
During initialization of PCI MMIO access mechanism we ensure that we have an allocation from the kernel virtual address space that cannot be taken by other components in the OS. Also, now we ensure that interrupts are disabled so mapping the region doesn't fail. In order to reduce overhead, map_device() will map the requested PCI address only if it's not mapped already. The run script has been changed so now we can boot a Q35 machine, that supports PCI ECAM. To ensure we will be able to load the machine, a PIIX3 IDE controller was added to the Q35 machine configuration in the run script. An AHCI controller was added to the i440fx machine configuration.
232 lines
8.7 KiB
C++
232 lines
8.7 KiB
C++
#include <AK/Optional.h>
|
|
#include <Kernel/IO.h>
|
|
#include <Kernel/PCI/MMIOAccess.h>
|
|
#include <Kernel/VM/MemoryManager.h>
|
|
|
|
#define PCI_MMIO_CONFIG_SPACE_SIZE 4096
|
|
|
|
uint32_t PCI::MMIOAccess::get_segments_count()
|
|
{
|
|
return m_segments.size();
|
|
}
|
|
uint8_t PCI::MMIOAccess::get_segment_start_bus(u32 seg)
|
|
{
|
|
ASSERT(m_segments.contains(seg));
|
|
return m_segments.get(seg).value()->get_start_bus();
|
|
}
|
|
uint8_t PCI::MMIOAccess::get_segment_end_bus(u32 seg)
|
|
{
|
|
ASSERT(m_segments.contains(seg));
|
|
return m_segments.get(seg).value()->get_end_bus();
|
|
}
|
|
|
|
void PCI::MMIOAccess::initialize(ACPI_RAW::MCFG& mcfg)
|
|
{
|
|
if (!PCI::Access::is_initialized())
|
|
new PCI::MMIOAccess(mcfg);
|
|
}
|
|
|
|
PCI::MMIOAccess::MMIOAccess(ACPI_RAW::MCFG& raw_mcfg)
|
|
: m_mcfg(raw_mcfg)
|
|
, m_segments(*new HashMap<u16, MMIOSegment*>())
|
|
, m_mapped_address(ChangeableAddress(0xFFFF, 0xFF, 0xFF, 0xFF))
|
|
{
|
|
kprintf("PCI: Using MMIO Mechanism for PCI Configuartion Space Access\n");
|
|
m_mmio_window = *AnonymousVMObject::create_with_size(PAGE_ROUND_UP(PCI_MMIO_CONFIG_SPACE_SIZE));
|
|
m_mmio_window_region = MM.allocate_kernel_region_with_vmobject(*m_mmio_window, m_mmio_window->size(), "PCI MMIO", Region::Access::Read | Region::Access::Write);
|
|
|
|
auto checkup_region = MM.allocate_kernel_region((PAGE_SIZE * 2), "PCI MCFG Checkup", Region::Access::Read | Region::Access::Write);
|
|
#ifdef PCI_DEBUG
|
|
dbgprintf("PCI: Checking MCFG Table length to choose the correct mapping size\n");
|
|
#endif
|
|
mmap_region(*checkup_region, PhysicalAddress((u32)&raw_mcfg & 0xfffff000));
|
|
ACPI_RAW::SDTHeader* sdt = (ACPI_RAW::SDTHeader*)(checkup_region->vaddr().get() + ((u32)&raw_mcfg & 0xfff));
|
|
u32 length = sdt->length;
|
|
u8 revision = sdt->revision;
|
|
|
|
kprintf("PCI: MCFG, length - %u, revision %d\n", length, revision);
|
|
checkup_region->unmap();
|
|
|
|
auto mcfg_region = MM.allocate_kernel_region(PAGE_ROUND_UP(length) + PAGE_SIZE, "PCI Parsing MCFG", Region::Access::Read | Region::Access::Write);
|
|
mmap_region(*mcfg_region, PhysicalAddress((u32)&raw_mcfg & 0xfffff000));
|
|
|
|
ACPI_RAW::MCFG& mcfg = *((ACPI_RAW::MCFG*)(mcfg_region->vaddr().get() + ((u32)&raw_mcfg & 0xfff)));
|
|
#ifdef PCI_DEBUG
|
|
dbgprintf("PCI: Checking MCFG @ V 0x%x, P 0x%x\n", &mcfg, &raw_mcfg);
|
|
#endif
|
|
|
|
for (u32 index = 0; index < ((mcfg.header.length - sizeof(ACPI_RAW::MCFG)) / sizeof(ACPI_RAW::PCI_MMIO_Descriptor)); index++) {
|
|
u8 start_bus = mcfg.descriptors[index].start_pci_bus;
|
|
u8 end_bus = mcfg.descriptors[index].end_pci_bus;
|
|
u32 lower_addr = mcfg.descriptors[index].base_addr;
|
|
|
|
m_segments.set(index, new PCI::MMIOSegment(PhysicalAddress(lower_addr), start_bus, end_bus));
|
|
kprintf("PCI: New PCI segment @ P 0x%x, PCI buses (%d-%d)\n", lower_addr, start_bus, end_bus);
|
|
}
|
|
mcfg_region->unmap();
|
|
kprintf("PCI: MMIO segments - %d\n", m_segments.size());
|
|
InterruptDisabler disabler;
|
|
#ifdef PCI_DEBUG
|
|
dbgprintf("PCI: mapped address (%w:%b:%b.%b)\n", m_mapped_address.seg(), m_mapped_address.bus(), m_mapped_address.slot(), m_mapped_address.function());
|
|
#endif
|
|
map_device(Address(0, 0, 0, 0));
|
|
#ifdef PCI_DEBUG
|
|
dbgprintf("PCI: Default mapped address (%w:%b:%b.%b)\n", m_mapped_address.seg(), m_mapped_address.bus(), m_mapped_address.slot(), m_mapped_address.function());
|
|
#endif
|
|
}
|
|
|
|
void PCI::MMIOAccess::map_device(Address address)
|
|
{
|
|
if (m_mapped_address == address)
|
|
return;
|
|
// FIXME: Map and put some lock!
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
ASSERT(m_segments.contains(address.seg()));
|
|
auto segment = m_segments.get(address.seg());
|
|
PhysicalAddress segment_lower_addr = segment.value()->get_paddr();
|
|
PhysicalAddress device_physical_mmio_space = segment_lower_addr.offset(
|
|
PCI_MMIO_CONFIG_SPACE_SIZE * address.function() + (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE) * address.slot() + (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE * PCI_MAX_DEVICES_PER_BUS) * (address.bus() - segment.value()->get_start_bus()));
|
|
|
|
#ifdef PCI_DEBUG
|
|
dbgprintf("PCI: Mapping device @ pci (%w:%b:%b.%b), V 0x%x, P 0x%x\n", address.seg(), address.bus(), address.slot(), address.function(), m_mmio_window_region->vaddr().get(), device_physical_mmio_space.get());
|
|
#endif
|
|
MM.map_for_kernel(m_mmio_window_region->vaddr(), device_physical_mmio_space);
|
|
m_mapped_address = address;
|
|
}
|
|
|
|
u8 PCI::MMIOAccess::read8_field(Address address, u32 field)
|
|
{
|
|
InterruptDisabler disabler;
|
|
ASSERT(field <= 0xfff);
|
|
#ifdef PCI_DEBUG
|
|
dbgprintf("PCI: Reading field %u, Address(%w:%b:%b.%b)\n", field, address.seg(), address.bus(), address.slot(), address.function());
|
|
#endif
|
|
map_device(address);
|
|
return *((u8*)(m_mmio_window_region->vaddr().get() + (field & 0xfff)));
|
|
}
|
|
|
|
u16 PCI::MMIOAccess::read16_field(Address address, u32 field)
|
|
{
|
|
InterruptDisabler disabler;
|
|
ASSERT(field < 0xfff);
|
|
#ifdef PCI_DEBUG
|
|
dbgprintf("PCI: Reading field %u, Address(%w:%b:%b.%b)\n", field, address.seg(), address.bus(), address.slot(), address.function());
|
|
#endif
|
|
map_device(address);
|
|
return *((u16*)(m_mmio_window_region->vaddr().get() + (field & 0xfff)));
|
|
}
|
|
|
|
u32 PCI::MMIOAccess::read32_field(Address address, u32 field)
|
|
{
|
|
InterruptDisabler disabler;
|
|
ASSERT(field <= 0xffc);
|
|
#ifdef PCI_DEBUG
|
|
dbgprintf("PCI: Reading field %u, Address(%w:%b:%b.%b)\n", field, address.seg(), address.bus(), address.slot(), address.function());
|
|
#endif
|
|
map_device(address);
|
|
return *((u32*)(m_mmio_window_region->vaddr().get() + (field & 0xfff)));
|
|
}
|
|
|
|
void PCI::MMIOAccess::write8_field(Address address, u32 field, u8 value)
|
|
{
|
|
InterruptDisabler disabler;
|
|
ASSERT(field <= 0xfff);
|
|
#ifdef PCI_DEBUG
|
|
dbgprintf("PCI: Write to field %u, Address(%w:%b:%b.%b), value 0x%x\n", field, address.seg(), address.bus(), address.slot(), address.function(), value);
|
|
#endif
|
|
map_device(address);
|
|
*((u8*)(m_mmio_window_region->vaddr().get() + (field & 0xfff))) = value;
|
|
}
|
|
void PCI::MMIOAccess::write16_field(Address address, u32 field, u16 value)
|
|
{
|
|
InterruptDisabler disabler;
|
|
ASSERT(field < 0xfff);
|
|
#ifdef PCI_DEBUG
|
|
dbgprintf("PCI: Write to field %u, Address(%w:%b:%b.%b), value 0x%x\n", field, address.seg(), address.bus(), address.slot(), address.function(), value);
|
|
#endif
|
|
map_device(address);
|
|
*((u16*)(m_mmio_window_region->vaddr().get() + (field & 0xfff))) = value;
|
|
}
|
|
void PCI::MMIOAccess::write32_field(Address address, u32 field, u32 value)
|
|
{
|
|
InterruptDisabler disabler;
|
|
ASSERT(field <= 0xffc);
|
|
#ifdef PCI_DEBUG
|
|
dbgprintf("PCI: Write to field %u, Address(%w:%b:%b.%b), value 0x%x\n", field, address.seg(), address.bus(), address.slot(), address.function(), value);
|
|
#endif
|
|
map_device(address);
|
|
*((u32*)(m_mmio_window_region->vaddr().get() + (field & 0xfff))) = value;
|
|
}
|
|
|
|
void PCI::MMIOAccess::enumerate_all(Function<void(Address, ID)>& callback)
|
|
{
|
|
for (u16 seg = 0; seg < m_segments.size(); seg++) {
|
|
#ifdef PCI_DEBUG
|
|
dbgprintf("PCI: Enumerating Memory mapped IO segment %u\n", seg);
|
|
#endif
|
|
// Single PCI host controller.
|
|
if ((read8_field(Address(seg), PCI_HEADER_TYPE) & 0x80) == 0) {
|
|
enumerate_bus(-1, 0, callback);
|
|
return;
|
|
}
|
|
|
|
// Multiple PCI host controllers.
|
|
for (u8 function = 0; function < 8; ++function) {
|
|
if (read16_field(Address(seg, 0, 0, function), PCI_VENDOR_ID) == PCI_NONE)
|
|
break;
|
|
enumerate_bus(-1, function, callback);
|
|
}
|
|
}
|
|
}
|
|
|
|
void PCI::MMIOAccess::mmap(VirtualAddress vaddr, PhysicalAddress paddr, u32 length)
|
|
{
|
|
unsigned i = 0;
|
|
while (length >= PAGE_SIZE) {
|
|
MM.map_for_kernel(VirtualAddress(vaddr.offset(i * PAGE_SIZE).get()), PhysicalAddress(paddr.offset(i * PAGE_SIZE).get()));
|
|
#ifdef PCI_DEBUG
|
|
dbgprintf("PCI: map - V 0x%x -> P 0x%x\n", vaddr.offset(i * PAGE_SIZE).get(), paddr.offset(i * PAGE_SIZE).get());
|
|
#endif
|
|
length -= PAGE_SIZE;
|
|
i++;
|
|
}
|
|
if (length > 0) {
|
|
MM.map_for_kernel(vaddr.offset(i * PAGE_SIZE), paddr.offset(i * PAGE_SIZE), true);
|
|
}
|
|
#ifdef PCI_DEBUG
|
|
dbgprintf("PCI: Finished mapping\n");
|
|
#endif
|
|
}
|
|
|
|
void PCI::MMIOAccess::mmap_region(Region& region, PhysicalAddress paddr)
|
|
{
|
|
#ifdef PCI_DEBUG
|
|
dbgprintf("PCI: Mapping region, size - %u\n", region.size());
|
|
#endif
|
|
mmap(region.vaddr(), paddr, region.size());
|
|
}
|
|
|
|
PCI::MMIOSegment::MMIOSegment(PhysicalAddress segment_base_addr, u8 start_bus, u8 end_bus)
|
|
: m_base_addr(segment_base_addr)
|
|
, m_start_bus(start_bus)
|
|
, m_end_bus(end_bus)
|
|
{
|
|
}
|
|
u8 PCI::MMIOSegment::get_start_bus()
|
|
{
|
|
return m_start_bus;
|
|
}
|
|
u8 PCI::MMIOSegment::get_end_bus()
|
|
{
|
|
return m_end_bus;
|
|
}
|
|
|
|
size_t PCI::MMIOSegment::get_size()
|
|
{
|
|
return (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE * PCI_MAX_DEVICES_PER_BUS * (get_end_bus() - get_start_bus()));
|
|
}
|
|
|
|
PhysicalAddress PCI::MMIOSegment::get_paddr()
|
|
{
|
|
return m_base_addr;
|
|
}
|