mmap.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2021, Leon Albrecht <leon2002.la@gmail.com>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <Kernel/Arch/SafeMem.h>
  8. #include <Kernel/Arch/SmapDisabler.h>
  9. #include <Kernel/Arch/x86/MSR.h>
  10. #include <Kernel/FileSystem/OpenFileDescription.h>
  11. #include <Kernel/Memory/AnonymousVMObject.h>
  12. #include <Kernel/Memory/MemoryManager.h>
  13. #include <Kernel/Memory/PageDirectory.h>
  14. #include <Kernel/Memory/PrivateInodeVMObject.h>
  15. #include <Kernel/Memory/Region.h>
  16. #include <Kernel/Memory/SharedInodeVMObject.h>
  17. #include <Kernel/PerformanceEventBuffer.h>
  18. #include <Kernel/PerformanceManager.h>
  19. #include <Kernel/Process.h>
  20. #include <LibC/limits.h>
  21. #include <LibELF/Validation.h>
  22. namespace Kernel {
  23. static bool should_make_executable_exception_for_dynamic_loader(bool make_readable, bool make_writable, bool make_executable, Memory::Region const& region)
  24. {
  25. // Normally we don't allow W -> X transitions, but we have to make an exception
  26. // for the dynamic loader, which needs to do this after performing text relocations.
  27. // FIXME: Investigate whether we could get rid of all text relocations entirely.
  28. // The exception is only made if all the following criteria is fulfilled:
  29. // The region must be RW
  30. if (!(region.is_readable() && region.is_writable() && !region.is_executable()))
  31. return false;
  32. // The region wants to become RX
  33. if (!(make_readable && !make_writable && make_executable))
  34. return false;
  35. // The region is backed by a file
  36. if (!region.vmobject().is_inode())
  37. return false;
  38. // The file mapping is private, not shared (no relocations in a shared mapping!)
  39. if (!region.vmobject().is_private_inode())
  40. return false;
  41. auto const& inode_vm = static_cast<Memory::InodeVMObject const&>(region.vmobject());
  42. auto const& inode = inode_vm.inode();
  43. ElfW(Ehdr) header;
  44. auto buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&header);
  45. auto result = inode.read_bytes(0, sizeof(header), buffer, nullptr);
  46. if (result.is_error() || result.value() != sizeof(header))
  47. return false;
  48. // The file is a valid ELF binary
  49. if (!ELF::validate_elf_header(header, inode.size()))
  50. return false;
  51. // The file is an ELF shared object
  52. if (header.e_type != ET_DYN)
  53. return false;
  54. // FIXME: Are there any additional checks/validations we could do here?
  55. return true;
  56. }
  57. ErrorOr<void> Process::validate_mmap_prot(int prot, bool map_stack, bool map_anonymous, Memory::Region const* region) const
  58. {
  59. bool make_readable = prot & PROT_READ;
  60. bool make_writable = prot & PROT_WRITE;
  61. bool make_executable = prot & PROT_EXEC;
  62. if (map_anonymous && make_executable && !(executable()->mount_flags() & MS_AXALLOWED))
  63. return EINVAL;
  64. if (map_stack && make_executable)
  65. return EINVAL;
  66. if (executable()->mount_flags() & MS_WXALLOWED)
  67. return {};
  68. if (make_writable && make_executable)
  69. return EINVAL;
  70. if (region) {
  71. if (make_writable && region->has_been_executable())
  72. return EINVAL;
  73. if (make_executable && region->has_been_writable()) {
  74. if (should_make_executable_exception_for_dynamic_loader(make_readable, make_writable, make_executable, *region)) {
  75. return {};
  76. } else {
  77. return EINVAL;
  78. };
  79. }
  80. }
  81. return {};
  82. }
  83. ErrorOr<void> Process::validate_inode_mmap_prot(int prot, bool readable_description, bool description_writable, bool map_shared) const
  84. {
  85. auto credentials = this->credentials();
  86. if ((prot & PROT_READ) && !readable_description)
  87. return EACCES;
  88. if (map_shared) {
  89. // FIXME: What about readonly filesystem mounts? We cannot make a
  90. // decision here without knowing the mount flags, so we would need to
  91. // keep a Custody or something from mmap time.
  92. if ((prot & PROT_WRITE) && !description_writable)
  93. return EACCES;
  94. }
  95. return {};
  96. }
  97. ErrorOr<FlatPtr> Process::sys$mmap(Userspace<Syscall::SC_mmap_params const*> user_params)
  98. {
  99. VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
  100. TRY(require_promise(Pledge::stdio));
  101. auto params = TRY(copy_typed_from_user(user_params));
  102. auto addr = (FlatPtr)params.addr;
  103. auto size = params.size;
  104. auto alignment = params.alignment ? params.alignment : PAGE_SIZE;
  105. auto prot = params.prot;
  106. auto flags = params.flags;
  107. auto fd = params.fd;
  108. auto offset = params.offset;
  109. if (prot & PROT_EXEC) {
  110. TRY(require_promise(Pledge::prot_exec));
  111. }
  112. if (prot & MAP_FIXED || prot & MAP_FIXED_NOREPLACE) {
  113. TRY(require_promise(Pledge::map_fixed));
  114. }
  115. if (alignment & ~PAGE_MASK)
  116. return EINVAL;
  117. size_t rounded_size = TRY(Memory::page_round_up(size));
  118. if (!Memory::is_user_range(VirtualAddress(addr), rounded_size))
  119. return EFAULT;
  120. OwnPtr<KString> name;
  121. if (params.name.characters) {
  122. if (params.name.length > PATH_MAX)
  123. return ENAMETOOLONG;
  124. name = TRY(try_copy_kstring_from_user(params.name));
  125. }
  126. if (size == 0)
  127. return EINVAL;
  128. if ((FlatPtr)addr & ~PAGE_MASK)
  129. return EINVAL;
  130. bool map_shared = flags & MAP_SHARED;
  131. bool map_anonymous = flags & MAP_ANONYMOUS;
  132. bool map_private = flags & MAP_PRIVATE;
  133. bool map_stack = flags & MAP_STACK;
  134. bool map_fixed = flags & MAP_FIXED;
  135. bool map_noreserve = flags & MAP_NORESERVE;
  136. bool map_randomized = flags & MAP_RANDOMIZED;
  137. bool map_fixed_noreplace = flags & MAP_FIXED_NOREPLACE;
  138. if (map_shared && map_private)
  139. return EINVAL;
  140. if (!map_shared && !map_private)
  141. return EINVAL;
  142. if ((map_fixed || map_fixed_noreplace) && map_randomized)
  143. return EINVAL;
  144. TRY(validate_mmap_prot(prot, map_stack, map_anonymous));
  145. if (map_stack && (!map_private || !map_anonymous))
  146. return EINVAL;
  147. Memory::VirtualRange requested_range { VirtualAddress { addr }, rounded_size };
  148. if (addr && !(map_fixed || map_fixed_noreplace)) {
  149. // If there's an address but MAP_FIXED wasn't specified, the address is just a hint.
  150. requested_range = { {}, rounded_size };
  151. }
  152. Memory::Region* region = nullptr;
  153. LockRefPtr<OpenFileDescription> description;
  154. LockRefPtr<Memory::VMObject> vmobject;
  155. u64 used_offset = 0;
  156. if (map_anonymous) {
  157. auto strategy = map_noreserve ? AllocationStrategy::None : AllocationStrategy::Reserve;
  158. if (flags & MAP_PURGEABLE) {
  159. vmobject = TRY(Memory::AnonymousVMObject::try_create_purgeable_with_size(rounded_size, strategy));
  160. } else {
  161. vmobject = TRY(Memory::AnonymousVMObject::try_create_with_size(rounded_size, strategy));
  162. }
  163. } else {
  164. if (offset < 0)
  165. return EINVAL;
  166. used_offset = static_cast<u64>(offset);
  167. if (static_cast<size_t>(offset) & ~PAGE_MASK)
  168. return EINVAL;
  169. description = TRY(open_file_description(fd));
  170. if (description->is_directory())
  171. return ENODEV;
  172. // Require read access even when read protection is not requested.
  173. if (!description->is_readable())
  174. return EACCES;
  175. if (map_shared) {
  176. if ((prot & PROT_WRITE) && !description->is_writable())
  177. return EACCES;
  178. }
  179. if (description->inode())
  180. TRY(validate_inode_mmap_prot(prot, description->is_readable(), description->is_writable(), map_shared));
  181. vmobject = TRY(description->vmobject_for_mmap(*this, requested_range, used_offset, map_shared));
  182. }
  183. return address_space().with([&](auto& space) -> ErrorOr<FlatPtr> {
  184. // If MAP_FIXED is specified, existing mappings that intersect the requested range are removed.
  185. if (map_fixed)
  186. TRY(space->unmap_mmap_range(VirtualAddress(addr), size));
  187. region = TRY(space->allocate_region_with_vmobject(
  188. map_randomized ? Memory::RandomizeVirtualAddress::Yes : Memory::RandomizeVirtualAddress::No,
  189. requested_range.base(),
  190. requested_range.size(),
  191. alignment,
  192. vmobject.release_nonnull(),
  193. used_offset,
  194. {},
  195. prot,
  196. map_shared));
  197. if (!region)
  198. return ENOMEM;
  199. if (description)
  200. region->set_mmap(true, description->is_readable(), description->is_writable());
  201. else
  202. region->set_mmap(true, false, false);
  203. if (map_shared)
  204. region->set_shared(true);
  205. if (map_stack)
  206. region->set_stack(true);
  207. if (name)
  208. region->set_name(move(name));
  209. PerformanceManager::add_mmap_perf_event(*this, *region);
  210. return region->vaddr().get();
  211. });
  212. }
  213. ErrorOr<FlatPtr> Process::sys$mprotect(Userspace<void*> addr, size_t size, int prot)
  214. {
  215. VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
  216. TRY(require_promise(Pledge::stdio));
  217. if (prot & PROT_EXEC) {
  218. TRY(require_promise(Pledge::prot_exec));
  219. }
  220. auto range_to_mprotect = TRY(Memory::expand_range_to_page_boundaries(addr.ptr(), size));
  221. if (!range_to_mprotect.size())
  222. return EINVAL;
  223. if (!is_user_range(range_to_mprotect))
  224. return EFAULT;
  225. return address_space().with([&](auto& space) -> ErrorOr<FlatPtr> {
  226. if (auto* whole_region = space->find_region_from_range(range_to_mprotect)) {
  227. if (!whole_region->is_mmap())
  228. return EPERM;
  229. TRY(validate_mmap_prot(prot, whole_region->is_stack(), whole_region->vmobject().is_anonymous(), whole_region));
  230. if (whole_region->access() == Memory::prot_to_region_access_flags(prot))
  231. return 0;
  232. if (whole_region->vmobject().is_inode())
  233. TRY(validate_inode_mmap_prot(prot, whole_region->mmapped_from_readable(), whole_region->mmapped_from_writable(), whole_region->is_shared()));
  234. whole_region->set_readable(prot & PROT_READ);
  235. whole_region->set_writable(prot & PROT_WRITE);
  236. whole_region->set_executable(prot & PROT_EXEC);
  237. whole_region->remap();
  238. return 0;
  239. }
  240. // Check if we can carve out the desired range from an existing region
  241. if (auto* old_region = space->find_region_containing(range_to_mprotect)) {
  242. if (!old_region->is_mmap())
  243. return EPERM;
  244. TRY(validate_mmap_prot(prot, old_region->is_stack(), old_region->vmobject().is_anonymous(), old_region));
  245. if (old_region->access() == Memory::prot_to_region_access_flags(prot))
  246. return 0;
  247. if (old_region->vmobject().is_inode())
  248. TRY(validate_inode_mmap_prot(prot, old_region->mmapped_from_readable(), old_region->mmapped_from_writable(), old_region->is_shared()));
  249. // Remove the old region from our regions tree, since were going to add another region
  250. // with the exact same start address.
  251. auto region = space->take_region(*old_region);
  252. region->unmap();
  253. // This vector is the region(s) adjacent to our range.
  254. // We need to allocate a new region for the range we wanted to change permission bits on.
  255. auto adjacent_regions = TRY(space->try_split_region_around_range(*region, range_to_mprotect));
  256. size_t new_range_offset_in_vmobject = region->offset_in_vmobject() + (range_to_mprotect.base().get() - region->range().base().get());
  257. auto* new_region = TRY(space->try_allocate_split_region(*region, range_to_mprotect, new_range_offset_in_vmobject));
  258. new_region->set_readable(prot & PROT_READ);
  259. new_region->set_writable(prot & PROT_WRITE);
  260. new_region->set_executable(prot & PROT_EXEC);
  261. // Map the new regions using our page directory (they were just allocated and don't have one).
  262. for (auto* adjacent_region : adjacent_regions) {
  263. TRY(adjacent_region->map(space->page_directory()));
  264. }
  265. TRY(new_region->map(space->page_directory()));
  266. return 0;
  267. }
  268. if (auto const& regions = TRY(space->find_regions_intersecting(range_to_mprotect)); regions.size()) {
  269. size_t full_size_found = 0;
  270. // Check that all intersecting regions are compatible.
  271. for (auto const* region : regions) {
  272. if (!region->is_mmap())
  273. return EPERM;
  274. TRY(validate_mmap_prot(prot, region->is_stack(), region->vmobject().is_anonymous(), region));
  275. if (region->vmobject().is_inode())
  276. TRY(validate_inode_mmap_prot(prot, region->mmapped_from_readable(), region->mmapped_from_writable(), region->is_shared()));
  277. full_size_found += region->range().intersect(range_to_mprotect).size();
  278. }
  279. if (full_size_found != range_to_mprotect.size())
  280. return ENOMEM;
  281. // Finally, iterate over each region, either updating its access flags if the range covers it wholly,
  282. // or carving out a new subregion with the appropriate access flags set.
  283. for (auto* old_region : regions) {
  284. if (old_region->access() == Memory::prot_to_region_access_flags(prot))
  285. continue;
  286. auto const intersection_to_mprotect = range_to_mprotect.intersect(old_region->range());
  287. // If the region is completely covered by range, simply update the access flags
  288. if (intersection_to_mprotect == old_region->range()) {
  289. old_region->set_readable(prot & PROT_READ);
  290. old_region->set_writable(prot & PROT_WRITE);
  291. old_region->set_executable(prot & PROT_EXEC);
  292. old_region->remap();
  293. continue;
  294. }
  295. // Remove the old region from our regions tree, since were going to add another region
  296. // with the exact same start address.
  297. auto region = space->take_region(*old_region);
  298. region->unmap();
  299. // This vector is the region(s) adjacent to our range.
  300. // We need to allocate a new region for the range we wanted to change permission bits on.
  301. auto adjacent_regions = TRY(space->try_split_region_around_range(*old_region, intersection_to_mprotect));
  302. // Since the range is not contained in a single region, it can only partially cover its starting and ending region,
  303. // therefore carving out a chunk from the region will always produce a single extra region, and not two.
  304. VERIFY(adjacent_regions.size() == 1);
  305. size_t new_range_offset_in_vmobject = old_region->offset_in_vmobject() + (intersection_to_mprotect.base().get() - old_region->range().base().get());
  306. auto* new_region = TRY(space->try_allocate_split_region(*region, intersection_to_mprotect, new_range_offset_in_vmobject));
  307. new_region->set_readable(prot & PROT_READ);
  308. new_region->set_writable(prot & PROT_WRITE);
  309. new_region->set_executable(prot & PROT_EXEC);
  310. // Map the new region using our page directory (they were just allocated and don't have one) if any.
  311. if (adjacent_regions.size())
  312. TRY(adjacent_regions[0]->map(space->page_directory()));
  313. TRY(new_region->map(space->page_directory()));
  314. }
  315. return 0;
  316. }
  317. return EINVAL;
  318. });
  319. }
  320. ErrorOr<FlatPtr> Process::sys$madvise(Userspace<void*> address, size_t size, int advice)
  321. {
  322. VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
  323. TRY(require_promise(Pledge::stdio));
  324. auto range_to_madvise = TRY(Memory::expand_range_to_page_boundaries(address.ptr(), size));
  325. if (!range_to_madvise.size())
  326. return EINVAL;
  327. if (!is_user_range(range_to_madvise))
  328. return EFAULT;
  329. return address_space().with([&](auto& space) -> ErrorOr<FlatPtr> {
  330. auto* region = space->find_region_from_range(range_to_madvise);
  331. if (!region)
  332. return EINVAL;
  333. if (!region->is_mmap())
  334. return EPERM;
  335. if (advice == MADV_SET_VOLATILE || advice == MADV_SET_NONVOLATILE) {
  336. if (!region->vmobject().is_anonymous())
  337. return EINVAL;
  338. auto& vmobject = static_cast<Memory::AnonymousVMObject&>(region->vmobject());
  339. if (!vmobject.is_purgeable())
  340. return EINVAL;
  341. bool was_purged = false;
  342. TRY(vmobject.set_volatile(advice == MADV_SET_VOLATILE, was_purged));
  343. return was_purged ? 1 : 0;
  344. }
  345. return EINVAL;
  346. });
  347. }
  348. ErrorOr<FlatPtr> Process::sys$set_mmap_name(Userspace<Syscall::SC_set_mmap_name_params const*> user_params)
  349. {
  350. VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
  351. TRY(require_promise(Pledge::stdio));
  352. auto params = TRY(copy_typed_from_user(user_params));
  353. if (params.name.length > PATH_MAX)
  354. return ENAMETOOLONG;
  355. auto name = TRY(try_copy_kstring_from_user(params.name));
  356. auto range = TRY(Memory::expand_range_to_page_boundaries((FlatPtr)params.addr, params.size));
  357. return address_space().with([&](auto& space) -> ErrorOr<FlatPtr> {
  358. auto* region = space->find_region_from_range(range);
  359. if (!region)
  360. return EINVAL;
  361. if (!region->is_mmap())
  362. return EPERM;
  363. region->set_name(move(name));
  364. PerformanceManager::add_mmap_perf_event(*this, *region);
  365. return 0;
  366. });
  367. }
  368. ErrorOr<FlatPtr> Process::sys$munmap(Userspace<void*> addr, size_t size)
  369. {
  370. VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
  371. TRY(require_promise(Pledge::stdio));
  372. TRY(address_space().with([&](auto& space) {
  373. return space->unmap_mmap_range(addr.vaddr(), size);
  374. }));
  375. return 0;
  376. }
  377. ErrorOr<FlatPtr> Process::sys$mremap(Userspace<Syscall::SC_mremap_params const*> user_params)
  378. {
  379. VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
  380. TRY(require_promise(Pledge::stdio));
  381. auto params = TRY(copy_typed_from_user(user_params));
  382. auto old_range = TRY(Memory::expand_range_to_page_boundaries((FlatPtr)params.old_address, params.old_size));
  383. return address_space().with([&](auto& space) -> ErrorOr<FlatPtr> {
  384. auto* old_region = space->find_region_from_range(old_range);
  385. if (!old_region)
  386. return EINVAL;
  387. if (!old_region->is_mmap())
  388. return EPERM;
  389. if (old_region->vmobject().is_shared_inode() && params.flags & MAP_PRIVATE && !(params.flags & (MAP_ANONYMOUS | MAP_NORESERVE))) {
  390. auto range = old_region->range();
  391. auto old_prot = region_access_flags_to_prot(old_region->access());
  392. auto old_offset = old_region->offset_in_vmobject();
  393. NonnullLockRefPtr inode = static_cast<Memory::SharedInodeVMObject&>(old_region->vmobject()).inode();
  394. auto new_vmobject = TRY(Memory::PrivateInodeVMObject::try_create_with_inode(inode));
  395. auto old_name = old_region->take_name();
  396. bool old_region_was_mmapped_from_readable = old_region->mmapped_from_readable();
  397. bool old_region_was_mmapped_from_writable = old_region->mmapped_from_writable();
  398. old_region->unmap();
  399. space->deallocate_region(*old_region);
  400. auto* new_region = TRY(space->allocate_region_with_vmobject(range, move(new_vmobject), old_offset, old_name->view(), old_prot, false));
  401. new_region->set_mmap(true, old_region_was_mmapped_from_readable, old_region_was_mmapped_from_writable);
  402. return new_region->vaddr().get();
  403. }
  404. dbgln("sys$mremap: Unimplemented remap request (flags={})", params.flags);
  405. return ENOTIMPL;
  406. });
  407. }
  408. ErrorOr<FlatPtr> Process::sys$allocate_tls(Userspace<char const*> initial_data, size_t size)
  409. {
  410. VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
  411. TRY(require_promise(Pledge::stdio));
  412. if (!size || size % PAGE_SIZE != 0)
  413. return EINVAL;
  414. if (!m_master_tls_region.is_null())
  415. return EEXIST;
  416. if (thread_count() != 1)
  417. return EFAULT;
  418. Thread* main_thread = nullptr;
  419. bool multiple_threads = false;
  420. for_each_thread([&main_thread, &multiple_threads](auto& thread) {
  421. if (main_thread)
  422. multiple_threads = true;
  423. main_thread = &thread;
  424. return IterationDecision::Break;
  425. });
  426. VERIFY(main_thread);
  427. if (multiple_threads)
  428. return EINVAL;
  429. return address_space().with([&](auto& space) -> ErrorOr<FlatPtr> {
  430. auto* region = TRY(space->allocate_region(Memory::RandomizeVirtualAddress::Yes, {}, size, PAGE_SIZE, "Master TLS"sv, PROT_READ | PROT_WRITE));
  431. m_master_tls_region = TRY(region->try_make_weak_ptr());
  432. m_master_tls_size = size;
  433. m_master_tls_alignment = PAGE_SIZE;
  434. {
  435. Kernel::SmapDisabler disabler;
  436. void* fault_at;
  437. if (!Kernel::safe_memcpy((char*)m_master_tls_region.unsafe_ptr()->vaddr().as_ptr(), (char*)initial_data.ptr(), size, fault_at))
  438. return EFAULT;
  439. }
  440. TRY(main_thread->make_thread_specific_region({}));
  441. #if ARCH(I386)
  442. auto& tls_descriptor = Processor::current().get_gdt_entry(GDT_SELECTOR_TLS);
  443. tls_descriptor.set_base(main_thread->thread_specific_data());
  444. tls_descriptor.set_limit(main_thread->thread_specific_region_size());
  445. #else
  446. MSR fs_base_msr(MSR_FS_BASE);
  447. fs_base_msr.set(main_thread->thread_specific_data().get());
  448. #endif
  449. return m_master_tls_region.unsafe_ptr()->vaddr().get();
  450. });
  451. }
  452. ErrorOr<FlatPtr> Process::sys$msyscall(Userspace<void*> address)
  453. {
  454. VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
  455. return address_space().with([&](auto& space) -> ErrorOr<FlatPtr> {
  456. if (space->enforces_syscall_regions())
  457. return EPERM;
  458. if (!address) {
  459. space->set_enforces_syscall_regions(true);
  460. return 0;
  461. }
  462. if (!Memory::is_user_address(address.vaddr()))
  463. return EFAULT;
  464. auto* region = space->find_region_containing(Memory::VirtualRange { address.vaddr(), 1 });
  465. if (!region)
  466. return EINVAL;
  467. if (!region->is_mmap())
  468. return EINVAL;
  469. region->set_syscall_region(true);
  470. return 0;
  471. });
  472. }
  473. ErrorOr<FlatPtr> Process::sys$msync(Userspace<void*> address, size_t size, int flags)
  474. {
  475. if ((flags & (MS_SYNC | MS_ASYNC | MS_INVALIDATE)) != flags)
  476. return EINVAL;
  477. bool is_async = (flags & MS_ASYNC) == MS_ASYNC;
  478. bool is_sync = (flags & MS_SYNC) == MS_SYNC;
  479. if (is_sync == is_async)
  480. return EINVAL;
  481. if (address.ptr() % PAGE_SIZE != 0)
  482. return EINVAL;
  483. // Note: This is not specified
  484. auto rounded_size = TRY(Memory::page_round_up(size));
  485. return address_space().with([&](auto& space) -> ErrorOr<FlatPtr> {
  486. auto regions = TRY(space->find_regions_intersecting(Memory::VirtualRange { address.vaddr(), rounded_size }));
  487. // All regions from address up to address+size shall be mapped
  488. if (regions.is_empty())
  489. return ENOMEM;
  490. size_t total_intersection_size = 0;
  491. Memory::VirtualRange range_to_sync { address.vaddr(), rounded_size };
  492. for (auto const* region : regions) {
  493. // Region was not mapped
  494. if (!region->is_mmap())
  495. return ENOMEM;
  496. total_intersection_size += region->range().intersect(range_to_sync).size();
  497. }
  498. // Part of the indicated range was not mapped
  499. if (total_intersection_size != size)
  500. return ENOMEM;
  501. for (auto* region : regions) {
  502. auto& vmobject = region->vmobject();
  503. if (!vmobject.is_shared_inode())
  504. continue;
  505. off_t offset = region->offset_in_vmobject() + address.ptr() - region->range().base().get();
  506. auto& inode_vmobject = static_cast<Memory::SharedInodeVMObject&>(vmobject);
  507. // FIXME: If multiple regions belong to the same vmobject we might want to coalesce these writes
  508. // FIXME: Handle MS_ASYNC
  509. TRY(inode_vmobject.sync(offset / PAGE_SIZE, rounded_size / PAGE_SIZE));
  510. // FIXME: Handle MS_INVALIDATE
  511. }
  512. return 0;
  513. });
  514. }
  515. }