ladybird/Userland/Libraries/LibAudio/FlacLoader.cpp
kleines Filmröllchen 49b087f3cd LibAudio+Userland: Use new audio queue in client-server communication
Previously, we were sending Buffers to the server whenever we had new
audio data for it. This meant that for every audio enqueue action, we
needed to create a new shared memory anonymous buffer, send that
buffer's file descriptor over IPC (+recfd on the other side) and then
map the buffer into the audio server's memory to be able to play it.
This was fine for sending large chunks of audio data, like when playing
existing audio files. However, in the future we want to move to
real-time audio in some applications like Piano. This means that the
size of buffers that are sent need to be very small, as just the size of
a buffer itself is part of the audio latency. If we were to try
real-time audio with the existing system, we would run into problems
really quickly. Dealing with a continuous stream of new anonymous files
like the current audio system is rather expensive, as we need Kernel
help in multiple places. Additionally, every enqueue incurs an IPC call,
which are not optimized for >1000 calls/second (which would be needed
for real-time audio with buffer sizes of ~40 samples). So a fundamental
change in how we handle audio sending in userspace is necessary.

This commit moves the audio sending system onto a shared single producer
circular queue (SSPCQ) (introduced with one of the previous commits).
This queue is intended to live in shared memory and be accessed by
multiple processes at the same time. It was specifically written to
support the audio sending case, so e.g. it only supports a single
producer (the audio client). Now, audio sending follows these general
steps:
- The audio client connects to the audio server.
- The audio client creates a SSPCQ in shared memory.
- The audio client sends the SSPCQ's file descriptor to the audio server
  with the set_buffer() IPC call.
- The audio server receives the SSPCQ and maps it.
- The audio client signals start of playback with start_playback().
- At the same time:
  - The audio client writes its audio data into the shared-memory queue.
  - The audio server reads audio data from the shared-memory queue(s).
  Both sides have additional before-queue/after-queue buffers, depending
  on the exact application.
- Pausing playback is just an IPC call, nothing happens to the buffer
  except that the server stops reading from it until playback is
  resumed.
- Muting has nothing to do with whether audio data is read or not.
- When the connection closes, the queues are unmapped on both sides.

This should already improve audio playback performance in a bunch of
places.

Implementation & commit notes:
- Audio loaders don't create LegacyBuffers anymore. LegacyBuffer is kept
  for WavLoader, see previous commit message.
- Most intra-process audio data passing is done with FixedArray<Sample>
  or Vector<Sample>.
- Improvements to most audio-enqueuing applications. (If necessary I can
  try to extract some of the aplay improvements.)
- New APIs on LibAudio/ClientConnection which allows non-realtime
  applications to enqueue audio in big chunks like before.
- Removal of status APIs from the audio server connection for
  information that can be directly obtained from the shared queue.
- Split the pause playback API into two APIs with more intuitive names.

I know this is a large commit, and you can kinda tell from the commit
message. It's basically impossible to break this up without hacks, so
please forgive me. These are some of the best changes to the audio
subsystem and I hope that that makes up for this :yaktangle: commit.

:yakring:
2022-04-21 13:55:00 +02:00

856 lines
35 KiB
C++

/*
* Copyright (c) 2021, kleines Filmröllchen <filmroellchen@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/FixedArray.h>
#include <AK/FlyString.h>
#include <AK/Format.h>
#include <AK/IntegralMath.h>
#include <AK/Math.h>
#include <AK/ScopeGuard.h>
#include <AK/StdLibExtras.h>
#include <AK/String.h>
#include <AK/StringBuilder.h>
#include <AK/Try.h>
#include <AK/TypedTransfer.h>
#include <AK/UFixedBigInt.h>
#include <LibAudio/Buffer.h>
#include <LibAudio/FlacLoader.h>
#include <LibAudio/FlacTypes.h>
#include <LibAudio/LoaderError.h>
#include <LibCore/MemoryStream.h>
#include <LibCore/Stream.h>
namespace Audio {
FlacLoaderPlugin::FlacLoaderPlugin(StringView path)
: m_file(Core::File::construct(path))
{
if (!m_file->open(Core::OpenMode::ReadOnly)) {
m_error = LoaderError { String::formatted("Can't open file: {}", m_file->error_string()) };
return;
}
auto maybe_stream = Core::Stream::BufferedFile::create(MUST(Core::Stream::File::open(path, Core::Stream::OpenMode::Read)), FLAC_BUFFER_SIZE);
if (maybe_stream.is_error())
m_error = LoaderError { "Can't open file stream" };
else
m_stream = maybe_stream.release_value();
}
FlacLoaderPlugin::FlacLoaderPlugin(Bytes& buffer)
{
auto maybe_stream = Core::Stream::MemoryStream::construct(buffer);
if (maybe_stream.is_error())
m_error = LoaderError { "Can't open memory stream" };
else
m_stream = maybe_stream.release_value();
}
MaybeLoaderError FlacLoaderPlugin::initialize()
{
if (m_error.has_value())
return m_error.release_value();
TRY(parse_header());
TRY(reset());
return {};
}
MaybeLoaderError FlacLoaderPlugin::parse_header()
{
auto bit_input = LOADER_TRY(BigEndianInputBitStream::construct(*m_stream));
// A mixture of VERIFY and the non-crashing TRY().
#define FLAC_VERIFY(check, category, msg) \
do { \
if (!(check)) { \
return LoaderError { category, static_cast<size_t>(m_data_start_location), String::formatted("FLAC header: {}", msg) }; \
} \
} while (0)
// Magic number
u32 flac = LOADER_TRY(bit_input->read_bits<u32>(32));
m_data_start_location += 4;
FLAC_VERIFY(flac == 0x664C6143, LoaderError::Category::Format, "Magic number must be 'flaC'"); // "flaC"
// Receive the streaminfo block
auto streaminfo = TRY(next_meta_block(*bit_input));
FLAC_VERIFY(streaminfo.type == FlacMetadataBlockType::STREAMINFO, LoaderError::Category::Format, "First block must be STREAMINFO");
auto streaminfo_data_memory = LOADER_TRY(Core::Stream::MemoryStream::construct(streaminfo.data.bytes()));
auto streaminfo_data = LOADER_TRY(BigEndianInputBitStream::construct(*streaminfo_data_memory));
// STREAMINFO block
m_min_block_size = LOADER_TRY(streaminfo_data->read_bits<u16>(16));
FLAC_VERIFY(m_min_block_size >= 16, LoaderError::Category::Format, "Minimum block size must be 16");
m_max_block_size = LOADER_TRY(streaminfo_data->read_bits<u16>(16));
FLAC_VERIFY(m_max_block_size >= 16, LoaderError::Category::Format, "Maximum block size");
m_min_frame_size = LOADER_TRY(streaminfo_data->read_bits<u32>(24));
m_max_frame_size = LOADER_TRY(streaminfo_data->read_bits<u32>(24));
m_sample_rate = LOADER_TRY(streaminfo_data->read_bits<u32>(20));
FLAC_VERIFY(m_sample_rate <= 655350, LoaderError::Category::Format, "Sample rate");
m_num_channels = LOADER_TRY(streaminfo_data->read_bits<u8>(3)) + 1; // 0 = one channel
u8 bits_per_sample = LOADER_TRY(streaminfo_data->read_bits<u8>(5)) + 1;
if (bits_per_sample == 8) {
// FIXME: Signed/Unsigned issues?
m_sample_format = PcmSampleFormat::Uint8;
} else if (bits_per_sample == 16) {
m_sample_format = PcmSampleFormat::Int16;
} else if (bits_per_sample == 24) {
m_sample_format = PcmSampleFormat::Int24;
} else if (bits_per_sample == 32) {
m_sample_format = PcmSampleFormat::Int32;
} else {
FLAC_VERIFY(false, LoaderError::Category::Format, "Sample bit depth invalid");
}
m_total_samples = LOADER_TRY(streaminfo_data->read_bits<u64>(36));
FLAC_VERIFY(m_total_samples > 0, LoaderError::Category::Format, "Number of samples is zero");
// Parse checksum into a buffer first
[[maybe_unused]] u128 md5_checksum;
VERIFY(streaminfo_data->is_aligned_to_byte_boundary());
auto md5_bytes_read = LOADER_TRY(streaminfo_data->read(md5_checksum.bytes()));
FLAC_VERIFY(md5_bytes_read.size() == md5_checksum.my_size(), LoaderError::Category::IO, "MD5 Checksum size");
md5_checksum.bytes().copy_to({ m_md5_checksum, sizeof(m_md5_checksum) });
// Parse other blocks
[[maybe_unused]] u16 meta_blocks_parsed = 1;
[[maybe_unused]] u16 total_meta_blocks = meta_blocks_parsed;
FlacRawMetadataBlock block = streaminfo;
while (!block.is_last_block) {
block = TRY(next_meta_block(*bit_input));
switch (block.type) {
case (FlacMetadataBlockType::SEEKTABLE):
TRY(load_seektable(block));
break;
default:
// TODO: Parse the remaining metadata block types.
// Currently only STREAMINFO and SEEKTABLE are handled.
break;
}
++total_meta_blocks;
}
dbgln_if(AFLACLOADER_DEBUG, "Parsed FLAC header: blocksize {}-{}{}, framesize {}-{}, {}Hz, {}bit, {} channels, {} samples total ({:.2f}s), MD5 {}, data start at {:x} bytes, {} headers total (skipped {})", m_min_block_size, m_max_block_size, is_fixed_blocksize_stream() ? " (constant)" : "", m_min_frame_size, m_max_frame_size, m_sample_rate, pcm_bits_per_sample(m_sample_format), m_num_channels, m_total_samples, static_cast<double>(m_total_samples) / static_cast<double>(m_sample_rate), md5_checksum, m_data_start_location, total_meta_blocks, total_meta_blocks - meta_blocks_parsed);
return {};
}
MaybeLoaderError FlacLoaderPlugin::load_seektable(FlacRawMetadataBlock& block)
{
auto memory_stream = LOADER_TRY(Core::Stream::MemoryStream::construct(block.data.bytes()));
auto seektable_bytes = LOADER_TRY(BigEndianInputBitStream::construct(*memory_stream));
for (size_t i = 0; i < block.length / 18; ++i) {
FlacSeekPoint seekpoint {
.sample_index = LOADER_TRY(seektable_bytes->read_bits<u64>(64)),
.byte_offset = LOADER_TRY(seektable_bytes->read_bits<u64>(64)),
.num_samples = LOADER_TRY(seektable_bytes->read_bits<u16>(16))
};
m_seektable.append(seekpoint);
}
dbgln_if(AFLACLOADER_DEBUG, "Loaded seektable of size {}", m_seektable.size());
return {};
}
ErrorOr<FlacRawMetadataBlock, LoaderError> FlacLoaderPlugin::next_meta_block(BigEndianInputBitStream& bit_input)
{
bool is_last_block = LOADER_TRY(bit_input.read_bit());
// The block type enum constants agree with the specification
FlacMetadataBlockType type = (FlacMetadataBlockType)LOADER_TRY(bit_input.read_bits<u8>(7));
m_data_start_location += 1;
FLAC_VERIFY(type != FlacMetadataBlockType::INVALID, LoaderError::Category::Format, "Invalid metadata block");
u32 block_length = LOADER_TRY(bit_input.read_bits<u32>(24));
m_data_start_location += 3;
// Blocks can be zero-sized, which would trip up the raw data reader below.
if (block_length == 0)
return FlacRawMetadataBlock {
.is_last_block = is_last_block,
.type = type,
.length = 0,
.data = LOADER_TRY(ByteBuffer::create_uninitialized(0))
};
auto block_data_result = ByteBuffer::create_uninitialized(block_length);
FLAC_VERIFY(!block_data_result.is_error(), LoaderError::Category::IO, "Out of memory");
auto block_data = block_data_result.release_value();
// Reads exactly the bytes necessary into the Bytes container
LOADER_TRY(bit_input.read(block_data));
m_data_start_location += block_length;
return FlacRawMetadataBlock {
is_last_block,
type,
block_length,
block_data,
};
}
#undef FLAC_VERIFY
MaybeLoaderError FlacLoaderPlugin::reset()
{
TRY(seek(m_data_start_location));
m_current_frame.clear();
return {};
}
MaybeLoaderError FlacLoaderPlugin::seek(int int_sample_index)
{
auto sample_index = static_cast<size_t>(int_sample_index);
if (sample_index == m_loaded_samples)
return {};
auto maybe_target_seekpoint = m_seektable.last_matching([sample_index](auto& seekpoint) { return seekpoint.sample_index <= sample_index; });
// No seektable or no fitting entry: Perform normal forward read
if (!maybe_target_seekpoint.has_value()) {
if (sample_index < m_loaded_samples) {
LOADER_TRY(m_stream->seek(m_data_start_location, Core::Stream::SeekMode::SetPosition));
m_loaded_samples = 0;
}
auto to_read = sample_index - m_loaded_samples;
if (to_read == 0)
return {};
dbgln_if(AFLACLOADER_DEBUG, "Seeking {} samples manually", to_read);
(void)TRY(get_more_samples(to_read));
} else {
auto target_seekpoint = maybe_target_seekpoint.release_value();
// When a small seek happens, we may already be closer to the target than the seekpoint.
if (sample_index - target_seekpoint.sample_index > sample_index - m_loaded_samples) {
dbgln_if(AFLACLOADER_DEBUG, "Close enough to target: seeking {} samples manually", sample_index - m_loaded_samples);
(void)TRY(get_more_samples(sample_index - m_loaded_samples));
return {};
}
dbgln_if(AFLACLOADER_DEBUG, "Seeking to seektable: sample index {}, byte offset {}, sample count {}", target_seekpoint.sample_index, target_seekpoint.byte_offset, target_seekpoint.num_samples);
auto position = target_seekpoint.byte_offset + m_data_start_location;
if (m_stream->seek(static_cast<i64>(position), Core::Stream::SeekMode::SetPosition).is_error())
return LoaderError { LoaderError::Category::IO, m_loaded_samples, String::formatted("Invalid seek position {}", position) };
auto remaining_samples_after_seekpoint = sample_index - m_data_start_location;
if (remaining_samples_after_seekpoint > 0)
(void)TRY(get_more_samples(remaining_samples_after_seekpoint));
m_loaded_samples = target_seekpoint.sample_index;
}
return {};
}
LoaderSamples FlacLoaderPlugin::get_more_samples(size_t max_bytes_to_read_from_input)
{
ssize_t remaining_samples = static_cast<ssize_t>(m_total_samples - m_loaded_samples);
if (remaining_samples <= 0)
return FixedArray<Sample> {};
// FIXME: samples_to_read is calculated wrong, because when seeking not all samples are loaded.
size_t samples_to_read = min(max_bytes_to_read_from_input, remaining_samples);
auto samples = FixedArray<Sample>::must_create_but_fixme_should_propagate_errors(samples_to_read);
size_t sample_index = 0;
if (m_unread_data.size() > 0) {
size_t to_transfer = min(m_unread_data.size(), samples_to_read);
dbgln_if(AFLACLOADER_DEBUG, "Reading {} samples from unread sample buffer (size {})", to_transfer, m_unread_data.size());
AK::TypedTransfer<Sample>::move(samples.data(), m_unread_data.data(), to_transfer);
if (to_transfer < m_unread_data.size())
m_unread_data.remove(0, to_transfer);
else
m_unread_data.clear_with_capacity();
sample_index += to_transfer;
}
while (sample_index < samples_to_read) {
TRY(next_frame(samples.span().slice(sample_index)));
sample_index += m_current_frame->sample_count;
}
m_loaded_samples += sample_index;
return samples;
}
MaybeLoaderError FlacLoaderPlugin::next_frame(Span<Sample> target_vector)
{
#define FLAC_VERIFY(check, category, msg) \
do { \
if (!(check)) { \
return LoaderError { category, static_cast<size_t>(m_current_sample_or_frame), String::formatted("FLAC header: {}", msg) }; \
} \
} while (0)
auto bit_stream = LOADER_TRY(BigEndianInputBitStream::construct(*m_stream));
// TODO: Check the CRC-16 checksum (and others) by keeping track of read data
// FLAC frame sync code starts header
u16 sync_code = LOADER_TRY(bit_stream->read_bits<u16>(14));
FLAC_VERIFY(sync_code == 0b11111111111110, LoaderError::Category::Format, "Sync code");
bool reserved_bit = LOADER_TRY(bit_stream->read_bit());
FLAC_VERIFY(reserved_bit == 0, LoaderError::Category::Format, "Reserved frame header bit");
[[maybe_unused]] bool blocking_strategy = LOADER_TRY(bit_stream->read_bit());
u32 sample_count = TRY(convert_sample_count_code(LOADER_TRY(bit_stream->read_bits<u8>(4))));
u32 frame_sample_rate = TRY(convert_sample_rate_code(LOADER_TRY(bit_stream->read_bits<u8>(4))));
u8 channel_type_num = LOADER_TRY(bit_stream->read_bits<u8>(4));
FLAC_VERIFY(channel_type_num < 0b1011, LoaderError::Category::Format, "Channel assignment");
FlacFrameChannelType channel_type = (FlacFrameChannelType)channel_type_num;
PcmSampleFormat bit_depth = TRY(convert_bit_depth_code(LOADER_TRY(bit_stream->read_bits<u8>(3))));
reserved_bit = LOADER_TRY(bit_stream->read_bit());
FLAC_VERIFY(reserved_bit == 0, LoaderError::Category::Format, "Reserved frame header end bit");
// FIXME: sample number can be 8-56 bits, frame number can be 8-48 bits
m_current_sample_or_frame = LOADER_TRY(read_utf8_char(*bit_stream));
// Conditional header variables
if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_8) {
sample_count = LOADER_TRY(bit_stream->read_bits<u32>(8)) + 1;
} else if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_16) {
sample_count = LOADER_TRY(bit_stream->read_bits<u32>(16)) + 1;
}
if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_8) {
frame_sample_rate = LOADER_TRY(bit_stream->read_bits<u32>(8)) * 1000;
} else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16) {
frame_sample_rate = LOADER_TRY(bit_stream->read_bits<u32>(16));
} else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10) {
frame_sample_rate = LOADER_TRY(bit_stream->read_bits<u32>(16)) * 10;
}
// TODO: check header checksum, see above
[[maybe_unused]] u8 checksum = LOADER_TRY(bit_stream->read_bits<u8>(8));
dbgln_if(AFLACLOADER_DEBUG, "Frame: {} samples, {}bit {}Hz, channeltype {:x}, {} number {}, header checksum {}", sample_count, pcm_bits_per_sample(bit_depth), frame_sample_rate, channel_type_num, blocking_strategy ? "sample" : "frame", m_current_sample_or_frame, checksum);
m_current_frame = FlacFrameHeader {
sample_count,
frame_sample_rate,
channel_type,
bit_depth,
};
u8 subframe_count = frame_channel_type_to_channel_count(channel_type);
Vector<Vector<i32>> current_subframes;
current_subframes.ensure_capacity(subframe_count);
for (u8 i = 0; i < subframe_count; ++i) {
FlacSubframeHeader new_subframe = TRY(next_subframe_header(*bit_stream, i));
Vector<i32> subframe_samples = TRY(parse_subframe(new_subframe, *bit_stream));
current_subframes.unchecked_append(move(subframe_samples));
}
bit_stream->align_to_byte_boundary();
// TODO: check checksum, see above
[[maybe_unused]] u16 footer_checksum = LOADER_TRY(bit_stream->read_bits<u16>(16));
dbgln_if(AFLACLOADER_DEBUG, "Subframe footer checksum: {}", footer_checksum);
Vector<i32> left;
Vector<i32> right;
switch (channel_type) {
case FlacFrameChannelType::Mono:
left = right = current_subframes[0];
break;
case FlacFrameChannelType::Stereo:
// TODO mix together surround channels on each side?
case FlacFrameChannelType::StereoCenter:
case FlacFrameChannelType::Surround4p0:
case FlacFrameChannelType::Surround5p0:
case FlacFrameChannelType::Surround5p1:
case FlacFrameChannelType::Surround6p1:
case FlacFrameChannelType::Surround7p1:
left = current_subframes[0];
right = current_subframes[1];
break;
case FlacFrameChannelType::LeftSideStereo:
// channels are left (0) and side (1)
left = current_subframes[0];
right.ensure_capacity(left.size());
for (size_t i = 0; i < left.size(); ++i) {
// right = left - side
right.unchecked_append(left[i] - current_subframes[1][i]);
}
break;
case FlacFrameChannelType::RightSideStereo:
// channels are side (0) and right (1)
right = current_subframes[1];
left.ensure_capacity(right.size());
for (size_t i = 0; i < right.size(); ++i) {
// left = right + side
left.unchecked_append(right[i] + current_subframes[0][i]);
}
break;
case FlacFrameChannelType::MidSideStereo:
// channels are mid (0) and side (1)
left.ensure_capacity(current_subframes[0].size());
right.ensure_capacity(current_subframes[0].size());
for (size_t i = 0; i < current_subframes[0].size(); ++i) {
i64 mid = current_subframes[0][i];
i64 side = current_subframes[1][i];
mid *= 2;
// prevent integer division errors
left.unchecked_append(static_cast<i32>((mid + side) / 2));
right.unchecked_append(static_cast<i32>((mid - side) / 2));
}
break;
}
VERIFY(left.size() == right.size() && left.size() == m_current_frame->sample_count);
double sample_rescale = static_cast<double>(1 << (pcm_bits_per_sample(m_current_frame->bit_depth) - 1));
dbgln_if(AFLACLOADER_DEBUG, "Sample rescaled from {} bits: factor {:.1f}", pcm_bits_per_sample(m_current_frame->bit_depth), sample_rescale);
// zip together channels
auto samples_to_directly_copy = min(target_vector.size(), m_current_frame->sample_count);
for (size_t i = 0; i < samples_to_directly_copy; ++i) {
Sample frame = { left[i] / sample_rescale, right[i] / sample_rescale };
target_vector[i] = frame;
}
// move superfluous data into the class buffer instead
auto result = m_unread_data.try_grow_capacity(m_current_frame->sample_count - samples_to_directly_copy);
if (result.is_error())
return LoaderError { LoaderError::Category::Internal, static_cast<size_t>(samples_to_directly_copy + m_current_sample_or_frame), "Couldn't allocate sample buffer for superfluous data" };
for (size_t i = samples_to_directly_copy; i < m_current_frame->sample_count; ++i) {
Sample frame = { left[i] / sample_rescale, right[i] / sample_rescale };
m_unread_data.unchecked_append(frame);
}
return {};
#undef FLAC_VERIFY
}
ErrorOr<u32, LoaderError> FlacLoaderPlugin::convert_sample_count_code(u8 sample_count_code)
{
// single codes
switch (sample_count_code) {
case 0:
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Reserved block size" };
case 1:
return 192;
case 6:
return FLAC_BLOCKSIZE_AT_END_OF_HEADER_8;
case 7:
return FLAC_BLOCKSIZE_AT_END_OF_HEADER_16;
}
if (sample_count_code >= 2 && sample_count_code <= 5) {
return 576 * AK::exp2(sample_count_code - 2);
}
return 256 * AK::exp2(sample_count_code - 8);
}
ErrorOr<u32, LoaderError> FlacLoaderPlugin::convert_sample_rate_code(u8 sample_rate_code)
{
switch (sample_rate_code) {
case 0:
return m_sample_rate;
case 1:
return 88200;
case 2:
return 176400;
case 3:
return 192000;
case 4:
return 8000;
case 5:
return 16000;
case 6:
return 22050;
case 7:
return 24000;
case 8:
return 32000;
case 9:
return 44100;
case 10:
return 48000;
case 11:
return 96000;
case 12:
return FLAC_SAMPLERATE_AT_END_OF_HEADER_8;
case 13:
return FLAC_SAMPLERATE_AT_END_OF_HEADER_16;
case 14:
return FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10;
default:
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Invalid sample rate code" };
}
}
ErrorOr<PcmSampleFormat, LoaderError> FlacLoaderPlugin::convert_bit_depth_code(u8 bit_depth_code)
{
switch (bit_depth_code) {
case 0:
return m_sample_format;
case 1:
return PcmSampleFormat::Uint8;
case 4:
return PcmSampleFormat::Int16;
case 6:
return PcmSampleFormat::Int24;
case 3:
case 7:
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Reserved sample size" };
default:
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), String::formatted("Unsupported sample size {}", bit_depth_code) };
}
}
u8 frame_channel_type_to_channel_count(FlacFrameChannelType channel_type)
{
if (channel_type <= FlacFrameChannelType::Surround7p1)
return to_underlying(channel_type) + 1;
return 2;
}
ErrorOr<FlacSubframeHeader, LoaderError> FlacLoaderPlugin::next_subframe_header(BigEndianInputBitStream& bit_stream, u8 channel_index)
{
u8 bits_per_sample = static_cast<u16>(pcm_bits_per_sample(m_current_frame->bit_depth));
// For inter-channel correlation, the side channel needs an extra bit for its samples
switch (m_current_frame->channels) {
case FlacFrameChannelType::LeftSideStereo:
case FlacFrameChannelType::MidSideStereo:
if (channel_index == 1) {
++bits_per_sample;
}
break;
case FlacFrameChannelType::RightSideStereo:
if (channel_index == 0) {
++bits_per_sample;
}
break;
// "normal" channel types
default:
break;
}
// zero-bit padding
if (LOADER_TRY(bit_stream.read_bit()) != 0)
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Zero bit padding" };
// subframe type (encoding)
u8 subframe_code = LOADER_TRY(bit_stream.read_bits<u8>(6));
if ((subframe_code >= 0b000010 && subframe_code <= 0b000111) || (subframe_code > 0b001100 && subframe_code < 0b100000))
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Subframe type" };
FlacSubframeType subframe_type;
u8 order = 0;
// LPC has the highest bit set
if ((subframe_code & 0b100000) > 0) {
subframe_type = FlacSubframeType::LPC;
order = (subframe_code & 0b011111) + 1;
} else if ((subframe_code & 0b001000) > 0) {
// Fixed has the third-highest bit set
subframe_type = FlacSubframeType::Fixed;
order = (subframe_code & 0b000111);
} else {
subframe_type = (FlacSubframeType)subframe_code;
}
// wasted bits per sample (unary encoding)
bool has_wasted_bits = LOADER_TRY(bit_stream.read_bit());
u8 k = 0;
if (has_wasted_bits) {
bool current_k_bit = 0;
do {
current_k_bit = LOADER_TRY(bit_stream.read_bit());
++k;
} while (current_k_bit != 1);
}
return FlacSubframeHeader {
subframe_type,
order,
k,
bits_per_sample
};
}
ErrorOr<Vector<i32>, LoaderError> FlacLoaderPlugin::parse_subframe(FlacSubframeHeader& subframe_header, BigEndianInputBitStream& bit_input)
{
Vector<i32> samples;
switch (subframe_header.type) {
case FlacSubframeType::Constant: {
u64 constant_value = LOADER_TRY(bit_input.read_bits<u64>(subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample));
dbgln_if(AFLACLOADER_DEBUG, "Constant subframe: {}", constant_value);
samples.ensure_capacity(m_current_frame->sample_count);
VERIFY(subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample != 0);
i32 constant = sign_extend(static_cast<u32>(constant_value), subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample);
for (u32 i = 0; i < m_current_frame->sample_count; ++i) {
samples.unchecked_append(constant);
}
break;
}
case FlacSubframeType::Fixed: {
dbgln_if(AFLACLOADER_DEBUG, "Fixed LPC subframe order {}", subframe_header.order);
samples = TRY(decode_fixed_lpc(subframe_header, bit_input));
break;
}
case FlacSubframeType::Verbatim: {
dbgln_if(AFLACLOADER_DEBUG, "Verbatim subframe");
samples = TRY(decode_verbatim(subframe_header, bit_input));
break;
}
case FlacSubframeType::LPC: {
dbgln_if(AFLACLOADER_DEBUG, "Custom LPC subframe order {}", subframe_header.order);
samples = TRY(decode_custom_lpc(subframe_header, bit_input));
break;
}
default:
return LoaderError { LoaderError::Category::Unimplemented, static_cast<size_t>(m_current_sample_or_frame), "Unhandled FLAC subframe type" };
}
for (size_t i = 0; i < samples.size(); ++i) {
samples[i] <<= subframe_header.wasted_bits_per_sample;
}
ResampleHelper<i32> resampler(m_current_frame->sample_rate, m_sample_rate);
return resampler.resample(samples);
}
// Decode a subframe that isn't actually encoded, usually seen in random data
ErrorOr<Vector<i32>, LoaderError> FlacLoaderPlugin::decode_verbatim(FlacSubframeHeader& subframe, BigEndianInputBitStream& bit_input)
{
Vector<i32> decoded;
decoded.ensure_capacity(m_current_frame->sample_count);
VERIFY(subframe.bits_per_sample - subframe.wasted_bits_per_sample != 0);
for (size_t i = 0; i < m_current_frame->sample_count; ++i) {
decoded.unchecked_append(sign_extend(
LOADER_TRY(bit_input.read_bits<u32>(subframe.bits_per_sample - subframe.wasted_bits_per_sample)),
subframe.bits_per_sample - subframe.wasted_bits_per_sample));
}
return decoded;
}
// Decode a subframe encoded with a custom linear predictor coding, i.e. the subframe provides the polynomial order and coefficients
ErrorOr<Vector<i32>, LoaderError> FlacLoaderPlugin::decode_custom_lpc(FlacSubframeHeader& subframe, BigEndianInputBitStream& bit_input)
{
Vector<i32> decoded;
decoded.ensure_capacity(m_current_frame->sample_count);
VERIFY(subframe.bits_per_sample - subframe.wasted_bits_per_sample != 0);
// warm-up samples
for (auto i = 0; i < subframe.order; ++i) {
decoded.unchecked_append(sign_extend(
LOADER_TRY(bit_input.read_bits<u32>(subframe.bits_per_sample - subframe.wasted_bits_per_sample)),
subframe.bits_per_sample - subframe.wasted_bits_per_sample));
}
// precision of the coefficients
u8 lpc_precision = LOADER_TRY(bit_input.read_bits<u8>(4));
if (lpc_precision == 0b1111)
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Invalid linear predictor coefficient precision" };
lpc_precision += 1;
// shift needed on the data (signed!)
i8 lpc_shift = sign_extend(LOADER_TRY(bit_input.read_bits<u8>(5)), 5);
Vector<i32> coefficients;
coefficients.ensure_capacity(subframe.order);
// read coefficients
for (auto i = 0; i < subframe.order; ++i) {
u32 raw_coefficient = LOADER_TRY(bit_input.read_bits<u32>(lpc_precision));
i32 coefficient = static_cast<i32>(sign_extend(raw_coefficient, lpc_precision));
coefficients.unchecked_append(coefficient);
}
dbgln_if(AFLACLOADER_DEBUG, "{}-bit {} shift coefficients: {}", lpc_precision, lpc_shift, coefficients);
TRY(decode_residual(decoded, subframe, bit_input));
// approximate the waveform with the predictor
for (size_t i = subframe.order; i < m_current_frame->sample_count; ++i) {
// (see below)
i64 sample = 0;
for (size_t t = 0; t < subframe.order; ++t) {
// It's really important that we compute in 64-bit land here.
// Even though FLAC operates at a maximum bit depth of 32 bits, modern encoders use super-large coefficients for maximum compression.
// These will easily overflow 32 bits and cause strange white noise that abruptly stops intermittently (at the end of a frame).
// The simple fix of course is to do intermediate computations in 64 bits.
sample += static_cast<i64>(coefficients[t]) * static_cast<i64>(decoded[i - t - 1]);
}
decoded[i] += sample >> lpc_shift;
}
return decoded;
}
// Decode a subframe encoded with one of the fixed linear predictor codings
ErrorOr<Vector<i32>, LoaderError> FlacLoaderPlugin::decode_fixed_lpc(FlacSubframeHeader& subframe, BigEndianInputBitStream& bit_input)
{
Vector<i32> decoded;
decoded.ensure_capacity(m_current_frame->sample_count);
VERIFY(subframe.bits_per_sample - subframe.wasted_bits_per_sample != 0);
// warm-up samples
for (auto i = 0; i < subframe.order; ++i) {
decoded.unchecked_append(sign_extend(
LOADER_TRY(bit_input.read_bits<u32>(subframe.bits_per_sample - subframe.wasted_bits_per_sample)),
subframe.bits_per_sample - subframe.wasted_bits_per_sample));
}
TRY(decode_residual(decoded, subframe, bit_input));
dbgln_if(AFLACLOADER_DEBUG, "decoded length {}, {} order predictor", decoded.size(), subframe.order);
switch (subframe.order) {
case 0:
// s_0(t) = 0
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
decoded[i] += 0;
break;
case 1:
// s_1(t) = s(t-1)
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
decoded[i] += decoded[i - 1];
break;
case 2:
// s_2(t) = 2s(t-1) - s(t-2)
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
decoded[i] += 2 * decoded[i - 1] - decoded[i - 2];
break;
case 3:
// s_3(t) = 3s(t-1) - 3s(t-2) + s(t-3)
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
decoded[i] += 3 * decoded[i - 1] - 3 * decoded[i - 2] + decoded[i - 3];
break;
case 4:
// s_4(t) = 4s(t-1) - 6s(t-2) + 4s(t-3) - s(t-4)
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
decoded[i] += 4 * decoded[i - 1] - 6 * decoded[i - 2] + 4 * decoded[i - 3] - decoded[i - 4];
break;
default:
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), String::formatted("Unrecognized predictor order {}", subframe.order) };
}
return decoded;
}
// Decode the residual, the "error" between the function approximation and the actual audio data
MaybeLoaderError FlacLoaderPlugin::decode_residual(Vector<i32>& decoded, FlacSubframeHeader& subframe, BigEndianInputBitStream& bit_input)
{
auto residual_mode = static_cast<FlacResidualMode>(LOADER_TRY(bit_input.read_bits<u8>(2)));
u8 partition_order = LOADER_TRY(bit_input.read_bits<u8>(4));
size_t partitions = 1 << partition_order;
if (residual_mode == FlacResidualMode::Rice4Bit) {
// decode a single Rice partition with four bits for the order k
for (size_t i = 0; i < partitions; ++i) {
auto rice_partition = TRY(decode_rice_partition(4, partitions, i, subframe, bit_input));
decoded.extend(move(rice_partition));
}
} else if (residual_mode == FlacResidualMode::Rice5Bit) {
// five bits equivalent
for (size_t i = 0; i < partitions; ++i) {
auto rice_partition = TRY(decode_rice_partition(5, partitions, i, subframe, bit_input));
decoded.extend(move(rice_partition));
}
} else
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Reserved residual coding method" };
return {};
}
// Decode a single Rice partition as part of the residual, every partition can have its own Rice parameter k
ALWAYS_INLINE ErrorOr<Vector<i32>, LoaderError> FlacLoaderPlugin::decode_rice_partition(u8 partition_type, u32 partitions, u32 partition_index, FlacSubframeHeader& subframe, BigEndianInputBitStream& bit_input)
{
// Rice parameter / Exp-Golomb order
u8 k = LOADER_TRY(bit_input.read_bits<u8>(partition_type));
u32 residual_sample_count;
if (partitions == 0)
residual_sample_count = m_current_frame->sample_count - subframe.order;
else
residual_sample_count = m_current_frame->sample_count / partitions;
if (partition_index == 0)
residual_sample_count -= subframe.order;
Vector<i32> rice_partition;
rice_partition.resize(residual_sample_count);
// escape code for unencoded binary partition
if (k == (1 << partition_type) - 1) {
u8 unencoded_bps = LOADER_TRY(bit_input.read_bits<u8>(5));
for (size_t r = 0; r < residual_sample_count; ++r) {
rice_partition[r] = LOADER_TRY(bit_input.read_bits<u8>(unencoded_bps));
}
} else {
for (size_t r = 0; r < residual_sample_count; ++r) {
rice_partition[r] = LOADER_TRY(decode_unsigned_exp_golomb(k, bit_input));
}
}
return rice_partition;
}
// Decode a single number encoded with Rice/Exponential-Golomb encoding (the unsigned variant)
ALWAYS_INLINE ErrorOr<i32> decode_unsigned_exp_golomb(u8 k, BigEndianInputBitStream& bit_input)
{
u8 q = 0;
while (TRY(bit_input.read_bit()) == 0)
++q;
// least significant bits (remainder)
u32 rem = TRY(bit_input.read_bits<u32>(k));
u32 value = q << k | rem;
return rice_to_signed(value);
}
ErrorOr<u64> read_utf8_char(BigEndianInputBitStream& input)
{
u64 character;
u8 buffer = 0;
Bytes buffer_bytes { &buffer, 1 };
TRY(input.read(buffer_bytes));
u8 start_byte = buffer_bytes[0];
// Signal byte is zero: ASCII character
if ((start_byte & 0b10000000) == 0) {
return start_byte;
} else if ((start_byte & 0b11000000) == 0b10000000) {
return Error::from_string_literal("Illegal continuation byte"sv);
}
// This algorithm is too good and supports the theoretical max 0xFF start byte
u8 length = 1;
while (((start_byte << length) & 0b10000000) == 0b10000000)
++length;
u8 bits_from_start_byte = 8 - (length + 1);
u8 start_byte_bitmask = AK::exp2(bits_from_start_byte) - 1;
character = start_byte_bitmask & start_byte;
for (u8 i = length - 1; i > 0; --i) {
TRY(input.read(buffer_bytes));
u8 current_byte = buffer_bytes[0];
character = (character << 6) | (current_byte & 0b00111111);
}
return character;
}
i64 sign_extend(u32 n, u8 size)
{
// negative
if ((n & (1 << (size - 1))) > 0) {
return static_cast<i64>(n | (0xffffffff << size));
}
// positive
return n;
}
i32 rice_to_signed(u32 x)
{
// positive numbers are even, negative numbers are odd
// bitmask for conditionally inverting the entire number, thereby "negating" it
i32 sign = -static_cast<i32>(x & 1);
// copies the sign's sign onto the actual magnitude of x
return static_cast<i32>(sign ^ (x >> 1));
}
}