TreeNode.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404
  1. /*
  2. * Copyright (c) 2021, Jan de Visser <jan@de-visser.net>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Debug.h>
  7. #include <AK/Format.h>
  8. #include <AK/NonnullOwnPtr.h>
  9. #include <AK/StringBuilder.h>
  10. #include <LibSQL/BTree.h>
  11. #include <LibSQL/Serialize.h>
  12. namespace SQL {
  13. DownPointer::DownPointer(TreeNode* owner, u32 pointer)
  14. : m_owner(owner)
  15. , m_pointer(pointer)
  16. , m_node(nullptr)
  17. {
  18. }
  19. DownPointer::DownPointer(TreeNode* owner, TreeNode* node)
  20. : m_owner(owner)
  21. , m_pointer((node) ? node->pointer() : 0)
  22. , m_node(adopt_own_if_nonnull(node))
  23. {
  24. }
  25. DownPointer::DownPointer(TreeNode* owner, DownPointer& down)
  26. : m_owner(owner)
  27. , m_pointer(down.m_pointer)
  28. , m_node(move(down.m_node))
  29. {
  30. }
  31. DownPointer::DownPointer(DownPointer const& other)
  32. : m_owner(other.m_owner)
  33. , m_pointer(other.pointer())
  34. {
  35. if (other.m_node)
  36. // FIXME This is gross. We modify the other object which we promised
  37. // to be const. However, this particular constructor is needed
  38. // when we take DownPointers from the Vector they live in when
  39. // we split a node. The original object is going to go away, so
  40. // there is no harm done. However, it's yucky. If anybody has
  41. // a better idea...
  42. m_node = move(const_cast<DownPointer&>(other).m_node);
  43. else
  44. m_node = nullptr;
  45. }
  46. TreeNode* DownPointer::node()
  47. {
  48. if (!m_node)
  49. inflate();
  50. return m_node;
  51. }
  52. void DownPointer::inflate()
  53. {
  54. if (m_node || !m_pointer)
  55. return;
  56. auto buffer = m_owner->tree().read_block(m_pointer);
  57. size_t offset = 0;
  58. m_node = make<TreeNode>(m_owner->tree(), m_owner, m_pointer, buffer, offset);
  59. }
  60. TreeNode::TreeNode(BTree& tree, TreeNode* up, u32 pointer)
  61. : IndexNode(pointer)
  62. , m_tree(tree)
  63. , m_up(up)
  64. , m_entries()
  65. , m_down()
  66. {
  67. m_down.append(DownPointer(this, nullptr));
  68. m_is_leaf = true;
  69. }
  70. TreeNode::TreeNode(BTree& tree, TreeNode* up, DownPointer& left, u32 pointer)
  71. : IndexNode(pointer)
  72. , m_tree(tree)
  73. , m_up(up)
  74. , m_entries()
  75. , m_down()
  76. {
  77. if (left.m_node != nullptr)
  78. left.m_node->m_up = this;
  79. m_down.append(DownPointer(this, left));
  80. m_is_leaf = left.pointer() == 0;
  81. if (!pointer)
  82. set_pointer(m_tree.new_record_pointer());
  83. }
  84. TreeNode::TreeNode(BTree& tree, TreeNode* up, TreeNode* left, u32 pointer)
  85. : IndexNode(pointer)
  86. , m_tree(tree)
  87. , m_up(up)
  88. , m_entries()
  89. , m_down()
  90. {
  91. m_down.append(DownPointer(this, left));
  92. m_is_leaf = left->pointer() == 0;
  93. }
  94. TreeNode::TreeNode(BTree& tree, TreeNode* up, u32 pointer, ByteBuffer& buffer, size_t& at_offset)
  95. : IndexNode(pointer)
  96. , m_tree(tree)
  97. , m_up(up)
  98. , m_entries()
  99. , m_down()
  100. {
  101. u32 nodes;
  102. deserialize_from<u32>(buffer, at_offset, nodes);
  103. dbgln_if(SQL_DEBUG, "Deserializing node. Size {}", nodes);
  104. if (nodes > 0) {
  105. for (u32 i = 0; i < nodes; i++) {
  106. u32 left;
  107. deserialize_from<u32>(buffer, at_offset, left);
  108. dbgln_if(SQL_DEBUG, "Down[{}] {}", i, left);
  109. if (!m_down.is_empty())
  110. VERIFY((left == 0) == m_is_leaf);
  111. else
  112. m_is_leaf = (left == 0);
  113. m_entries.append(Key(m_tree.descriptor(), buffer, at_offset));
  114. m_down.empend(this, left);
  115. }
  116. u32 right;
  117. deserialize_from<u32>(buffer, at_offset, right);
  118. dbgln_if(SQL_DEBUG, "Right {}", right);
  119. VERIFY((right == 0) == m_is_leaf);
  120. m_down.empend(this, right);
  121. }
  122. }
  123. bool TreeNode::insert(Key const& key)
  124. {
  125. dbgln_if(SQL_DEBUG, "[#{}] INSERT({})", pointer(), key.to_string());
  126. if (!is_leaf())
  127. return node_for(key)->insert_in_leaf(key);
  128. return insert_in_leaf(key);
  129. }
  130. bool TreeNode::update_key_pointer(Key const& key)
  131. {
  132. dbgln_if(SQL_DEBUG, "[#{}] UPDATE({}, {})", pointer(), key.to_string(), key.pointer());
  133. if (!is_leaf())
  134. return node_for(key)->update_key_pointer(key);
  135. for (auto ix = 0u; ix < size(); ix++) {
  136. if (key == m_entries[ix]) {
  137. dbgln_if(SQL_DEBUG, "[#{}] {} == {}",
  138. pointer(), key.to_string(), m_entries[ix].to_string());
  139. if (m_entries[ix].pointer() != key.pointer()) {
  140. m_entries[ix].set_pointer(key.pointer());
  141. dump_if(SQL_DEBUG, "To WAL");
  142. tree().add_to_write_ahead_log(this);
  143. }
  144. return true;
  145. }
  146. }
  147. return false;
  148. }
  149. bool TreeNode::insert_in_leaf(Key const& key)
  150. {
  151. VERIFY(is_leaf());
  152. if (!m_tree.duplicates_allowed()) {
  153. for (auto& entry : m_entries) {
  154. if (key == entry) {
  155. dbgln_if(SQL_DEBUG, "[#{}] duplicate key {}", pointer(), key.to_string());
  156. return false;
  157. }
  158. }
  159. }
  160. dbgln_if(SQL_DEBUG, "[#{}] insert_in_leaf({})", pointer(), key.to_string());
  161. just_insert(key, nullptr);
  162. return true;
  163. }
  164. size_t TreeNode::max_keys_in_node()
  165. {
  166. auto descriptor = m_tree.descriptor();
  167. auto key_size = descriptor->data_length() + sizeof(u32);
  168. auto ret = (BLOCKSIZE - 2 * sizeof(u32)) / key_size;
  169. if ((ret % 2) == 0)
  170. --ret;
  171. return ret;
  172. }
  173. Key const& TreeNode::operator[](size_t ix) const
  174. {
  175. VERIFY(ix < size());
  176. return m_entries[ix];
  177. }
  178. u32 TreeNode::down_pointer(size_t ix) const
  179. {
  180. VERIFY(ix < m_down.size());
  181. return m_down[ix].pointer();
  182. }
  183. TreeNode* TreeNode::down_node(size_t ix)
  184. {
  185. VERIFY(ix < m_down.size());
  186. return m_down[ix].node();
  187. }
  188. TreeNode* TreeNode::node_for(Key const& key)
  189. {
  190. dump_if(SQL_DEBUG, String::formatted("node_for(Key {})", key.to_string()));
  191. if (is_leaf())
  192. return this;
  193. for (size_t ix = 0; ix < size(); ix++) {
  194. if (key < m_entries[ix]) {
  195. dbgln_if(SQL_DEBUG, "[{}] {} < {} v{}",
  196. pointer(), (String)key, (String)m_entries[ix], m_down[ix].pointer());
  197. return down_node(ix)->node_for(key);
  198. }
  199. }
  200. dbgln_if(SQL_DEBUG, "[#{}] {} >= {} v{}",
  201. pointer(), key.to_string(), (String)m_entries[size() - 1], m_down[size()].pointer());
  202. return down_node(size())->node_for(key);
  203. }
  204. Optional<u32> TreeNode::get(Key& key)
  205. {
  206. dump_if(SQL_DEBUG, String::formatted("get({})", key.to_string()));
  207. for (auto ix = 0u; ix < size(); ix++) {
  208. if (key < m_entries[ix]) {
  209. if (is_leaf()) {
  210. dbgln_if(SQL_DEBUG, "[#{}] {} < {} -> 0",
  211. pointer(), key.to_string(), (String)m_entries[ix]);
  212. return {};
  213. } else {
  214. dbgln_if(SQL_DEBUG, "[{}] {} < {} ({} -> {})",
  215. pointer(), key.to_string(), (String)m_entries[ix],
  216. ix, m_down[ix].pointer());
  217. return down_node(ix)->get(key);
  218. }
  219. }
  220. if (key == m_entries[ix]) {
  221. dbgln_if(SQL_DEBUG, "[#{}] {} == {} -> {}",
  222. pointer(), key.to_string(), (String)m_entries[ix],
  223. m_entries[ix].pointer());
  224. key.set_pointer(m_entries[ix].pointer());
  225. return m_entries[ix].pointer();
  226. }
  227. }
  228. if (m_entries.is_empty()) {
  229. dbgln_if(SQL_DEBUG, "[#{}] {} Empty node??", pointer(), key.to_string());
  230. VERIFY_NOT_REACHED();
  231. }
  232. if (is_leaf()) {
  233. dbgln_if(SQL_DEBUG, "[#{}] {} > {} -> 0",
  234. pointer(), key.to_string(), (String)m_entries[size() - 1]);
  235. return {};
  236. }
  237. dbgln_if(SQL_DEBUG, "[#{}] {} > {} ({} -> {})",
  238. pointer(), key.to_string(), (String)m_entries[size() - 1],
  239. size(), m_down[size()].pointer());
  240. return down_node(size())->get(key);
  241. }
  242. void TreeNode::serialize(ByteBuffer& buffer) const
  243. {
  244. u32 sz = size();
  245. serialize_to<u32>(buffer, sz);
  246. if (sz > 0) {
  247. for (auto ix = 0u; ix < size(); ix++) {
  248. auto& entry = m_entries[ix];
  249. dbgln_if(SQL_DEBUG, "Serializing Left[{}] = {}", ix, m_down[ix].pointer());
  250. serialize_to<u32>(buffer, is_leaf() ? 0u : m_down[ix].pointer());
  251. entry.serialize(buffer);
  252. }
  253. dbgln_if(SQL_DEBUG, "Serializing Right = {}", m_down[size()].pointer());
  254. serialize_to<u32>(buffer, is_leaf() ? 0u : m_down[size()].pointer());
  255. }
  256. }
  257. void TreeNode::just_insert(Key const& key, TreeNode* right)
  258. {
  259. dbgln_if(SQL_DEBUG, "[#{}] just_insert({}, right = {})",
  260. pointer(), (String)key, (right) ? right->pointer() : 0);
  261. dump_if(SQL_DEBUG, "Before");
  262. for (auto ix = 0u; ix < size(); ix++) {
  263. if (key < m_entries[ix]) {
  264. m_entries.insert(ix, key);
  265. VERIFY(is_leaf() == (right == nullptr));
  266. m_down.insert(ix + 1, DownPointer(this, right));
  267. if (size() > max_keys_in_node()) {
  268. split();
  269. } else {
  270. dump_if(SQL_DEBUG, "To WAL");
  271. tree().add_to_write_ahead_log(this);
  272. }
  273. return;
  274. }
  275. }
  276. m_entries.append(key);
  277. m_down.empend(this, right);
  278. if (size() > max_keys_in_node()) {
  279. split();
  280. } else {
  281. dump_if(SQL_DEBUG, "To WAL");
  282. tree().add_to_write_ahead_log(this);
  283. }
  284. }
  285. void TreeNode::split()
  286. {
  287. dump_if(SQL_DEBUG, "Splitting node");
  288. if (!m_up)
  289. // Make new m_up. This is the new root node.
  290. m_up = m_tree.new_root();
  291. // Take the left pointer for the new node:
  292. DownPointer left = m_down.take(max_keys_in_node() / 2 + 1);
  293. // Create the new right node:
  294. auto* new_node = new TreeNode(tree(), m_up, left);
  295. // Move the rightmost keys from this node to the new right node:
  296. while (m_entries.size() > max_keys_in_node() / 2 + 1) {
  297. auto entry = m_entries.take(max_keys_in_node() / 2 + 1);
  298. auto down = m_down.take(max_keys_in_node() / 2 + 1);
  299. // Reparent to new right node:
  300. if (down.m_node != nullptr) {
  301. down.m_node->m_up = new_node;
  302. }
  303. new_node->m_entries.append(entry);
  304. new_node->m_down.append(down);
  305. }
  306. // Move the median key in the node one level up. Its right node will
  307. // be the new node:
  308. auto median = m_entries.take_last();
  309. dump_if(SQL_DEBUG, "Split Left To WAL");
  310. tree().add_to_write_ahead_log(this);
  311. new_node->dump_if(SQL_DEBUG, "Split Right to WAL");
  312. tree().add_to_write_ahead_log(new_node);
  313. m_up->just_insert(median, new_node);
  314. }
  315. void TreeNode::dump_if(int flag, String&& msg)
  316. {
  317. if (!flag)
  318. return;
  319. StringBuilder builder;
  320. builder.appendff("[#{}] ", pointer());
  321. if (!msg.is_empty())
  322. builder.appendff("{}", msg);
  323. builder.append(": ");
  324. if (m_up)
  325. builder.appendff("[^{}] -> ", m_up->pointer());
  326. else
  327. builder.append("* -> ");
  328. for (size_t ix = 0; ix < m_entries.size(); ix++) {
  329. if (!is_leaf())
  330. builder.appendff("[v{}] ", m_down[ix].pointer());
  331. else
  332. VERIFY(m_down[ix].pointer() == 0);
  333. builder.appendff("'{}' ", (String)m_entries[ix]);
  334. }
  335. if (!is_leaf()) {
  336. builder.appendff("[v{}]", m_down[size()].pointer());
  337. } else {
  338. VERIFY(m_down[size()].pointer() == 0);
  339. }
  340. builder.appendff(" (size {}", (int)size());
  341. if (is_leaf()) {
  342. builder.append(", leaf");
  343. }
  344. builder.append(")");
  345. dbgln(builder.build());
  346. }
  347. void TreeNode::list_node(int indent)
  348. {
  349. auto do_indent = [&]() {
  350. for (int i = 0; i < indent; ++i) {
  351. warn(" ");
  352. }
  353. };
  354. do_indent();
  355. warnln("--> #{}", pointer());
  356. for (auto ix = 0u; ix < size(); ix++) {
  357. if (!is_leaf()) {
  358. down_node(ix)->list_node(indent + 2);
  359. }
  360. do_indent();
  361. warnln("{}", m_entries[ix].to_string());
  362. }
  363. if (!is_leaf()) {
  364. down_node(size())->list_node(indent + 2);
  365. }
  366. }
  367. }