ladybird/Kernel/PCI/MMIOAccess.cpp
Liav A 2a4a19aed8 Kernel: Fixing PCI MMIO access mechanism
During initialization of PCI MMIO access mechanism we ensure that we
have an allocation from the kernel virtual address space that cannot be
taken by other components in the OS.
Also, now we ensure that interrupts are disabled so mapping the region
doesn't fail.
In order to reduce overhead, map_device() will map the requested PCI
address only if it's not mapped already.

The run script has been changed so now we can boot a Q35 machine, that
supports PCI ECAM.
To ensure we will be able to load the machine, a PIIX3 IDE controller
was added to the Q35 machine configuration in the run script.
An AHCI controller was added to the i440fx machine configuration.
2020-01-02 21:45:04 +01:00

232 lines
8.7 KiB
C++

#include <AK/Optional.h>
#include <Kernel/IO.h>
#include <Kernel/PCI/MMIOAccess.h>
#include <Kernel/VM/MemoryManager.h>
#define PCI_MMIO_CONFIG_SPACE_SIZE 4096
uint32_t PCI::MMIOAccess::get_segments_count()
{
return m_segments.size();
}
uint8_t PCI::MMIOAccess::get_segment_start_bus(u32 seg)
{
ASSERT(m_segments.contains(seg));
return m_segments.get(seg).value()->get_start_bus();
}
uint8_t PCI::MMIOAccess::get_segment_end_bus(u32 seg)
{
ASSERT(m_segments.contains(seg));
return m_segments.get(seg).value()->get_end_bus();
}
void PCI::MMIOAccess::initialize(ACPI_RAW::MCFG& mcfg)
{
if (!PCI::Access::is_initialized())
new PCI::MMIOAccess(mcfg);
}
PCI::MMIOAccess::MMIOAccess(ACPI_RAW::MCFG& raw_mcfg)
: m_mcfg(raw_mcfg)
, m_segments(*new HashMap<u16, MMIOSegment*>())
, m_mapped_address(ChangeableAddress(0xFFFF, 0xFF, 0xFF, 0xFF))
{
kprintf("PCI: Using MMIO Mechanism for PCI Configuartion Space Access\n");
m_mmio_window = *AnonymousVMObject::create_with_size(PAGE_ROUND_UP(PCI_MMIO_CONFIG_SPACE_SIZE));
m_mmio_window_region = MM.allocate_kernel_region_with_vmobject(*m_mmio_window, m_mmio_window->size(), "PCI MMIO", Region::Access::Read | Region::Access::Write);
auto checkup_region = MM.allocate_kernel_region((PAGE_SIZE * 2), "PCI MCFG Checkup", Region::Access::Read | Region::Access::Write);
#ifdef PCI_DEBUG
dbgprintf("PCI: Checking MCFG Table length to choose the correct mapping size\n");
#endif
mmap_region(*checkup_region, PhysicalAddress((u32)&raw_mcfg & 0xfffff000));
ACPI_RAW::SDTHeader* sdt = (ACPI_RAW::SDTHeader*)(checkup_region->vaddr().get() + ((u32)&raw_mcfg & 0xfff));
u32 length = sdt->length;
u8 revision = sdt->revision;
kprintf("PCI: MCFG, length - %u, revision %d\n", length, revision);
checkup_region->unmap();
auto mcfg_region = MM.allocate_kernel_region(PAGE_ROUND_UP(length) + PAGE_SIZE, "PCI Parsing MCFG", Region::Access::Read | Region::Access::Write);
mmap_region(*mcfg_region, PhysicalAddress((u32)&raw_mcfg & 0xfffff000));
ACPI_RAW::MCFG& mcfg = *((ACPI_RAW::MCFG*)(mcfg_region->vaddr().get() + ((u32)&raw_mcfg & 0xfff)));
#ifdef PCI_DEBUG
dbgprintf("PCI: Checking MCFG @ V 0x%x, P 0x%x\n", &mcfg, &raw_mcfg);
#endif
for (u32 index = 0; index < ((mcfg.header.length - sizeof(ACPI_RAW::MCFG)) / sizeof(ACPI_RAW::PCI_MMIO_Descriptor)); index++) {
u8 start_bus = mcfg.descriptors[index].start_pci_bus;
u8 end_bus = mcfg.descriptors[index].end_pci_bus;
u32 lower_addr = mcfg.descriptors[index].base_addr;
m_segments.set(index, new PCI::MMIOSegment(PhysicalAddress(lower_addr), start_bus, end_bus));
kprintf("PCI: New PCI segment @ P 0x%x, PCI buses (%d-%d)\n", lower_addr, start_bus, end_bus);
}
mcfg_region->unmap();
kprintf("PCI: MMIO segments - %d\n", m_segments.size());
InterruptDisabler disabler;
#ifdef PCI_DEBUG
dbgprintf("PCI: mapped address (%w:%b:%b.%b)\n", m_mapped_address.seg(), m_mapped_address.bus(), m_mapped_address.slot(), m_mapped_address.function());
#endif
map_device(Address(0, 0, 0, 0));
#ifdef PCI_DEBUG
dbgprintf("PCI: Default mapped address (%w:%b:%b.%b)\n", m_mapped_address.seg(), m_mapped_address.bus(), m_mapped_address.slot(), m_mapped_address.function());
#endif
}
void PCI::MMIOAccess::map_device(Address address)
{
if (m_mapped_address == address)
return;
// FIXME: Map and put some lock!
ASSERT_INTERRUPTS_DISABLED();
ASSERT(m_segments.contains(address.seg()));
auto segment = m_segments.get(address.seg());
PhysicalAddress segment_lower_addr = segment.value()->get_paddr();
PhysicalAddress device_physical_mmio_space = segment_lower_addr.offset(
PCI_MMIO_CONFIG_SPACE_SIZE * address.function() + (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE) * address.slot() + (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE * PCI_MAX_DEVICES_PER_BUS) * (address.bus() - segment.value()->get_start_bus()));
#ifdef PCI_DEBUG
dbgprintf("PCI: Mapping device @ pci (%w:%b:%b.%b), V 0x%x, P 0x%x\n", address.seg(), address.bus(), address.slot(), address.function(), m_mmio_window_region->vaddr().get(), device_physical_mmio_space.get());
#endif
MM.map_for_kernel(m_mmio_window_region->vaddr(), device_physical_mmio_space);
m_mapped_address = address;
}
u8 PCI::MMIOAccess::read8_field(Address address, u32 field)
{
InterruptDisabler disabler;
ASSERT(field <= 0xfff);
#ifdef PCI_DEBUG
dbgprintf("PCI: Reading field %u, Address(%w:%b:%b.%b)\n", field, address.seg(), address.bus(), address.slot(), address.function());
#endif
map_device(address);
return *((u8*)(m_mmio_window_region->vaddr().get() + (field & 0xfff)));
}
u16 PCI::MMIOAccess::read16_field(Address address, u32 field)
{
InterruptDisabler disabler;
ASSERT(field < 0xfff);
#ifdef PCI_DEBUG
dbgprintf("PCI: Reading field %u, Address(%w:%b:%b.%b)\n", field, address.seg(), address.bus(), address.slot(), address.function());
#endif
map_device(address);
return *((u16*)(m_mmio_window_region->vaddr().get() + (field & 0xfff)));
}
u32 PCI::MMIOAccess::read32_field(Address address, u32 field)
{
InterruptDisabler disabler;
ASSERT(field <= 0xffc);
#ifdef PCI_DEBUG
dbgprintf("PCI: Reading field %u, Address(%w:%b:%b.%b)\n", field, address.seg(), address.bus(), address.slot(), address.function());
#endif
map_device(address);
return *((u32*)(m_mmio_window_region->vaddr().get() + (field & 0xfff)));
}
void PCI::MMIOAccess::write8_field(Address address, u32 field, u8 value)
{
InterruptDisabler disabler;
ASSERT(field <= 0xfff);
#ifdef PCI_DEBUG
dbgprintf("PCI: Write to field %u, Address(%w:%b:%b.%b), value 0x%x\n", field, address.seg(), address.bus(), address.slot(), address.function(), value);
#endif
map_device(address);
*((u8*)(m_mmio_window_region->vaddr().get() + (field & 0xfff))) = value;
}
void PCI::MMIOAccess::write16_field(Address address, u32 field, u16 value)
{
InterruptDisabler disabler;
ASSERT(field < 0xfff);
#ifdef PCI_DEBUG
dbgprintf("PCI: Write to field %u, Address(%w:%b:%b.%b), value 0x%x\n", field, address.seg(), address.bus(), address.slot(), address.function(), value);
#endif
map_device(address);
*((u16*)(m_mmio_window_region->vaddr().get() + (field & 0xfff))) = value;
}
void PCI::MMIOAccess::write32_field(Address address, u32 field, u32 value)
{
InterruptDisabler disabler;
ASSERT(field <= 0xffc);
#ifdef PCI_DEBUG
dbgprintf("PCI: Write to field %u, Address(%w:%b:%b.%b), value 0x%x\n", field, address.seg(), address.bus(), address.slot(), address.function(), value);
#endif
map_device(address);
*((u32*)(m_mmio_window_region->vaddr().get() + (field & 0xfff))) = value;
}
void PCI::MMIOAccess::enumerate_all(Function<void(Address, ID)>& callback)
{
for (u16 seg = 0; seg < m_segments.size(); seg++) {
#ifdef PCI_DEBUG
dbgprintf("PCI: Enumerating Memory mapped IO segment %u\n", seg);
#endif
// Single PCI host controller.
if ((read8_field(Address(seg), PCI_HEADER_TYPE) & 0x80) == 0) {
enumerate_bus(-1, 0, callback);
return;
}
// Multiple PCI host controllers.
for (u8 function = 0; function < 8; ++function) {
if (read16_field(Address(seg, 0, 0, function), PCI_VENDOR_ID) == PCI_NONE)
break;
enumerate_bus(-1, function, callback);
}
}
}
void PCI::MMIOAccess::mmap(VirtualAddress vaddr, PhysicalAddress paddr, u32 length)
{
unsigned i = 0;
while (length >= PAGE_SIZE) {
MM.map_for_kernel(VirtualAddress(vaddr.offset(i * PAGE_SIZE).get()), PhysicalAddress(paddr.offset(i * PAGE_SIZE).get()));
#ifdef PCI_DEBUG
dbgprintf("PCI: map - V 0x%x -> P 0x%x\n", vaddr.offset(i * PAGE_SIZE).get(), paddr.offset(i * PAGE_SIZE).get());
#endif
length -= PAGE_SIZE;
i++;
}
if (length > 0) {
MM.map_for_kernel(vaddr.offset(i * PAGE_SIZE), paddr.offset(i * PAGE_SIZE), true);
}
#ifdef PCI_DEBUG
dbgprintf("PCI: Finished mapping\n");
#endif
}
void PCI::MMIOAccess::mmap_region(Region& region, PhysicalAddress paddr)
{
#ifdef PCI_DEBUG
dbgprintf("PCI: Mapping region, size - %u\n", region.size());
#endif
mmap(region.vaddr(), paddr, region.size());
}
PCI::MMIOSegment::MMIOSegment(PhysicalAddress segment_base_addr, u8 start_bus, u8 end_bus)
: m_base_addr(segment_base_addr)
, m_start_bus(start_bus)
, m_end_bus(end_bus)
{
}
u8 PCI::MMIOSegment::get_start_bus()
{
return m_start_bus;
}
u8 PCI::MMIOSegment::get_end_bus()
{
return m_end_bus;
}
size_t PCI::MMIOSegment::get_size()
{
return (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE * PCI_MAX_DEVICES_PER_BUS * (get_end_bus() - get_start_bus()));
}
PhysicalAddress PCI::MMIOSegment::get_paddr()
{
return m_base_addr;
}