ladybird/Userland/Libraries/LibGL/SoftwareGLContext.cpp
Jesse Buhagiar e537e2690a LibGL: Implement glGetError and underlying function
This implements `glGetError` and correctly sets the state machine's
error macro (similar to LibC `errno`) when an invalid operation is
performed. This is reset on completion of a successful operation.
2021-05-08 10:13:22 +02:00

558 lines
19 KiB
C++

/*
* Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
* Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@gmx.de>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "SoftwareGLContext.h"
#include "GLStruct.h"
#include <AK/Assertions.h>
#include <AK/Debug.h>
#include <AK/Format.h>
#include <AK/QuickSort.h>
#include <AK/Vector.h>
#include <LibGfx/Vector4.h>
#include <math.h>
using AK::dbgln;
namespace GL {
static constexpr size_t NUM_CLIP_PLANES = 6;
static FloatVector4 clip_planes[] = {
{ -1, 0, 0, 1 }, // Left Plane
{ 1, 0, 0, 1 }, // Right Plane
{ 0, 1, 0, 1 }, // Top Plane
{ 0, -1, 0, 1 }, // Bottom plane
{ 0, 0, 1, 1 }, // Near Plane
{ 0, 0, -1, 1 } // Far Plane
};
static FloatVector4 clip_plane_normals[] = {
{ 1, 0, 0, 1 }, // Left Plane
{ -1, 0, 0, 1 }, // Right Plane
{ 0, -1, 0, 1 }, // Top Plane
{ 0, 1, 0, 1 }, // Bottom plane
{ 0, 0, -1, 1 }, // Near Plane
{ 0, 0, 1, 1 } // Far Plane
};
enum ClippingPlane {
LEFT = 0,
RIGHT = 1,
TOP = 2,
BOTTOM = 3,
NEAR = 4,
FAR = 5
};
// FIXME: Change this to accept a vertex!
// Determines whether or not a vertex is inside the frustum for a given plane
static bool vert_inside_plane(const FloatVector4& vec, ClippingPlane plane)
{
switch (plane) {
case ClippingPlane::LEFT:
return vec.x() > -vec.w();
case ClippingPlane::RIGHT:
return vec.x() < vec.w();
case ClippingPlane::TOP:
return vec.y() < vec.w();
case ClippingPlane::BOTTOM:
return vec.y() > -vec.w();
case ClippingPlane::NEAR:
return vec.z() > -vec.w();
case ClippingPlane::FAR:
return vec.z() < vec.w();
}
return false;
}
// FIXME: This needs to interpolate color/UV data as well!
static FloatVector4 clip_intersection_point(const FloatVector4& vec, const FloatVector4& prev_vec, ClippingPlane plane_index)
{
// https://github.com/fogleman/fauxgl/blob/master/clipping.go#L20
FloatVector4 u, w;
FloatVector4 ret = prev_vec;
FloatVector4 plane = clip_planes[plane_index];
FloatVector4 plane_normal = clip_plane_normals[plane_index];
u = vec;
u -= prev_vec;
w = prev_vec;
w -= plane;
float d = plane_normal.dot(u);
float n = -plane_normal.dot(w);
ret += (u * (n / d));
return ret;
}
// https://groups.csail.mit.edu/graphics/classes/6.837/F04/lectures/07_Pipeline_II.pdf
// This is a really rough implementation of the Sutherland-Hodgman algorithm in clip-space
static void clip_triangle_against_frustum(Vector<FloatVector4>& in_vec)
{
Vector<FloatVector4> clipped_polygon = in_vec; // in_vec = subjectPolygon, clipped_polygon = outputList
for (size_t i = 0; i < NUM_CLIP_PLANES; i++) // Test against each clip plane
{
ClippingPlane plane = static_cast<ClippingPlane>(i); // Hahaha, what the fuck
in_vec = clipped_polygon;
clipped_polygon.clear();
// Prevent a crash from .at() undeflow
if (in_vec.size() == 0)
return;
FloatVector4 prev_vec = in_vec.at(in_vec.size() - 1);
for (size_t j = 0; j < in_vec.size(); j++) // Perform this for each vertex
{
const FloatVector4& vec = in_vec.at(j);
if (vert_inside_plane(vec, plane)) {
if (!vert_inside_plane(prev_vec, plane)) {
FloatVector4 intersect = clip_intersection_point(prev_vec, vec, plane);
clipped_polygon.append(intersect);
}
clipped_polygon.append(vec);
} else if (vert_inside_plane(prev_vec, plane)) {
FloatVector4 intersect = clip_intersection_point(prev_vec, vec, plane);
clipped_polygon.append(intersect);
}
prev_vec = vec;
}
}
}
void SoftwareGLContext::gl_begin(GLenum mode)
{
if (mode < GL_TRIANGLES || mode > GL_POLYGON) {
m_error = GL_INVALID_ENUM;
return;
}
m_current_draw_mode = mode;
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_clear(GLbitfield mask)
{
if (mask & GL_COLOR_BUFFER_BIT) {
uint8_t r = static_cast<uint8_t>(floor(m_clear_color.x() * 255.0f));
uint8_t g = static_cast<uint8_t>(floor(m_clear_color.y() * 255.0f));
uint8_t b = static_cast<uint8_t>(floor(m_clear_color.z() * 255.0f));
uint64_t color = r << 16 | g << 8 | b;
(void)(color);
m_error = GL_NO_ERROR;
} else {
m_error = GL_INVALID_ENUM;
}
}
void SoftwareGLContext::gl_clear_color(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)
{
m_clear_color = { red, green, blue, alpha };
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_color(GLdouble r, GLdouble g, GLdouble b, GLdouble a)
{
m_current_vertex_color = { (float)r, (float)g, (float)b, (float)a };
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_end()
{
// At this point, the user has effectively specified that they are done with defining the geometry
// of what they want to draw. We now need to do a few things (https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview):
//
// 1. Transform all of the vertices in the current vertex list into eye space by mulitplying the model-view matrix
// 2. Transform all of the vertices from eye space into clip space by multiplying by the projection matrix
// 3. If culling is enabled, we cull the desired faces (https://learnopengl.com/Advanced-OpenGL/Face-culling)
// 4. Each element of the vertex is then divided by w to bring the positions into NDC (Normalized Device Coordinates)
// 5. The vertices are sorted (for the rasteriser, how are we doing this? 3Dfx did this top to bottom in terms of vertex y co-ordinates)
// 6. The vertices are then sent off to the rasteriser and drawn to the screen
// FIXME: Don't assume screen dimensions
float scr_width = 640.0f;
float scr_height = 480.0f;
// Let's construct some triangles
if (m_current_draw_mode == GL_TRIANGLES) {
GLTriangle triangle;
for (size_t i = 0; i < vertex_list.size(); i += 3) {
triangle.vertices[0] = vertex_list.at(i);
triangle.vertices[1] = vertex_list.at(i + 1);
triangle.vertices[2] = vertex_list.at(i + 2);
triangle_list.append(triangle);
}
} else if (m_current_draw_mode == GL_QUADS) {
// We need to construct two triangles to form the quad
GLTriangle triangle;
VERIFY(vertex_list.size() % 4 == 0);
for (size_t i = 0; i < vertex_list.size(); i += 4) {
// Triangle 1
triangle.vertices[0] = vertex_list.at(i);
triangle.vertices[1] = vertex_list.at(i + 1);
triangle.vertices[2] = vertex_list.at(i + 2);
triangle_list.append(triangle);
// Triangle 2
triangle.vertices[0] = vertex_list.at(i + 2);
triangle.vertices[1] = vertex_list.at(i + 3);
triangle.vertices[2] = vertex_list.at(i);
triangle_list.append(triangle);
}
} else if (m_current_draw_mode == GL_TRIANGLE_FAN) {
GLTriangle triangle;
triangle.vertices[0] = vertex_list.at(0); // Root vertex is always the vertex defined first
for (size_t i = 1; i < vertex_list.size() - 1; i++) // This is technically `n-2` triangles. We start at index 1
{
triangle.vertices[1] = vertex_list.at(i);
triangle.vertices[2] = vertex_list.at(i + 1);
triangle_list.append(triangle);
}
} else if (m_current_draw_mode == GL_TRIANGLE_STRIP) {
GLTriangle triangle;
for (size_t i = 0; i < vertex_list.size() - 2; i++) {
triangle.vertices[0] = vertex_list.at(i);
triangle.vertices[1] = vertex_list.at(i + 1);
triangle.vertices[2] = vertex_list.at(i + 2);
triangle_list.append(triangle);
}
} else {
m_error = GL_INVALID_ENUM;
return;
}
// Now let's transform each triangle and send that to the GPU
for (size_t i = 0; i < triangle_list.size(); i++) {
GLTriangle& triangle = triangle_list.at(i);
GLVertex& vertexa = triangle.vertices[0];
GLVertex& vertexb = triangle.vertices[1];
GLVertex& vertexc = triangle.vertices[2];
FloatVector4 veca({ vertexa.x, vertexa.y, vertexa.z, 1.0f });
FloatVector4 vecb({ vertexb.x, vertexb.y, vertexb.z, 1.0f });
FloatVector4 vecc({ vertexc.x, vertexc.y, vertexc.z, 1.0f });
// First multiply the vertex by the MODELVIEW matrix and then the PROJECTION matrix
veca = m_model_view_matrix * veca;
veca = m_projection_matrix * veca;
vecb = m_model_view_matrix * vecb;
vecb = m_projection_matrix * vecb;
vecc = m_model_view_matrix * vecc;
vecc = m_projection_matrix * vecc;
// At this point, we're in clip space
// Here's where we do the clipping. This is a really crude implementation of the
// https://learnopengl.com/Getting-started/Coordinate-Systems
// "Note that if only a part of a primitive e.g. a triangle is outside the clipping volume OpenGL
// will reconstruct the triangle as one or more triangles to fit inside the clipping range. "
//
// ALL VERTICES ARE DEFINED IN A CLOCKWISE ORDER
// Okay, let's do some face culling first
Vector<FloatVector4> vecs;
Vector<GLVertex> verts;
vecs.append(veca);
vecs.append(vecb);
vecs.append(vecc);
clip_triangle_against_frustum(vecs);
// TODO: Copy color and UV information too!
for (size_t vec_idx = 0; vec_idx < vecs.size(); vec_idx++) {
FloatVector4& vec = vecs.at(vec_idx);
GLVertex vertex;
// Perform the perspective divide
if (vec.w() != 0.0f) {
vec.set_x(vec.x() / vec.w());
vec.set_y(vec.y() / vec.w());
vec.set_z(vec.z() / vec.w());
}
vertex.x = vec.x();
vertex.y = vec.y();
vertex.z = vec.z();
vertex.w = vec.w();
// FIXME: This is to suppress any -Wunused errors
vertex.u = 0.0f;
vertex.v = 0.0f;
if (vec_idx == 0) {
vertex.r = vertexa.r;
vertex.g = vertexa.g;
vertex.b = vertexa.b;
vertex.a = vertexa.a;
} else if (vec_idx == 1) {
vertex.r = vertexb.r;
vertex.g = vertexb.g;
vertex.b = vertexb.b;
vertex.a = vertexb.a;
} else {
vertex.r = vertexc.r;
vertex.g = vertexc.g;
vertex.b = vertexc.b;
vertex.a = vertexc.a;
}
vertex.x = (vec.x() + 1.0f) * (scr_width / 2.0f) + 0.0f; // TODO: 0.0f should be something!?
vertex.y = scr_height - ((vec.y() + 1.0f) * (scr_height / 2.0f) + 0.0f);
vertex.z = vec.z();
verts.append(vertex);
}
if (verts.size() == 0) {
continue;
} else if (verts.size() == 3) {
GLTriangle tri;
tri.vertices[0] = verts.at(0);
tri.vertices[1] = verts.at(1);
tri.vertices[2] = verts.at(2);
processed_triangles.append(tri);
} else if (verts.size() == 4) {
GLTriangle tri1;
GLTriangle tri2;
tri1.vertices[0] = verts.at(0);
tri1.vertices[1] = verts.at(1);
tri1.vertices[2] = verts.at(2);
processed_triangles.append(tri1);
tri2.vertices[0] = verts.at(0);
tri2.vertices[1] = verts.at(2);
tri2.vertices[2] = verts.at(3);
processed_triangles.append(tri2);
}
}
for (size_t i = 0; i < processed_triangles.size(); i++) {
Vector<GLVertex> sort_vert_list;
GLTriangle& triangle = processed_triangles.at(i);
// Now we sort the vertices by their y values. A is the vertex that has the least y value,
// B is the middle and C is the bottom.
// These are sorted in groups of 3
sort_vert_list.append(triangle.vertices[0]);
sort_vert_list.append(triangle.vertices[1]);
sort_vert_list.append(triangle.vertices[2]);
AK::quick_sort(sort_vert_list.begin(), sort_vert_list.end(), [](auto& a, auto& b) { return a.y < b.y; });
triangle.vertices[0] = sort_vert_list.at(0);
triangle.vertices[1] = sort_vert_list.at(1);
triangle.vertices[2] = sort_vert_list.at(2);
// Let's calculate the (signed) area of the triangle
// https://cp-algorithms.com/geometry/oriented-triangle-area.html
float dxAB = triangle.vertices[0].x - triangle.vertices[1].x; // A.x - B.x
float dxBC = triangle.vertices[1].x - triangle.vertices[2].x; // B.X - C.x
float dyAB = triangle.vertices[0].y - triangle.vertices[1].y;
float dyBC = triangle.vertices[1].y - triangle.vertices[2].y;
float area = (dxAB * dyBC) - (dxBC * dyAB);
if (area == 0.0f)
continue;
int32_t vertexAx = triangle.vertices[0].x;
int32_t vertexAy = triangle.vertices[0].y;
int32_t vertexBx = triangle.vertices[1].x;
int32_t vertexBy = triangle.vertices[1].y;
int32_t vertexCx = triangle.vertices[2].x;
int32_t vertexCy = triangle.vertices[2].y;
(void)(vertexAx);
(void)(vertexAy);
(void)(vertexBx);
(void)(vertexBy);
(void)(vertexCx);
(void)(vertexCy);
}
triangle_list.clear();
processed_triangles.clear();
vertex_list.clear();
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_frustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near_val, GLdouble far_val)
{
// Let's do some math!
// FIXME: Are we losing too much precision by doing this?
float a = static_cast<float>((right + left) / (right - left));
float b = static_cast<float>((top + bottom) / (top - bottom));
float c = static_cast<float>(-((far_val + near_val) / (far_val - near_val)));
float d = static_cast<float>(-((2 * (far_val * near_val)) / (far_val - near_val)));
FloatMatrix4x4 frustum {
((2 * (float)near_val) / ((float)right - (float)left)), 0, a, 0,
0, ((2 * (float)near_val) / ((float)top - (float)bottom)), b, 0,
0, 0, c, d,
0, 0, -1, 0
};
if (m_current_matrix_mode == GL_PROJECTION) {
m_projection_matrix = m_projection_matrix * frustum;
} else if (m_current_matrix_mode == GL_MODELVIEW) {
dbgln_if(GL_DEBUG, "glFrustum(): frustum created with curr_matrix_mode == GL_MODELVIEW!!!");
m_projection_matrix = m_model_view_matrix * frustum;
}
m_error = GL_NO_ERROR;
}
GLenum SoftwareGLContext::gl_get_error()
{
return m_error;
}
GLubyte* SoftwareGLContext::gl_get_string(GLenum name)
{
switch (name) {
case GL_VENDOR:
return reinterpret_cast<GLubyte*>(const_cast<char*>("The SerenityOS Developers"));
case GL_RENDERER:
return reinterpret_cast<GLubyte*>(const_cast<char*>("SerenityOS OpenGL"));
case GL_VERSION:
return reinterpret_cast<GLubyte*>(const_cast<char*>("OpenGL 1.2 SerenityOS"));
default:
dbgln_if(GL_DEBUG, "glGetString(): Unknown enum name!");
break;
}
m_error = GL_INVALID_ENUM;
return nullptr;
}
void SoftwareGLContext::gl_load_identity()
{
if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = FloatMatrix4x4::identity();
else if (m_current_matrix_mode == GL_MODELVIEW)
m_model_view_matrix = FloatMatrix4x4::identity();
else
VERIFY_NOT_REACHED();
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_matrix_mode(GLenum mode)
{
if (mode < GL_MODELVIEW || mode > GL_PROJECTION) {
m_error = GL_INVALID_ENUM;
return;
}
m_current_matrix_mode = mode;
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_push_matrix()
{
dbgln_if(GL_DEBUG, "glPushMatrix(): Pushing matrix to the matrix stack (matrix_mode {})", m_current_matrix_mode);
switch (m_current_matrix_mode) {
case GL_PROJECTION:
m_projection_matrix_stack.append(m_projection_matrix);
break;
case GL_MODELVIEW:
m_model_view_matrix_stack.append(m_model_view_matrix);
break;
default:
dbgln_if(GL_DEBUG, "glPushMatrix(): Attempt to push matrix with invalid matrix mode {})", m_current_matrix_mode);
return;
}
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_pop_matrix()
{
dbgln_if(GL_DEBUG, "glPopMatrix(): Popping matrix from matrix stack (matrix_mode = {})", m_current_matrix_mode);
// FIXME: Make sure stack::top() doesn't cause any nasty issues if it's empty (that could result in a lockup/hang)
switch (m_current_matrix_mode) {
case GL_PROJECTION:
m_projection_matrix = m_projection_matrix_stack.take_last();
break;
case GL_MODELVIEW:
m_model_view_matrix = m_model_view_matrix_stack.take_last();
break;
default:
dbgln_if(GL_DEBUG, "glPopMatrix(): Attempt to pop matrix with invalid matrix mode, {}", m_current_matrix_mode);
return;
}
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_rotate(GLdouble angle, GLdouble x, GLdouble y, GLdouble z)
{
FloatVector3 axis = { (float)x, (float)y, (float)z };
axis.normalize();
auto rotation_mat = FloatMatrix4x4::rotate(axis, angle);
if (m_current_matrix_mode == GL_MODELVIEW)
m_model_view_matrix = m_model_view_matrix * rotation_mat;
else if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = m_projection_matrix * rotation_mat;
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_translate(GLdouble x, GLdouble y, GLdouble z)
{
if (m_current_matrix_mode == GL_MODELVIEW) {
m_model_view_matrix = m_model_view_matrix * FloatMatrix4x4::translate({ (float)x, (float)y, (float)z });
} else if (m_current_matrix_mode == GL_PROJECTION) {
m_projection_matrix = m_projection_matrix * FloatMatrix4x4::translate({ (float)x, (float)y, (float)z });
}
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_vertex(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
GLVertex vertex;
vertex.x = x;
vertex.y = y;
vertex.z = z;
vertex.w = w;
vertex.r = m_current_vertex_color.x();
vertex.g = m_current_vertex_color.y();
vertex.b = m_current_vertex_color.z();
vertex.a = m_current_vertex_color.w();
// FIXME: This is to suppress any -Wunused errors
vertex.w = 0.0f;
vertex.u = 0.0f;
vertex.v = 0.0f;
vertex_list.append(vertex);
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_viewport(GLint x, GLint y, GLsizei width, GLsizei height)
{
(void)(x);
(void)(y);
(void)(width);
(void)(height);
m_error = GL_NO_ERROR;
}
}