f(i)
- int delta_f_squared = -(static_cast<int64_t>(b_squared) * subpixel_resolution * subpixel_resolution) / a_squared;
- int delta2_f_squared = 2 * delta_f_squared;
- // edge_intersection_area/subpixel_resolution = percentage of pixel intersected by circle
- // (aka the alpha for the pixel)
- int edge_intersection_area = 0;
- int old_area = edge_intersection_area;
- auto predict = [&] {
- delta_y += delta2_y;
- // y_hat is the predicted value of f(i)
- y_hat = y + delta_y;
- };
- auto minimize = [&] {
- // Initialize the minimization
- delta_f_squared += delta2_f_squared;
- f_squared += delta_f_squared;
- int min_squared_error = y_hat * y_hat - f_squared;
- int prediction_overshot = 1;
- y = y_hat;
- // Force error negative
- if (min_squared_error > 0) {
- min_squared_error = -min_squared_error;
- prediction_overshot = -1;
- }
- // Minimize
- int previous_error = min_squared_error;
- while (min_squared_error < 0) {
- y += prediction_overshot;
- previous_error = min_squared_error;
- min_squared_error += y + y - prediction_overshot;
- }
- if (min_squared_error + previous_error > 0)
- y -= prediction_overshot;
- };
- auto correct = [&] {
- int error = y - y_hat;
- // FIXME: The alpha values seem too low, which makes things look
- // overly pointy. This fixes that, though there's probably a better
- // solution to be found. (This issue seems to exist in the base algorithm)
- error /= 4;
- delta2_y += error;
- delta_y += error;
- };
- int min_paint_x = NumericLimits<int>::max();
- int max_paint_x = NumericLimits<int>::min();
- auto pixel = [&](int x, int y, int alpha) {
- if (alpha <= 0 || alpha > 255)
- return;
- if (flip_x_and_y)
- swap(x, y);
- if (x_clip.has_value() && x_clip->contains_inclusive(x))
- return;
- min_paint_x = min(x, min_paint_x);
- max_paint_x = max(x, max_paint_x);
- alpha = (alpha * color.alpha()) / 255;
- if (blend_mode == BlendMode::AlphaSubtract)
- alpha = ~alpha;
- auto pixel_color = color;
- pixel_color.set_alpha(alpha);
- m_underlying_painter.set_pixel(center + IntPoint { x, y }, pixel_color, blend_mode == BlendMode::Normal);
- };
- auto fill = [&](int x, int ymax, int ymin, int alpha) {
- while (ymin <= ymax) {
- pixel(x, ymin, alpha);
- ymin += 1;
- }
- };
- auto symmetric_pixel = [&](int x, int y, int alpha) {
- pixel(x, y, alpha);
- pixel(x, -y - 1, alpha);
- pixel(-x - 1, -y - 1, alpha);
- pixel(-x - 1, y, alpha);
- if (is_circle) {
- pixel(y, x, alpha);
- pixel(y, -x - 1, alpha);
- pixel(-y - 1, -x - 1, alpha);
- pixel(-y - 1, x, alpha);
- }
- };
- // These are calculated incrementally (as it is possibly a tiny bit faster)
- int ib_squared = 0;
- int qa_squared = q * a_squared;
- auto in_symmetric_region = [&] {
- // Main fix two stop cond here
- return is_circle ? i < q : ib_squared < qa_squared;
- };
- // Draws a 8 octants for a circle or 4 quadrants for a (partial) ellipse
- while (in_symmetric_region()) {
- predict();
- minimize();
- correct();
- old_area = edge_intersection_area;
- edge_intersection_area += delta_y;
- if (edge_intersection_area >= 0) {
- // Single pixel on perimeter
- symmetric_pixel(i, q, (edge_intersection_area + old_area) / 2);
- fill(i, q - 1, -q, intensity);
- fill(-i - 1, q - 1, -q, intensity);
- } else {
- // Two pixels on perimeter
- edge_intersection_area += subpixel_resolution;
- symmetric_pixel(i, q, old_area / 2);
- q -= 1;
- qa_squared -= a_squared;
- fill(i, q - 1, -q, intensity);
- fill(-i - 1, q - 1, -q, intensity);
- if (!is_circle || in_symmetric_region()) {
- symmetric_pixel(i, q, (edge_intersection_area + subpixel_resolution) / 2);
- if (is_circle) {
- fill(q, i - 1, -i, intensity);
- fill(-q - 1, i - 1, -i, intensity);
- }
- } else {
- edge_intersection_area += subpixel_resolution;
- }
- }
- i += 1;
- ib_squared += b_squared;
- }
- if (is_circle) {
- int alpha = edge_intersection_area / 2;
- pixel(q, q, alpha);
- pixel(-q - 1, q, alpha);
- pixel(-q - 1, -q - 1, alpha);
- pixel(q, -q - 1, alpha);
- }
- return Range { min_paint_x, max_paint_x };
- }
- void AntiAliasingPainter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, int radius)
- {
- fill_rect_with_rounded_corners(a_rect, color, radius, radius, radius, radius);
- }
- void AntiAliasingPainter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, int top_left_radius, int top_right_radius, int bottom_right_radius, int bottom_left_radius)
- {
- fill_rect_with_rounded_corners(a_rect, color,
- { top_left_radius, top_left_radius },
- { top_right_radius, top_right_radius },
- { bottom_right_radius, bottom_right_radius },
- { bottom_left_radius, bottom_left_radius });
- }
- void AntiAliasingPainter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, CornerRadius top_left, CornerRadius top_right, CornerRadius bottom_right, CornerRadius bottom_left, BlendMode blend_mode)
- {
- if (!top_left && !top_right && !bottom_right && !bottom_left) {
- if (blend_mode == BlendMode::Normal)
- return m_underlying_painter.fill_rect(a_rect, color);
- else if (blend_mode == BlendMode::AlphaSubtract)
- return m_underlying_painter.clear_rect(a_rect, Color());
- }
- if (color.alpha() == 0)
- return;
- IntPoint top_left_corner {
- a_rect.x() + top_left.horizontal_radius,
- a_rect.y() + top_left.vertical_radius,
- };
- IntPoint top_right_corner {
- a_rect.x() + a_rect.width() - top_right.horizontal_radius,
- a_rect.y() + top_right.vertical_radius,
- };
- IntPoint bottom_left_corner {
- a_rect.x() + bottom_left.horizontal_radius,
- a_rect.y() + a_rect.height() - bottom_left.vertical_radius
- };
- IntPoint bottom_right_corner {
- a_rect.x() + a_rect.width() - bottom_right.horizontal_radius,
- a_rect.y() + a_rect.height() - bottom_right.vertical_radius
- };
- // All corners are centered at the same point, so this can be painted as a single ellipse.
- if (top_left_corner == top_right_corner && top_right_corner == bottom_left_corner && bottom_left_corner == bottom_right_corner)
- return fill_ellipse(a_rect, color, blend_mode);
- IntRect top_rect {
- a_rect.x() + top_left.horizontal_radius,
- a_rect.y(),
- a_rect.width() - top_left.horizontal_radius - top_right.horizontal_radius,
- top_left.vertical_radius
- };
- IntRect right_rect {
- a_rect.x() + a_rect.width() - top_right.horizontal_radius,
- a_rect.y() + top_right.vertical_radius,
- top_right.horizontal_radius,
- a_rect.height() - top_right.vertical_radius - bottom_right.vertical_radius
- };
- IntRect bottom_rect {
- a_rect.x() + bottom_left.horizontal_radius,
- a_rect.y() + a_rect.height() - bottom_right.vertical_radius,
- a_rect.width() - bottom_left.horizontal_radius - bottom_right.horizontal_radius,
- bottom_right.vertical_radius
- };
- IntRect left_rect {
- a_rect.x(),
- a_rect.y() + top_left.vertical_radius,
- bottom_left.horizontal_radius,
- a_rect.height() - top_left.vertical_radius - bottom_left.vertical_radius
- };
- IntRect inner = {
- left_rect.x() + left_rect.width(),
- left_rect.y(),
- a_rect.width() - left_rect.width() - right_rect.width(),
- a_rect.height() - top_rect.height() - bottom_rect.height()
- };
- if (blend_mode == BlendMode::Normal) {
- m_underlying_painter.fill_rect(top_rect, color);
- m_underlying_painter.fill_rect(right_rect, color);
- m_underlying_painter.fill_rect(bottom_rect, color);
- m_underlying_painter.fill_rect(left_rect, color);
- m_underlying_painter.fill_rect(inner, color);
- } else if (blend_mode == BlendMode::AlphaSubtract) {
- m_underlying_painter.clear_rect(top_rect, Color());
- m_underlying_painter.clear_rect(right_rect, Color());
- m_underlying_painter.clear_rect(bottom_rect, Color());
- m_underlying_painter.clear_rect(left_rect, Color());
- m_underlying_painter.clear_rect(inner, Color());
- }
- auto fill_corner = [&](auto const& ellipse_center, auto const& corner_point, CornerRadius const& corner) {
- PainterStateSaver save { m_underlying_painter };
- m_underlying_painter.add_clip_rect(IntRect::from_two_points(ellipse_center, corner_point));
- fill_ellipse(IntRect::centered_at(ellipse_center, { corner.horizontal_radius * 2, corner.vertical_radius * 2 }), color, blend_mode);
- };
- auto bounding_rect = a_rect.inflated(0, 1, 1, 0);
- if (top_left)
- fill_corner(top_left_corner, bounding_rect.top_left(), top_left);
- if (top_right)
- fill_corner(top_right_corner, bounding_rect.top_right(), top_right);
- if (bottom_left)
- fill_corner(bottom_left_corner, bounding_rect.bottom_left(), bottom_left);
- if (bottom_right)
- fill_corner(bottom_right_corner, bounding_rect.bottom_right(), bottom_right);
- }
- }
|