ladybird/Libraries/LibCrypto/BigInt/UnsignedBigInteger.cpp

356 lines
12 KiB
C++

/*
* Copyright (c) 2020, Itamar S. <itamar8910@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "UnsignedBigInteger.h"
#include <AK/StringBuilder.h>
namespace Crypto {
UnsignedBigInteger UnsignedBigInteger::from_base10(const String& str)
{
UnsignedBigInteger result;
UnsignedBigInteger ten { 10 };
for (auto& c : str) {
result = result.multiply(ten).add(c - '0');
}
return result;
}
String UnsignedBigInteger::to_base10() const
{
StringBuilder builder;
UnsignedBigInteger temp(*this);
while (temp != UnsignedBigInteger { 0 }) {
auto div_result = temp.divide({ 10 });
ASSERT(div_result.remainder.words()[0] < 10);
builder.append(static_cast<char>(div_result.remainder.words()[0] + '0'));
temp = div_result.quotient;
}
auto reversed_string = builder.to_string();
builder.clear();
for (int i = reversed_string.length() - 1; i >= 0; --i) {
builder.append(reversed_string[i]);
}
return builder.to_string();
}
bool UnsignedBigInteger::operator!=(const UnsignedBigInteger& other) const
{
return !(*this == other);
}
/**
* Complexity: O(N) where N is the number of words in the larger number
*/
UnsignedBigInteger UnsignedBigInteger::add(const UnsignedBigInteger& other) const
{
const UnsignedBigInteger* const longer = (length() > other.length()) ? this : &other;
const UnsignedBigInteger* const shorter = (longer == &other) ? this : &other;
UnsignedBigInteger result;
u8 carry = 0;
result.m_words.ensure_capacity(longer->length() + 1);
for (size_t i = 0; i < shorter->length(); ++i) {
u32 word_addition_result = shorter->m_words[i] + longer->m_words[i];
u8 carry_out = 0;
// if there was a carry, the result will be smaller than any of the operands
if (word_addition_result + carry < shorter->m_words[i]) {
carry_out = 1;
}
if (carry) {
word_addition_result++;
}
carry = carry_out;
result.m_words.append(word_addition_result);
}
for (size_t i = shorter->length(); i < longer->length(); ++i) {
u32 word_addition_result = longer->m_words[i] + carry;
carry = 0;
if (word_addition_result < longer->m_words[i]) {
carry = 1;
}
result.m_words.append(word_addition_result);
}
if (carry) {
result.m_words.append(carry);
}
return result;
}
/**
* Complexity: O(N) where N is the number of words in the larger number
*/
UnsignedBigInteger UnsignedBigInteger::sub(const UnsignedBigInteger& other) const
{
UnsignedBigInteger result;
if (*this < other) {
return UnsignedBigInteger::create_invalid();
}
u8 borrow = 0;
auto own_length = length(), other_length = other.length();
result.m_words.ensure_capacity(own_length);
for (size_t i = 0; i < own_length; ++i) {
u32 other_word = (i < other_length) ? other.m_words[i] : 0;
i64 temp = static_cast<i64>(m_words[i]) - static_cast<i64>(other_word) - static_cast<i64>(borrow);
// If temp < 0, we had an underflow
borrow = (temp >= 0) ? 0 : 1;
if (temp < 0) {
temp += (UINT32_MAX + 1);
}
result.m_words.append(temp);
}
// This assertion should not fail, because we verified that *this>=other at the beginning of the function
ASSERT(borrow == 0);
return result;
}
/**
* Complexity: O(N^2) where N is the number of words in the larger number
* Multiplcation method:
* An integer is equal to the sum of the powers of two
* according to the indexes of its 'on' bits.
* So to multiple x*y, we go over each '1' bit in x (say the i'th bit),
* and add y<<i to the result.
*/
UnsignedBigInteger UnsignedBigInteger::multiply(const UnsignedBigInteger& other) const
{
UnsignedBigInteger result;
// iterate all bits
for (size_t word_index = 0; word_index < length(); ++word_index) {
for (size_t bit_index = 0; bit_index < UnsignedBigInteger::BITS_IN_WORD; ++bit_index) {
// If the bit is off - skip over it
if (!(m_words[word_index] & (1 << bit_index)))
continue;
const size_t shift_amount = word_index * UnsignedBigInteger::BITS_IN_WORD + bit_index;
auto shift_result = other.shift_left(shift_amount);
result = result.add(shift_result);
}
}
return result;
}
/**
* Complexity: O(N^2) where N is the number of words in the larger number
* Division method:
* We loop over the bits of the divisor, attempting to subtract divisor<<i from the dividend.
* If the result is non-negative, it means that divisor*2^i "fits" in the dividend,
* so we set the ith bit in the quotient and reduce divisor<<i from the dividend.
* When we're done, what's left from the dividend is the remainder.
*/
UnsignedDivisionResult UnsignedBigInteger::divide(const UnsignedBigInteger& divisor) const
{
UnsignedBigInteger leftover_dividend(*this);
UnsignedBigInteger quotient;
// iterate all bits
for (int word_index = trimmed_length() - 1; word_index >= 0; --word_index) {
for (int bit_index = UnsignedBigInteger::BITS_IN_WORD - 1; bit_index >= 0; --bit_index) {
const size_t shift_amount = word_index * UnsignedBigInteger::BITS_IN_WORD + bit_index;
UnsignedBigInteger divisor_shifted = divisor.shift_left(shift_amount);
UnsignedBigInteger temp_subtraction_result = leftover_dividend.sub(divisor_shifted);
if (!temp_subtraction_result.is_invalid()) {
leftover_dividend = temp_subtraction_result;
quotient.set_bit_inplace(shift_amount);
}
}
}
return UnsignedDivisionResult { quotient, leftover_dividend };
}
void UnsignedBigInteger::set_bit_inplace(size_t bit_index)
{
const size_t word_index = bit_index / UnsignedBigInteger::BITS_IN_WORD;
const size_t inner_word_index = bit_index % UnsignedBigInteger::BITS_IN_WORD;
m_words.ensure_capacity(word_index);
for (size_t i = length(); i <= word_index; ++i) {
m_words.append(0);
}
m_words[word_index] |= (1 << inner_word_index);
}
UnsignedBigInteger UnsignedBigInteger::shift_left(size_t num_bits) const
{
// We can only do shift operations on individual words
// where the shift amount is <= size of word (32).
// But we do know how to shift by a multiple of word size (e.g 64=32*2)
// So we first shift the result by how many whole words fit in 'num_bits'
UnsignedBigInteger temp_result = shift_left_by_n_words(num_bits / UnsignedBigInteger::BITS_IN_WORD);
// And now we shift by the leftover amount of bits
num_bits %= UnsignedBigInteger::BITS_IN_WORD;
UnsignedBigInteger result(temp_result);
for (size_t i = 0; i < temp_result.length(); ++i) {
u32 current_word_of_temp_result = temp_result.shift_left_get_one_word(num_bits, i);
result.m_words[i] = current_word_of_temp_result;
}
// Shifting the last word can produce a carry
u32 carry_word = temp_result.shift_left_get_one_word(num_bits, temp_result.length());
if (carry_word != 0) {
result = result.add(UnsignedBigInteger(carry_word).shift_left_by_n_words(temp_result.length()));
}
return result;
}
UnsignedBigInteger UnsignedBigInteger::shift_left_by_n_words(const size_t number_of_words) const
{
// shifting left by N words means just inserting N zeroes to the beginning of the words vector
UnsignedBigInteger result;
for (size_t i = 0; i < number_of_words; ++i) {
result.m_words.append(0);
}
for (size_t i = 0; i < length(); ++i) {
result.m_words.append(m_words[i]);
}
return result;
}
/**
* Returns the word at a requested index in the result of a shift operation
*/
u32 UnsignedBigInteger::shift_left_get_one_word(const size_t num_bits, const size_t result_word_index) const
{
// "<= length()" (rather than length() - 1) is intentional,
// The result inedx of length() is used when calculating the carry word
ASSERT(result_word_index <= length());
ASSERT(num_bits <= UnsignedBigInteger::BITS_IN_WORD);
u32 result = 0;
// we need to check for "num_bits != 0" since shifting right by 32 is apparently undefined behaviour!
if (result_word_index > 0 && num_bits != 0) {
result += m_words[result_word_index - 1] >> (UnsignedBigInteger::BITS_IN_WORD - num_bits);
}
if (result_word_index < length() && num_bits < 32) {
result += m_words[result_word_index] << num_bits;
}
return result;
}
bool UnsignedBigInteger::operator==(const UnsignedBigInteger& other) const
{
auto length = trimmed_length();
if (length != other.trimmed_length()) {
return false;
}
if (is_invalid() != other.is_invalid()) {
return false;
}
return !__builtin_memcmp(m_words.data(), other.words().data(), length);
}
bool UnsignedBigInteger::operator<(const UnsignedBigInteger& other) const
{
auto length = trimmed_length();
auto other_length = other.trimmed_length();
if (length < other_length) {
return true;
}
if (length > other_length) {
return false;
}
if (length == 0) {
return false;
}
for (int i = length - 1; i >= 0; --i) {
if (m_words[i] == other.m_words[i])
continue;
return m_words[i] < other.m_words[i];
}
return false;
}
size_t UnsignedBigInteger::trimmed_length() const
{
size_t num_leading_zeroes = 0;
for (int i = length() - 1; i >= 0; --i, ++num_leading_zeroes) {
if (m_words[i] != 0)
break;
}
return length() - num_leading_zeroes;
}
UnsignedBigInteger UnsignedBigInteger::create_invalid()
{
UnsignedBigInteger invalid(0);
invalid.invalidate();
return invalid;
}
// FIXME: in great need of optimisation
UnsignedBigInteger UnsignedBigInteger::import_data(const u8* ptr, size_t length)
{
UnsignedBigInteger integer { 0 };
for (size_t i = 0; i < length; ++i) {
auto part = UnsignedBigInteger { ptr[length - i - 1] }.shift_left(8 * i);
integer = integer.add(part);
}
return integer;
}
size_t UnsignedBigInteger::export_data(AK::ByteBuffer& data)
{
UnsignedBigInteger copy { *this };
size_t size = trimmed_length() * sizeof(u32);
size_t i = 0;
for (; i < size; ++i) {
if (copy.length() == 0)
break;
data[size - i - 1] = copy.m_words[0] & 0xff;
copy = copy.divide(256).quotient;
}
return i;
}
}