
PR #18166 introduced the ability to parse ECC certificates. If we now fail here the reason is mostlikely something new and we should prevent this rabbit hole from happening.
542 lines
20 KiB
C++
542 lines
20 KiB
C++
/*
|
|
* Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Base64.h>
|
|
#include <AK/Debug.h>
|
|
#include <AK/Endian.h>
|
|
#include <LibCore/ConfigFile.h>
|
|
#include <LibCore/DateTime.h>
|
|
#include <LibCore/File.h>
|
|
#include <LibCore/StandardPaths.h>
|
|
#include <LibCore/Timer.h>
|
|
#include <LibCrypto/ASN1/ASN1.h>
|
|
#include <LibCrypto/ASN1/PEM.h>
|
|
#include <LibCrypto/PK/Code/EMSA_PKCS1_V1_5.h>
|
|
#include <LibCrypto/PK/Code/EMSA_PSS.h>
|
|
#include <LibFileSystem/FileSystem.h>
|
|
#include <LibTLS/Certificate.h>
|
|
#include <LibTLS/TLSv12.h>
|
|
#include <errno.h>
|
|
|
|
#ifndef SOCK_NONBLOCK
|
|
# include <sys/ioctl.h>
|
|
#endif
|
|
|
|
namespace TLS {
|
|
|
|
void TLSv12::consume(ReadonlyBytes record)
|
|
{
|
|
if (m_context.critical_error) {
|
|
dbgln("There has been a critical error ({}), refusing to continue", (i8)m_context.critical_error);
|
|
return;
|
|
}
|
|
|
|
if (record.size() == 0) {
|
|
return;
|
|
}
|
|
|
|
dbgln_if(TLS_DEBUG, "Consuming {} bytes", record.size());
|
|
|
|
if (m_context.message_buffer.try_append(record).is_error()) {
|
|
dbgln("Not enough space in message buffer, dropping the record");
|
|
return;
|
|
}
|
|
|
|
size_t index { 0 };
|
|
size_t buffer_length = m_context.message_buffer.size();
|
|
|
|
size_t size_offset { 3 }; // read the common record header
|
|
size_t header_size { 5 };
|
|
|
|
dbgln_if(TLS_DEBUG, "message buffer length {}", buffer_length);
|
|
|
|
while (buffer_length >= 5) {
|
|
auto length = AK::convert_between_host_and_network_endian(ByteReader::load16(m_context.message_buffer.offset_pointer(index + size_offset))) + header_size;
|
|
if (length > buffer_length) {
|
|
dbgln_if(TLS_DEBUG, "Need more data: {} > {}", length, buffer_length);
|
|
break;
|
|
}
|
|
auto consumed = handle_message(m_context.message_buffer.bytes().slice(index, length));
|
|
|
|
if constexpr (TLS_DEBUG) {
|
|
if (consumed > 0)
|
|
dbgln("consumed {} bytes", consumed);
|
|
else
|
|
dbgln("error: {}", consumed);
|
|
}
|
|
|
|
if (consumed != (i8)Error::NeedMoreData) {
|
|
if (consumed < 0) {
|
|
dbgln("Consumed an error: {}", consumed);
|
|
if (!m_context.critical_error)
|
|
m_context.critical_error = (i8)consumed;
|
|
m_context.error_code = (Error)consumed;
|
|
break;
|
|
}
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
index += length;
|
|
buffer_length -= length;
|
|
if (m_context.critical_error) {
|
|
dbgln("Broken connection");
|
|
m_context.error_code = Error::BrokenConnection;
|
|
break;
|
|
}
|
|
}
|
|
if (m_context.error_code != Error::NoError && m_context.error_code != Error::NeedMoreData) {
|
|
dbgln("consume error: {}", (i8)m_context.error_code);
|
|
m_context.message_buffer.clear();
|
|
return;
|
|
}
|
|
|
|
if (index) {
|
|
// FIXME: Propagate errors.
|
|
m_context.message_buffer = MUST(m_context.message_buffer.slice(index, m_context.message_buffer.size() - index));
|
|
}
|
|
}
|
|
|
|
bool Certificate::is_valid() const
|
|
{
|
|
auto now = Core::DateTime::now();
|
|
|
|
if (now < validity.not_before) {
|
|
dbgln("certificate expired (not yet valid, signed for {})", validity.not_before.to_deprecated_string());
|
|
return false;
|
|
}
|
|
|
|
if (validity.not_after < now) {
|
|
dbgln("certificate expired (expiry date {})", validity.not_after.to_deprecated_string());
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// https://www.ietf.org/rfc/rfc5280.html#page-12
|
|
bool Certificate::is_self_signed()
|
|
{
|
|
if (m_is_self_signed.has_value())
|
|
return *m_is_self_signed;
|
|
|
|
// Self-signed certificates are self-issued certificates where the digital
|
|
// signature may be verified by the public key bound into the certificate.
|
|
if (!this->is_self_issued)
|
|
m_is_self_signed.emplace(false);
|
|
|
|
// FIXME: Actually check if we sign ourself
|
|
|
|
m_is_self_signed.emplace(true);
|
|
return *m_is_self_signed;
|
|
}
|
|
|
|
void TLSv12::try_disambiguate_error() const
|
|
{
|
|
dbgln("Possible failure cause(s): ");
|
|
switch ((AlertDescription)m_context.critical_error) {
|
|
case AlertDescription::HandshakeFailure:
|
|
if (!m_context.cipher_spec_set) {
|
|
dbgln("- No cipher suite in common with {}", m_context.extensions.SNI);
|
|
} else {
|
|
dbgln("- Unknown internal issue");
|
|
}
|
|
break;
|
|
case AlertDescription::InsufficientSecurity:
|
|
dbgln("- No cipher suite in common with {} (the server is oh so secure)", m_context.extensions.SNI);
|
|
break;
|
|
case AlertDescription::ProtocolVersion:
|
|
dbgln("- The server refused to negotiate with TLS 1.2 :(");
|
|
break;
|
|
case AlertDescription::UnexpectedMessage:
|
|
dbgln("- We sent an invalid message for the state we're in.");
|
|
break;
|
|
case AlertDescription::BadRecordMAC:
|
|
dbgln("- Bad MAC record from our side.");
|
|
dbgln("- Ciphertext wasn't an even multiple of the block length.");
|
|
dbgln("- Bad block cipher padding.");
|
|
dbgln("- If both sides are compliant, the only cause is messages being corrupted in the network.");
|
|
break;
|
|
case AlertDescription::RecordOverflow:
|
|
dbgln("- Sent a ciphertext record which has a length bigger than 18432 bytes.");
|
|
dbgln("- Sent record decrypted to a compressed record that has a length bigger than 18432 bytes.");
|
|
dbgln("- If both sides are compliant, the only cause is messages being corrupted in the network.");
|
|
break;
|
|
case AlertDescription::DecompressionFailure:
|
|
dbgln("- We sent invalid input for decompression (e.g. data that would expand to excessive length)");
|
|
break;
|
|
case AlertDescription::IllegalParameter:
|
|
dbgln("- We sent a parameter in the handshake that is out of range or inconsistent with the other parameters.");
|
|
break;
|
|
case AlertDescription::DecodeError:
|
|
dbgln("- The message we sent cannot be decoded because a field was out of range or the length was incorrect.");
|
|
dbgln("- If both sides are compliant, the only cause is messages being corrupted in the network.");
|
|
break;
|
|
case AlertDescription::DecryptError:
|
|
dbgln("- A handshake crypto operation failed. This includes signature verification and validating Finished.");
|
|
break;
|
|
case AlertDescription::AccessDenied:
|
|
dbgln("- The certificate is valid, but once access control was applied, the sender decided to stop negotiation.");
|
|
break;
|
|
case AlertDescription::InternalError:
|
|
dbgln("- No one knows, but it isn't a protocol failure.");
|
|
break;
|
|
case AlertDescription::DecryptionFailed:
|
|
case AlertDescription::NoCertificate:
|
|
case AlertDescription::ExportRestriction:
|
|
dbgln("- No one knows, the server sent a non-compliant alert.");
|
|
break;
|
|
default:
|
|
dbgln("- No one knows.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void TLSv12::set_root_certificates(Vector<Certificate> certificates)
|
|
{
|
|
if (!m_context.root_certificates.is_empty()) {
|
|
dbgln("TLS warn: resetting root certificates!");
|
|
m_context.root_certificates.clear();
|
|
}
|
|
|
|
for (auto& cert : certificates) {
|
|
if (!cert.is_valid()) {
|
|
dbgln("Certificate for {} by {} is invalid, things may or may not work!", cert.subject.common_name(), cert.issuer.common_name());
|
|
}
|
|
// FIXME: Figure out what we should do when our root certs are invalid.
|
|
|
|
m_context.root_certificates.set(MUST(cert.subject.to_string()).to_deprecated_string(), cert);
|
|
}
|
|
dbgln_if(TLS_DEBUG, "{}: Set {} root certificates", this, m_context.root_certificates.size());
|
|
}
|
|
|
|
static bool wildcard_matches(StringView host, StringView subject)
|
|
{
|
|
if (host == subject)
|
|
return true;
|
|
|
|
if (subject.starts_with("*."sv)) {
|
|
auto maybe_first_dot_index = host.find('.');
|
|
if (maybe_first_dot_index.has_value()) {
|
|
auto first_dot_index = maybe_first_dot_index.release_value();
|
|
return wildcard_matches(host.substring_view(first_dot_index + 1), subject.substring_view(2));
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool certificate_subject_matches_host(Certificate& cert, StringView host)
|
|
{
|
|
if (wildcard_matches(host, cert.subject.common_name()))
|
|
return true;
|
|
|
|
for (auto& san : cert.SAN) {
|
|
if (wildcard_matches(host, san))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Context::verify_chain(StringView host) const
|
|
{
|
|
if (!options.validate_certificates)
|
|
return true;
|
|
|
|
Vector<Certificate> const* local_chain = nullptr;
|
|
if (is_server) {
|
|
dbgln("Unsupported: Server mode");
|
|
TODO();
|
|
} else {
|
|
local_chain = &certificates;
|
|
}
|
|
|
|
if (local_chain->is_empty()) {
|
|
dbgln("verify_chain: Attempting to verify an empty chain");
|
|
return false;
|
|
}
|
|
|
|
// RFC5246 section 7.4.2: The sender's certificate MUST come first in the list. Each following certificate
|
|
// MUST directly certify the one preceding it. Because certificate validation requires that root keys be
|
|
// distributed independently, the self-signed certificate that specifies the root certificate authority MAY be
|
|
// omitted from the chain, under the assumption that the remote end must already possess it in order to validate
|
|
// it in any case.
|
|
|
|
if (!host.is_empty()) {
|
|
auto first_certificate = local_chain->first();
|
|
auto subject_matches = certificate_subject_matches_host(first_certificate, host);
|
|
if (!subject_matches) {
|
|
dbgln("verify_chain: First certificate does not match the hostname");
|
|
return false;
|
|
}
|
|
} else {
|
|
// FIXME: The host is taken from m_context.extensions.SNI, when is this empty?
|
|
dbgln("FIXME: verify_chain called without host");
|
|
return false;
|
|
}
|
|
|
|
for (size_t cert_index = 0; cert_index < local_chain->size(); ++cert_index) {
|
|
auto cert = local_chain->at(cert_index);
|
|
|
|
auto subject_string = MUST(cert.subject.to_string());
|
|
auto issuer_string = MUST(cert.issuer.to_string());
|
|
|
|
if (!cert.is_valid()) {
|
|
dbgln("verify_chain: Certificate is not valid {}", subject_string);
|
|
return false;
|
|
}
|
|
|
|
auto maybe_root_certificate = root_certificates.get(issuer_string.to_deprecated_string());
|
|
if (maybe_root_certificate.has_value()) {
|
|
auto& root_certificate = *maybe_root_certificate;
|
|
auto verification_correct = verify_certificate_pair(cert, root_certificate);
|
|
|
|
if (!verification_correct) {
|
|
dbgln("verify_chain: Signature inconsistent, {} was not signed by {} (root certificate)", subject_string, issuer_string);
|
|
return false;
|
|
}
|
|
|
|
// Root certificate reached, and correctly verified, so we can stop now
|
|
return true;
|
|
}
|
|
|
|
if (subject_string == issuer_string) {
|
|
dbgln("verify_chain: Non-root self-signed certificate");
|
|
return options.allow_self_signed_certificates;
|
|
}
|
|
if ((cert_index + 1) >= local_chain->size()) {
|
|
dbgln("verify_chain: No trusted root certificate found before end of certificate chain");
|
|
dbgln("verify_chain: Last certificate in chain was signed by {}", issuer_string);
|
|
return false;
|
|
}
|
|
|
|
auto parent_certificate = local_chain->at(cert_index + 1);
|
|
if (issuer_string != MUST(parent_certificate.subject.to_string())) {
|
|
dbgln("verify_chain: Next certificate in the chain is not the issuer of this certificate");
|
|
return false;
|
|
}
|
|
|
|
if (!(parent_certificate.is_allowed_to_sign_certificate && parent_certificate.is_certificate_authority)) {
|
|
dbgln("verify_chain: {} is not marked as certificate authority", issuer_string);
|
|
return false;
|
|
}
|
|
if (parent_certificate.path_length_constraint.has_value() && cert_index > parent_certificate.path_length_constraint.value()) {
|
|
dbgln("verify_chain: Path length for certificate exceeded");
|
|
return false;
|
|
}
|
|
|
|
bool verification_correct = verify_certificate_pair(cert, parent_certificate);
|
|
if (!verification_correct) {
|
|
dbgln("verify_chain: Signature inconsistent, {} was not signed by {}", subject_string, issuer_string);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Either a root certificate is reached, or parent validation fails as the end of the local chain is reached
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
bool Context::verify_certificate_pair(Certificate const& subject, Certificate const& issuer) const
|
|
{
|
|
Crypto::Hash::HashKind kind;
|
|
switch (subject.signature_algorithm) {
|
|
case CertificateKeyAlgorithm::RSA_SHA1:
|
|
kind = Crypto::Hash::HashKind::SHA1;
|
|
break;
|
|
case CertificateKeyAlgorithm::RSA_SHA256:
|
|
kind = Crypto::Hash::HashKind::SHA256;
|
|
break;
|
|
case CertificateKeyAlgorithm::RSA_SHA384:
|
|
kind = Crypto::Hash::HashKind::SHA384;
|
|
break;
|
|
case CertificateKeyAlgorithm::RSA_SHA512:
|
|
kind = Crypto::Hash::HashKind::SHA512;
|
|
break;
|
|
default:
|
|
dbgln("verify_certificate_pair: Unknown signature algorithm, expected RSA with SHA1/256/384/512, got {}", (u8)subject.signature_algorithm);
|
|
return false;
|
|
}
|
|
|
|
Crypto::PK::RSAPrivateKey dummy_private_key;
|
|
Crypto::PK::RSAPublicKey public_key_copy { issuer.public_key.rsa };
|
|
auto rsa = Crypto::PK::RSA(public_key_copy, dummy_private_key);
|
|
auto verification_buffer_result = ByteBuffer::create_uninitialized(subject.signature_value.size());
|
|
if (verification_buffer_result.is_error()) {
|
|
dbgln("verify_certificate_pair: Unable to allocate buffer for verification");
|
|
return false;
|
|
}
|
|
auto verification_buffer = verification_buffer_result.release_value();
|
|
auto verification_buffer_bytes = verification_buffer.bytes();
|
|
rsa.verify(subject.signature_value, verification_buffer_bytes);
|
|
|
|
// FIXME: This slice is subject hack, this will work for most certificates, but you actually have to parse
|
|
// the ASN.1 data to correctly extract the signed part of the certificate.
|
|
ReadonlyBytes message = subject.original_asn1.bytes().slice(4, subject.original_asn1.size() - 4 - (5 + subject.signature_value.size()) - 15);
|
|
auto pkcs1 = Crypto::PK::EMSA_PKCS1_V1_5<Crypto::Hash::Manager>(kind);
|
|
auto verification = pkcs1.verify(message, verification_buffer_bytes, subject.signature_value.size() * 8);
|
|
return verification == Crypto::VerificationConsistency::Consistent;
|
|
}
|
|
|
|
template<typename HMACType>
|
|
static void hmac_pseudorandom_function(Bytes output, ReadonlyBytes secret, u8 const* label, size_t label_length, ReadonlyBytes seed, ReadonlyBytes seed_b)
|
|
{
|
|
if (!secret.size()) {
|
|
dbgln("null secret");
|
|
return;
|
|
}
|
|
|
|
auto append_label_seed = [&](auto& hmac) {
|
|
hmac.update(label, label_length);
|
|
hmac.update(seed);
|
|
if (seed_b.size() > 0)
|
|
hmac.update(seed_b);
|
|
};
|
|
|
|
HMACType hmac(secret);
|
|
append_label_seed(hmac);
|
|
|
|
constexpr auto digest_size = hmac.digest_size();
|
|
u8 digest[digest_size];
|
|
auto digest_0 = Bytes { digest, digest_size };
|
|
|
|
digest_0.overwrite(0, hmac.digest().immutable_data(), digest_size);
|
|
|
|
size_t index = 0;
|
|
while (index < output.size()) {
|
|
hmac.update(digest_0);
|
|
append_label_seed(hmac);
|
|
auto digest_1 = hmac.digest();
|
|
|
|
auto copy_size = min(digest_size, output.size() - index);
|
|
|
|
output.overwrite(index, digest_1.immutable_data(), copy_size);
|
|
index += copy_size;
|
|
|
|
digest_0.overwrite(0, hmac.process(digest_0).immutable_data(), digest_size);
|
|
}
|
|
}
|
|
|
|
void TLSv12::pseudorandom_function(Bytes output, ReadonlyBytes secret, u8 const* label, size_t label_length, ReadonlyBytes seed, ReadonlyBytes seed_b)
|
|
{
|
|
// Simplification: We only support the HMAC PRF with the hash function SHA-256 or stronger.
|
|
|
|
// RFC 5246: "In this section, we define one PRF, based on HMAC. This PRF with the
|
|
// SHA-256 hash function is used for all cipher suites defined in this
|
|
// document and in TLS documents published prior to this document when
|
|
// TLS 1.2 is negotiated. New cipher suites MUST explicitly specify a
|
|
// PRF and, in general, SHOULD use the TLS PRF with SHA-256 or a
|
|
// stronger standard hash function."
|
|
|
|
switch (hmac_hash()) {
|
|
case Crypto::Hash::HashKind::SHA512:
|
|
hmac_pseudorandom_function<Crypto::Authentication::HMAC<Crypto::Hash::SHA512>>(output, secret, label, label_length, seed, seed_b);
|
|
break;
|
|
case Crypto::Hash::HashKind::SHA384:
|
|
hmac_pseudorandom_function<Crypto::Authentication::HMAC<Crypto::Hash::SHA384>>(output, secret, label, label_length, seed, seed_b);
|
|
break;
|
|
case Crypto::Hash::HashKind::SHA256:
|
|
hmac_pseudorandom_function<Crypto::Authentication::HMAC<Crypto::Hash::SHA256>>(output, secret, label, label_length, seed, seed_b);
|
|
break;
|
|
default:
|
|
dbgln("Failed to find a suitable HMAC hash");
|
|
VERIFY_NOT_REACHED();
|
|
break;
|
|
}
|
|
}
|
|
|
|
TLSv12::TLSv12(StreamVariantType stream, Options options)
|
|
: m_stream(move(stream))
|
|
{
|
|
m_context.options = move(options);
|
|
m_context.is_server = false;
|
|
m_context.tls_buffer = {};
|
|
|
|
set_root_certificates(m_context.options.root_certificates.has_value()
|
|
? *m_context.options.root_certificates
|
|
: DefaultRootCACertificates::the().certificates());
|
|
|
|
setup_connection();
|
|
}
|
|
|
|
Vector<Certificate> TLSv12::parse_pem_certificate(ReadonlyBytes certificate_pem_buffer, ReadonlyBytes rsa_key) // FIXME: This should not be bound to RSA
|
|
{
|
|
if (certificate_pem_buffer.is_empty() || rsa_key.is_empty()) {
|
|
return {};
|
|
}
|
|
|
|
auto decoded_certificate = Crypto::decode_pem(certificate_pem_buffer);
|
|
if (decoded_certificate.is_empty()) {
|
|
dbgln("Certificate not PEM");
|
|
return {};
|
|
}
|
|
|
|
auto maybe_certificate = Certificate::parse_certificate(decoded_certificate);
|
|
if (!maybe_certificate.is_error()) {
|
|
dbgln("Invalid certificate");
|
|
return {};
|
|
}
|
|
|
|
Crypto::PK::RSA rsa(rsa_key);
|
|
auto certificate = maybe_certificate.release_value();
|
|
certificate.private_key = rsa.private_key();
|
|
|
|
return { move(certificate) };
|
|
}
|
|
|
|
Singleton<DefaultRootCACertificates> DefaultRootCACertificates::s_the;
|
|
DefaultRootCACertificates::DefaultRootCACertificates()
|
|
{
|
|
auto load_result = load_certificates();
|
|
if (load_result.is_error()) {
|
|
dbgln("Failed to load CA Certificates: {}", load_result.error());
|
|
return;
|
|
}
|
|
|
|
m_ca_certificates = load_result.release_value();
|
|
}
|
|
|
|
ErrorOr<Vector<Certificate>> DefaultRootCACertificates::load_certificates()
|
|
{
|
|
auto cacert_file = TRY(Core::File::open("/etc/cacert.pem"sv, Core::File::OpenMode::Read));
|
|
auto data = TRY(cacert_file->read_until_eof());
|
|
|
|
auto user_cert_path = TRY(String::formatted("{}/.config/certs.pem", Core::StandardPaths::home_directory()));
|
|
if (FileSystem::exists(user_cert_path)) {
|
|
auto user_cert_file = TRY(Core::File::open(user_cert_path, Core::File::OpenMode::Read));
|
|
TRY(data.try_append(TRY(user_cert_file->read_until_eof())));
|
|
}
|
|
|
|
return TRY(parse_pem_root_certificate_authorities(data));
|
|
}
|
|
|
|
ErrorOr<Vector<Certificate>> DefaultRootCACertificates::parse_pem_root_certificate_authorities(ByteBuffer& data)
|
|
{
|
|
Vector<Certificate> certificates;
|
|
|
|
auto certs = TRY(Crypto::decode_pems(data));
|
|
|
|
for (auto& cert : certs) {
|
|
auto certificate_result = Certificate::parse_certificate(cert.bytes());
|
|
if (certificate_result.is_error()) {
|
|
// FIXME: It would be nice to have more informations about the certificate we failed to parse.
|
|
// Like: Issuer, Algorithm, CN, etc
|
|
dbgln("Failed to load certificate: {}", certificate_result.error());
|
|
continue;
|
|
}
|
|
auto certificate = certificate_result.release_value();
|
|
if (certificate.is_certificate_authority && certificate.is_self_signed()) {
|
|
TRY(certificates.try_append(move(certificate)));
|
|
} else {
|
|
dbgln("Skipped '{}' because it is not a valid root CA", TRY(certificate.subject.to_string()));
|
|
}
|
|
}
|
|
|
|
dbgln("Loaded {} of {} ({:.2}%) provided CA Certificates", certificates.size(), certs.size(), (certificates.size() * 100.0) / certs.size());
|
|
|
|
return certificates;
|
|
}
|
|
}
|