init.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Types.h>
  7. #include <Kernel/Arch/InterruptManagement.h>
  8. #include <Kernel/Arch/Processor.h>
  9. #include <Kernel/BootInfo.h>
  10. #include <Kernel/Bus/PCI/Access.h>
  11. #include <Kernel/Bus/PCI/Initializer.h>
  12. #include <Kernel/Bus/USB/USBManagement.h>
  13. #include <Kernel/Bus/VirtIO/Device.h>
  14. #include <Kernel/CMOS.h>
  15. #include <Kernel/CommandLine.h>
  16. #include <Kernel/Devices/Audio/Management.h>
  17. #include <Kernel/Devices/DeviceControlDevice.h>
  18. #include <Kernel/Devices/DeviceManagement.h>
  19. #include <Kernel/Devices/FullDevice.h>
  20. #include <Kernel/Devices/HID/HIDManagement.h>
  21. #include <Kernel/Devices/KCOVDevice.h>
  22. #include <Kernel/Devices/MemoryDevice.h>
  23. #include <Kernel/Devices/NullDevice.h>
  24. #include <Kernel/Devices/PCISerialDevice.h>
  25. #include <Kernel/Devices/RandomDevice.h>
  26. #include <Kernel/Devices/SelfTTYDevice.h>
  27. #include <Kernel/Devices/SerialDevice.h>
  28. #include <Kernel/Devices/ZeroDevice.h>
  29. #include <Kernel/FileSystem/Ext2FileSystem.h>
  30. #include <Kernel/FileSystem/SysFS.h>
  31. #include <Kernel/FileSystem/SysFS/Subsystems/Firmware/Directory.h>
  32. #include <Kernel/FileSystem/VirtualFileSystem.h>
  33. #include <Kernel/Firmware/ACPI/Initialize.h>
  34. #include <Kernel/Firmware/ACPI/Parser.h>
  35. #include <Kernel/Firmware/Hypervisor/VMWareBackdoor.h>
  36. #include <Kernel/Graphics/Console/BootFramebufferConsole.h>
  37. #include <Kernel/Graphics/Console/VGATextModeConsole.h>
  38. #include <Kernel/Graphics/GraphicsManagement.h>
  39. #include <Kernel/Heap/kmalloc.h>
  40. #include <Kernel/Interrupts/APIC.h>
  41. #include <Kernel/Interrupts/PIC.h>
  42. #include <Kernel/KSyms.h>
  43. #include <Kernel/Memory/MemoryManager.h>
  44. #include <Kernel/Multiboot.h>
  45. #include <Kernel/Net/NetworkTask.h>
  46. #include <Kernel/Net/NetworkingManagement.h>
  47. #include <Kernel/Panic.h>
  48. #include <Kernel/Prekernel/Prekernel.h>
  49. #include <Kernel/Process.h>
  50. #include <Kernel/ProcessExposed.h>
  51. #include <Kernel/RTC.h>
  52. #include <Kernel/Random.h>
  53. #include <Kernel/Scheduler.h>
  54. #include <Kernel/Sections.h>
  55. #include <Kernel/Storage/StorageManagement.h>
  56. #include <Kernel/TTY/ConsoleManagement.h>
  57. #include <Kernel/TTY/PTYMultiplexer.h>
  58. #include <Kernel/TTY/VirtualConsole.h>
  59. #include <Kernel/Tasks/FinalizerTask.h>
  60. #include <Kernel/Tasks/SyncTask.h>
  61. #include <Kernel/Time/TimeManagement.h>
  62. #include <Kernel/WorkQueue.h>
  63. #include <Kernel/kstdio.h>
  64. // Defined in the linker script
  65. typedef void (*ctor_func_t)();
  66. extern ctor_func_t start_heap_ctors[];
  67. extern ctor_func_t end_heap_ctors[];
  68. extern ctor_func_t start_ctors[];
  69. extern ctor_func_t end_ctors[];
  70. extern size_t __stack_chk_guard;
  71. READONLY_AFTER_INIT size_t __stack_chk_guard __attribute__((used));
  72. extern "C" u8 start_of_safemem_text[];
  73. extern "C" u8 end_of_safemem_text[];
  74. extern "C" u8 start_of_safemem_atomic_text[];
  75. extern "C" u8 end_of_safemem_atomic_text[];
  76. extern "C" u8 end_of_kernel_image[];
  77. multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  78. size_t multiboot_copy_boot_modules_count;
  79. READONLY_AFTER_INIT bool g_in_early_boot;
  80. namespace Kernel {
  81. [[noreturn]] static void init_stage2(void*);
  82. static void setup_serial_debug();
  83. // boot.S expects these functions to exactly have the following signatures.
  84. // We declare them here to ensure their signatures don't accidentally change.
  85. extern "C" void init_finished(u32 cpu) __attribute__((used));
  86. extern "C" [[noreturn]] void init_ap(FlatPtr cpu, Processor* processor_info);
  87. extern "C" [[noreturn]] void init(BootInfo const&);
  88. READONLY_AFTER_INIT VirtualConsole* tty0;
  89. ProcessID g_init_pid { 0 };
  90. ALWAYS_INLINE static Processor& bsp_processor()
  91. {
  92. // This solves a problem where the bsp Processor instance
  93. // gets "re"-initialized in init() when we run all global constructors.
  94. alignas(Processor) static u8 bsp_processor_storage[sizeof(Processor)];
  95. return (Processor&)bsp_processor_storage;
  96. }
  97. // SerenityOS Kernel C++ entry point :^)
  98. //
  99. // This is where C++ execution begins, after boot.S transfers control here.
  100. //
  101. // The purpose of init() is to start multi-tasking. It does the bare minimum
  102. // amount of work needed to start the scheduler.
  103. //
  104. // Once multi-tasking is ready, we spawn a new thread that starts in the
  105. // init_stage2() function. Initialization continues there.
  106. extern "C" {
  107. READONLY_AFTER_INIT PhysicalAddress start_of_prekernel_image;
  108. READONLY_AFTER_INIT PhysicalAddress end_of_prekernel_image;
  109. READONLY_AFTER_INIT size_t physical_to_virtual_offset;
  110. READONLY_AFTER_INIT FlatPtr kernel_mapping_base;
  111. READONLY_AFTER_INIT FlatPtr kernel_load_base;
  112. #if ARCH(X86_64)
  113. READONLY_AFTER_INIT PhysicalAddress boot_pml4t;
  114. #endif
  115. READONLY_AFTER_INIT PhysicalAddress boot_pdpt;
  116. READONLY_AFTER_INIT PhysicalAddress boot_pd0;
  117. READONLY_AFTER_INIT PhysicalAddress boot_pd_kernel;
  118. READONLY_AFTER_INIT PageTableEntry* boot_pd_kernel_pt1023;
  119. READONLY_AFTER_INIT char const* kernel_cmdline;
  120. READONLY_AFTER_INIT u32 multiboot_flags;
  121. READONLY_AFTER_INIT multiboot_memory_map_t* multiboot_memory_map;
  122. READONLY_AFTER_INIT size_t multiboot_memory_map_count;
  123. READONLY_AFTER_INIT multiboot_module_entry_t* multiboot_modules;
  124. READONLY_AFTER_INIT size_t multiboot_modules_count;
  125. READONLY_AFTER_INIT PhysicalAddress multiboot_framebuffer_addr;
  126. READONLY_AFTER_INIT u32 multiboot_framebuffer_pitch;
  127. READONLY_AFTER_INIT u32 multiboot_framebuffer_width;
  128. READONLY_AFTER_INIT u32 multiboot_framebuffer_height;
  129. READONLY_AFTER_INIT u8 multiboot_framebuffer_bpp;
  130. READONLY_AFTER_INIT u8 multiboot_framebuffer_type;
  131. }
  132. Atomic<Graphics::Console*> g_boot_console;
  133. extern "C" [[noreturn]] UNMAP_AFTER_INIT void init(BootInfo const& boot_info)
  134. {
  135. g_in_early_boot = true;
  136. start_of_prekernel_image = PhysicalAddress { boot_info.start_of_prekernel_image };
  137. end_of_prekernel_image = PhysicalAddress { boot_info.end_of_prekernel_image };
  138. physical_to_virtual_offset = boot_info.physical_to_virtual_offset;
  139. kernel_mapping_base = boot_info.kernel_mapping_base;
  140. kernel_load_base = boot_info.kernel_load_base;
  141. #if ARCH(X86_64)
  142. gdt64ptr = boot_info.gdt64ptr;
  143. code64_sel = boot_info.code64_sel;
  144. boot_pml4t = PhysicalAddress { boot_info.boot_pml4t };
  145. #endif
  146. boot_pdpt = PhysicalAddress { boot_info.boot_pdpt };
  147. boot_pd0 = PhysicalAddress { boot_info.boot_pd0 };
  148. boot_pd_kernel = PhysicalAddress { boot_info.boot_pd_kernel };
  149. boot_pd_kernel_pt1023 = (PageTableEntry*)boot_info.boot_pd_kernel_pt1023;
  150. kernel_cmdline = (char const*)boot_info.kernel_cmdline;
  151. multiboot_flags = boot_info.multiboot_flags;
  152. multiboot_memory_map = (multiboot_memory_map_t*)boot_info.multiboot_memory_map;
  153. multiboot_memory_map_count = boot_info.multiboot_memory_map_count;
  154. multiboot_modules = (multiboot_module_entry_t*)boot_info.multiboot_modules;
  155. multiboot_modules_count = boot_info.multiboot_modules_count;
  156. multiboot_framebuffer_addr = PhysicalAddress { boot_info.multiboot_framebuffer_addr };
  157. multiboot_framebuffer_pitch = boot_info.multiboot_framebuffer_pitch;
  158. multiboot_framebuffer_width = boot_info.multiboot_framebuffer_width;
  159. multiboot_framebuffer_height = boot_info.multiboot_framebuffer_height;
  160. multiboot_framebuffer_bpp = boot_info.multiboot_framebuffer_bpp;
  161. multiboot_framebuffer_type = boot_info.multiboot_framebuffer_type;
  162. setup_serial_debug();
  163. // We need to copy the command line before kmalloc is initialized,
  164. // as it may overwrite parts of multiboot!
  165. CommandLine::early_initialize(kernel_cmdline);
  166. memcpy(multiboot_copy_boot_modules_array, multiboot_modules, multiboot_modules_count * sizeof(multiboot_module_entry_t));
  167. multiboot_copy_boot_modules_count = multiboot_modules_count;
  168. new (&bsp_processor()) Processor();
  169. bsp_processor().early_initialize(0);
  170. // Invoke the constructors needed for the kernel heap
  171. for (ctor_func_t* ctor = start_heap_ctors; ctor < end_heap_ctors; ctor++)
  172. (*ctor)();
  173. kmalloc_init();
  174. load_kernel_symbol_table();
  175. bsp_processor().initialize(0);
  176. CommandLine::initialize();
  177. Memory::MemoryManager::initialize(0);
  178. // NOTE: If the bootloader provided a framebuffer, then set up an initial console.
  179. // If the bootloader didn't provide a framebuffer, then set up an initial text console.
  180. // We do so we can see the output on the screen as soon as possible.
  181. if (!kernel_command_line().is_early_boot_console_disabled()) {
  182. if (!multiboot_framebuffer_addr.is_null() && multiboot_framebuffer_type == MULTIBOOT_FRAMEBUFFER_TYPE_RGB) {
  183. g_boot_console = &try_make_lock_ref_counted<Graphics::BootFramebufferConsole>(multiboot_framebuffer_addr, multiboot_framebuffer_width, multiboot_framebuffer_height, multiboot_framebuffer_pitch).value().leak_ref();
  184. } else {
  185. g_boot_console = &Graphics::VGATextModeConsole::initialize().leak_ref();
  186. }
  187. }
  188. dmesgln("Starting SerenityOS...");
  189. DeviceManagement::initialize();
  190. SysFSComponentRegistry::initialize();
  191. DeviceManagement::the().attach_null_device(*NullDevice::must_initialize());
  192. DeviceManagement::the().attach_console_device(*ConsoleDevice::must_create());
  193. DeviceManagement::the().attach_device_control_device(*DeviceControlDevice::must_create());
  194. MM.unmap_prekernel();
  195. // Ensure that the safemem sections are not empty. This could happen if the linker accidentally discards the sections.
  196. VERIFY(+start_of_safemem_text != +end_of_safemem_text);
  197. VERIFY(+start_of_safemem_atomic_text != +end_of_safemem_atomic_text);
  198. // Invoke all static global constructors in the kernel.
  199. // Note that we want to do this as early as possible.
  200. for (ctor_func_t* ctor = start_ctors; ctor < end_ctors; ctor++)
  201. (*ctor)();
  202. InterruptManagement::initialize();
  203. ACPI::initialize();
  204. // Initialize TimeManagement before using randomness!
  205. TimeManagement::initialize(0);
  206. __stack_chk_guard = get_fast_random<size_t>();
  207. ProcFSComponentRegistry::initialize();
  208. Process::initialize();
  209. Scheduler::initialize();
  210. if (APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
  211. // We must set up the AP boot environment before switching to a kernel process,
  212. // as pages below address USER_RANGE_BASE are only accessible through the kernel
  213. // page directory.
  214. APIC::the().setup_ap_boot_environment();
  215. }
  216. {
  217. LockRefPtr<Thread> init_stage2_thread;
  218. (void)Process::create_kernel_process(init_stage2_thread, KString::must_create("init_stage2"sv), init_stage2, nullptr, THREAD_AFFINITY_DEFAULT, Process::RegisterProcess::No);
  219. // We need to make sure we drop the reference for init_stage2_thread
  220. // before calling into Scheduler::start, otherwise we will have a
  221. // dangling Thread that never gets cleaned up
  222. }
  223. Scheduler::start();
  224. VERIFY_NOT_REACHED();
  225. }
  226. //
  227. // This is where C++ execution begins for APs, after boot.S transfers control here.
  228. //
  229. // The purpose of init_ap() is to initialize APs for multi-tasking.
  230. //
  231. extern "C" [[noreturn]] UNMAP_AFTER_INIT void init_ap(FlatPtr cpu, Processor* processor_info)
  232. {
  233. processor_info->early_initialize(cpu);
  234. processor_info->initialize(cpu);
  235. Memory::MemoryManager::initialize(cpu);
  236. Scheduler::set_idle_thread(APIC::the().get_idle_thread(cpu));
  237. Scheduler::start();
  238. VERIFY_NOT_REACHED();
  239. }
  240. //
  241. // This method is called once a CPU enters the scheduler and its idle thread
  242. // At this point the initial boot stack can be freed
  243. //
  244. extern "C" UNMAP_AFTER_INIT void init_finished(u32 cpu)
  245. {
  246. if (cpu == 0) {
  247. // TODO: we can reuse the boot stack, maybe for kmalloc()?
  248. } else {
  249. APIC::the().init_finished(cpu);
  250. TimeManagement::initialize(cpu);
  251. }
  252. }
  253. void init_stage2(void*)
  254. {
  255. // This is a little bit of a hack. We can't register our process at the time we're
  256. // creating it, but we need to be registered otherwise finalization won't be happy.
  257. // The colonel process gets away without having to do this because it never exits.
  258. Process::register_new(Process::current());
  259. WorkQueue::initialize();
  260. if (kernel_command_line().is_smp_enabled() && APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
  261. // We can't start the APs until we have a scheduler up and running.
  262. // We need to be able to process ICI messages, otherwise another
  263. // core may send too many and end up deadlocking once the pool is
  264. // exhausted
  265. APIC::the().boot_aps();
  266. }
  267. // Initialize the PCI Bus as early as possible, for early boot (PCI based) serial logging
  268. PCI::initialize();
  269. if (!PCI::Access::is_disabled()) {
  270. PCISerialDevice::detect();
  271. }
  272. VirtualFileSystem::initialize();
  273. if (!is_serial_debug_enabled())
  274. (void)SerialDevice::must_create(0).leak_ref();
  275. (void)SerialDevice::must_create(1).leak_ref();
  276. (void)SerialDevice::must_create(2).leak_ref();
  277. (void)SerialDevice::must_create(3).leak_ref();
  278. VMWareBackdoor::the(); // don't wait until first mouse packet
  279. MUST(HIDManagement::initialize());
  280. GraphicsManagement::the().initialize();
  281. ConsoleManagement::the().initialize();
  282. SyncTask::spawn();
  283. FinalizerTask::spawn();
  284. auto boot_profiling = kernel_command_line().is_boot_profiling_enabled();
  285. if (!PCI::Access::is_disabled()) {
  286. USB::USBManagement::initialize();
  287. }
  288. FirmwareSysFSDirectory::initialize();
  289. if (!PCI::Access::is_disabled()) {
  290. VirtIO::detect();
  291. }
  292. NetworkingManagement::the().initialize();
  293. Syscall::initialize();
  294. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  295. (void)KCOVDevice::must_create().leak_ref();
  296. #endif
  297. (void)MemoryDevice::must_create().leak_ref();
  298. (void)ZeroDevice::must_create().leak_ref();
  299. (void)FullDevice::must_create().leak_ref();
  300. (void)RandomDevice::must_create().leak_ref();
  301. (void)SelfTTYDevice::must_create().leak_ref();
  302. PTYMultiplexer::initialize();
  303. AudioManagement::the().initialize();
  304. StorageManagement::the().initialize(kernel_command_line().root_device(), kernel_command_line().is_force_pio(), kernel_command_line().is_nvme_polling_enabled());
  305. if (VirtualFileSystem::the().mount_root(StorageManagement::the().root_filesystem()).is_error()) {
  306. PANIC("VirtualFileSystem::mount_root failed");
  307. }
  308. // Switch out of early boot mode.
  309. g_in_early_boot = false;
  310. // NOTE: Everything marked READONLY_AFTER_INIT becomes non-writable after this point.
  311. MM.protect_readonly_after_init_memory();
  312. // NOTE: Everything in the .ksyms section becomes read-only after this point.
  313. MM.protect_ksyms_after_init();
  314. // NOTE: Everything marked UNMAP_AFTER_INIT becomes inaccessible after this point.
  315. MM.unmap_text_after_init();
  316. LockRefPtr<Thread> thread;
  317. auto userspace_init = kernel_command_line().userspace_init();
  318. auto init_args = kernel_command_line().userspace_init_args();
  319. auto init_or_error = Process::try_create_user_process(thread, userspace_init, UserID(0), GroupID(0), move(init_args), {}, tty0);
  320. if (init_or_error.is_error())
  321. PANIC("init_stage2: Error spawning init process: {}", init_or_error.error());
  322. g_init_pid = init_or_error.value()->pid();
  323. thread->set_priority(THREAD_PRIORITY_HIGH);
  324. if (boot_profiling) {
  325. dbgln("Starting full system boot profiling");
  326. MutexLocker mutex_locker(Process::current().big_lock());
  327. auto const enable_all = ~(u64)0;
  328. auto result = Process::current().profiling_enable(-1, enable_all);
  329. VERIFY(!result.is_error());
  330. }
  331. NetworkTask::spawn();
  332. Process::current().sys$exit(0);
  333. VERIFY_NOT_REACHED();
  334. }
  335. UNMAP_AFTER_INIT void setup_serial_debug()
  336. {
  337. // serial_debug will output all the dbgln() data to COM1 at
  338. // 8-N-1 57600 baud. this is particularly useful for debugging the boot
  339. // process on live hardware.
  340. if (StringView { kernel_cmdline, strlen(kernel_cmdline) }.contains("serial_debug"sv)) {
  341. set_serial_debug_enabled(true);
  342. }
  343. }
  344. // Define some Itanium C++ ABI methods to stop the linker from complaining.
  345. // If we actually call these something has gone horribly wrong
  346. void* __dso_handle __attribute__((visibility("hidden")));
  347. }