ladybird/Libraries/LibJS/AST.cpp
0xtechnobabble ee5a49e2fe LibJS: Implement const variable declarations
This also tightens the means of redeclaration of a variable by proxy,
since we now have a way of knowing how a variable was initially
declared, we can check if it was declared using `let` or `const` and
not tolerate redeclaration like we did previously.
2020-03-12 14:58:16 +01:00

598 lines
16 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/HashMap.h>
#include <AK/StringBuilder.h>
#include <LibJS/AST.h>
#include <LibJS/Function.h>
#include <LibJS/Interpreter.h>
#include <LibJS/PrimitiveString.h>
#include <LibJS/Value.h>
#include <stdio.h>
namespace JS {
Value ScopeNode::execute(Interpreter& interpreter) const
{
return interpreter.run(*this);
}
Value FunctionDeclaration::execute(Interpreter& interpreter) const
{
auto* function = interpreter.heap().allocate<Function>(name(), body(), parameters());
interpreter.set_variable(m_name, Value(function));
return Value(function);
}
Value ExpressionStatement::execute(Interpreter& interpreter) const
{
return m_expression->execute(interpreter);
}
Value CallExpression::execute(Interpreter& interpreter) const
{
if (name() == "$gc") {
interpreter.heap().collect_garbage();
return js_undefined();
}
auto callee = interpreter.get_variable(name());
ASSERT(callee.is_object());
auto* callee_object = callee.as_object();
ASSERT(callee_object->is_function());
auto& function = static_cast<Function&>(*callee_object);
const size_t arguments_size = m_arguments.size();
ASSERT(function.parameters().size() == arguments_size);
HashMap<String, Value> passed_parameters;
for (size_t i = 0; i < arguments_size; ++i) {
auto name = function.parameters()[i];
auto value = m_arguments[i].execute(interpreter);
dbg() << name << ": " << value;
passed_parameters.set(move(name), move(value));
}
return interpreter.run(function.body(), move(passed_parameters), ScopeType::Function);
}
Value ReturnStatement::execute(Interpreter& interpreter) const
{
auto value = argument() ? argument()->execute(interpreter) : js_undefined();
interpreter.do_return();
return value;
}
Value IfStatement::execute(Interpreter& interpreter) const
{
auto predicate_result = m_predicate->execute(interpreter);
if (predicate_result.to_boolean())
return interpreter.run(*m_consequent);
else
return interpreter.run(*m_alternate);
}
Value WhileStatement::execute(Interpreter& interpreter) const
{
Value last_value = js_undefined();
while (m_predicate->execute(interpreter).to_boolean()) {
last_value = interpreter.run(*m_body);
}
return last_value;
}
Value ForStatement::execute(Interpreter& interpreter) const
{
Value last_value = js_undefined();
if (m_init)
m_init->execute(interpreter);
if (m_test) {
while (m_test->execute(interpreter).to_boolean()) {
last_value = interpreter.run(*m_body);
if (m_update)
m_update->execute(interpreter);
}
} else {
while (true) {
last_value = interpreter.run(*m_body);
if (m_update)
m_update->execute(interpreter);
}
}
return last_value;
}
Value BinaryExpression::execute(Interpreter& interpreter) const
{
auto lhs_result = m_lhs->execute(interpreter);
auto rhs_result = m_rhs->execute(interpreter);
switch (m_op) {
case BinaryOp::Plus:
return add(lhs_result, rhs_result);
case BinaryOp::Minus:
return sub(lhs_result, rhs_result);
case BinaryOp::Asterisk:
return mul(lhs_result, rhs_result);
case BinaryOp::Slash:
return div(lhs_result, rhs_result);
case BinaryOp::TypedEquals:
return typed_eq(lhs_result, rhs_result);
case BinaryOp::TypedInequals:
return Value(!typed_eq(lhs_result, rhs_result).to_boolean());
case BinaryOp::GreaterThan:
return greater_than(lhs_result, rhs_result);
case BinaryOp::GreaterThanEquals:
return greater_than_equals(lhs_result, rhs_result);
case BinaryOp::LessThan:
return less_than(lhs_result, rhs_result);
case BinaryOp::LessThanEquals:
return less_than_equals(lhs_result, rhs_result);
case BinaryOp::BitwiseAnd:
return bitwise_and(lhs_result, rhs_result);
case BinaryOp::BitwiseOr:
return bitwise_or(lhs_result, rhs_result);
case BinaryOp::BitwiseXor:
return bitwise_xor(lhs_result, rhs_result);
case BinaryOp::LeftShift:
return left_shift(lhs_result, rhs_result);
case BinaryOp::RightShift:
return right_shift(lhs_result, rhs_result);
}
ASSERT_NOT_REACHED();
}
Value LogicalExpression::execute(Interpreter& interpreter) const
{
auto lhs_result = m_lhs->execute(interpreter).to_boolean();
auto rhs_result = m_rhs->execute(interpreter).to_boolean();
switch (m_op) {
case LogicalOp::And:
return Value(lhs_result && rhs_result);
case LogicalOp::Or:
return Value(lhs_result || rhs_result);
}
ASSERT_NOT_REACHED();
}
Value UnaryExpression::execute(Interpreter& interpreter) const
{
auto lhs_result = m_lhs->execute(interpreter);
switch (m_op) {
case UnaryOp::BitNot:
return bitwise_not(lhs_result);
case UnaryOp::Not:
return Value(!lhs_result.to_boolean());
}
ASSERT_NOT_REACHED();
}
static void print_indent(int indent)
{
for (int i = 0; i < indent * 2; ++i)
putchar(' ');
}
void ASTNode::dump(int indent) const
{
print_indent(indent);
printf("%s\n", class_name());
}
void ScopeNode::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& child : children())
child.dump(indent + 1);
}
void BinaryExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case BinaryOp::Plus:
op_string = "+";
break;
case BinaryOp::Minus:
op_string = "-";
break;
case BinaryOp::Asterisk:
op_string = "*";
break;
case BinaryOp::Slash:
op_string = "/";
break;
case BinaryOp::TypedEquals:
op_string = "===";
break;
case BinaryOp::TypedInequals:
op_string = "!==";
break;
case BinaryOp::GreaterThan:
op_string = ">";
break;
case BinaryOp::GreaterThanEquals:
op_string = ">=";
break;
case BinaryOp::LessThan:
op_string = "<";
break;
case BinaryOp::LessThanEquals:
op_string = "<=";
break;
case BinaryOp::BitwiseAnd:
op_string = "&";
break;
case BinaryOp::BitwiseOr:
op_string = "|";
break;
case BinaryOp::BitwiseXor:
op_string = "^";
break;
case BinaryOp::LeftShift:
op_string = "<<";
break;
case BinaryOp::RightShift:
op_string = ">>";
break;
}
print_indent(indent);
printf("%s\n", class_name());
m_lhs->dump(indent + 1);
print_indent(indent + 1);
printf("%s\n", op_string);
m_rhs->dump(indent + 1);
}
void LogicalExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case LogicalOp::And:
op_string = "&&";
break;
case LogicalOp::Or:
op_string = "||";
break;
}
print_indent(indent);
printf("%s\n", class_name());
m_lhs->dump(indent + 1);
print_indent(indent + 1);
printf("%s\n", op_string);
m_rhs->dump(indent + 1);
}
void UnaryExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case UnaryOp::BitNot:
op_string = "~";
break;
case UnaryOp::Not:
op_string = "!";
break;
}
print_indent(indent);
printf("%s\n", class_name());
print_indent(indent + 1);
printf("%s\n", op_string);
m_lhs->dump(indent + 1);
}
void CallExpression::dump(int indent) const
{
print_indent(indent);
printf("%s '%s'\n", class_name(), name().characters());
}
void StringLiteral::dump(int indent) const
{
print_indent(indent);
printf("StringLiteral \"%s\"\n", m_value.characters());
}
void NumericLiteral::dump(int indent) const
{
print_indent(indent);
printf("NumberLiteral %g\n", m_value);
}
void BooleanLiteral::dump(int indent) const
{
print_indent(indent);
printf("BooleanLiteral %s\n", m_value ? "true" : "false");
}
void FunctionDeclaration::dump(int indent) const
{
bool first_time = true;
StringBuilder parameters_builder;
for (const auto& parameter : m_parameters) {
if (first_time)
first_time = false;
else
parameters_builder.append(',');
parameters_builder.append(parameter);
}
print_indent(indent);
printf("%s '%s(%s)'\n", class_name(), name().characters(), parameters_builder.build().characters());
body().dump(indent + 1);
}
void ReturnStatement::dump(int indent) const
{
ASTNode::dump(indent);
if (argument())
argument()->dump(indent + 1);
}
void IfStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("If\n");
predicate().dump(indent + 1);
consequent().dump(indent + 1);
print_indent(indent);
printf("Else\n");
alternate().dump(indent + 1);
}
void WhileStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("While\n");
predicate().dump(indent + 1);
body().dump(indent + 1);
}
void ForStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("For\n");
if (init())
init()->dump(indent + 1);
if (test())
test()->dump(indent + 1);
if (update())
update()->dump(indent + 1);
body().dump(indent + 1);
}
Value Identifier::execute(Interpreter& interpreter) const
{
return interpreter.get_variable(string());
}
void Identifier::dump(int indent) const
{
print_indent(indent);
printf("Identifier \"%s\"\n", m_string.characters());
}
Value AssignmentExpression::execute(Interpreter& interpreter) const
{
ASSERT(m_lhs->is_identifier());
auto name = static_cast<const Identifier&>(*m_lhs).string();
auto rhs_result = m_rhs->execute(interpreter);
switch (m_op) {
case AssignmentOp::Assignment:
interpreter.set_variable(name, rhs_result);
break;
case AssignmentOp::AdditionAssignment:
rhs_result = add(m_lhs->execute(interpreter), rhs_result);
interpreter.set_variable(name, rhs_result);
break;
case AssignmentOp::SubtractionAssignment:
rhs_result = sub(m_lhs->execute(interpreter), rhs_result);
interpreter.set_variable(name, rhs_result);
break;
case AssignmentOp::MultiplicationAssignment:
rhs_result = mul(m_lhs->execute(interpreter), rhs_result);
interpreter.set_variable(name, rhs_result);
break;
case AssignmentOp::DivisionAssignment:
rhs_result = div(m_lhs->execute(interpreter), rhs_result);
interpreter.set_variable(name, rhs_result);
break;
}
return rhs_result;
}
Value UpdateExpression::execute(Interpreter& interpreter) const
{
ASSERT(m_argument->is_identifier());
auto name = static_cast<const Identifier&>(*m_argument).string();
auto previous_value = interpreter.get_variable(name);
ASSERT(previous_value.is_number());
switch (m_op) {
case UpdateOp::Increment:
interpreter.set_variable(name, Value(previous_value.as_double() + 1));
break;
case UpdateOp::Decrement:
interpreter.set_variable(name, Value(previous_value.as_double() - 1));
break;
}
return previous_value;
}
void AssignmentExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case AssignmentOp::Assignment:
op_string = "=";
break;
case AssignmentOp::AdditionAssignment:
op_string = "+=";
break;
case AssignmentOp::SubtractionAssignment:
op_string = "-=";
break;
case AssignmentOp::MultiplicationAssignment:
op_string = "*=";
break;
case AssignmentOp::DivisionAssignment:
op_string = "/=";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
printf("%s\n", op_string);
m_lhs->dump(indent + 1);
m_rhs->dump(indent + 1);
}
void UpdateExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case UpdateOp::Increment:
op_string = "++";
break;
case UpdateOp::Decrement:
op_string = "--";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
printf("%s\n", op_string);
m_argument->dump(indent + 1);
}
Value VariableDeclaration::execute(Interpreter& interpreter) const
{
interpreter.declare_variable(name().string(), m_declaration_type);
if (m_initializer) {
auto initalizer_result = m_initializer->execute(interpreter);
interpreter.set_variable(name().string(), initalizer_result);
}
return js_undefined();
}
void VariableDeclaration::dump(int indent) const
{
const char* declaration_type_string = nullptr;
switch (m_declaration_type) {
case DeclarationType::Let:
declaration_type_string = "Let";
break;
case DeclarationType::Var:
declaration_type_string = "Var";
break;
case DeclarationType::Const:
declaration_type_string = "Const";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
printf("%s\n", declaration_type_string);
m_name->dump(indent + 1);
if (m_initializer)
m_initializer->dump(indent + 1);
}
void ObjectExpression::dump(int indent) const
{
ASTNode::dump(indent);
}
void ExpressionStatement::dump(int indent) const
{
ASTNode::dump(indent);
m_expression->dump(indent + 1);
}
Value ObjectExpression::execute(Interpreter& interpreter) const
{
return Value(interpreter.heap().allocate<Object>());
}
void MemberExpression::dump(int indent) const
{
ASTNode::dump(indent);
m_object->dump(indent + 1);
m_property->dump(indent + 1);
}
Value MemberExpression::execute(Interpreter& interpreter) const
{
auto object_result = m_object->execute(interpreter).to_object(interpreter.heap());
ASSERT(object_result.is_object());
String property_name;
if (m_property->is_identifier()) {
property_name = static_cast<const Identifier&>(*m_property).string();
} else {
ASSERT_NOT_REACHED();
}
return object_result.as_object()->get(property_name);
}
Value StringLiteral::execute(Interpreter& interpreter) const
{
return Value(js_string(interpreter.heap(), m_value));
}
Value NumericLiteral::execute(Interpreter&) const
{
return Value(m_value);
}
Value BooleanLiteral::execute(Interpreter&) const
{
return Value(m_value);
}
}