mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-12-04 05:20:30 +00:00
05ba034000
This class is intended to replace all IOAddress usages in the Kernel codebase altogether. The idea is to ensure IO can be done in arch-specific manner that is determined mostly in compile-time, but to still be able to use most of the Kernel code in non-x86 builds. Specific devices that rely on x86-specific IO instructions are already placed in the Arch/x86 directory and are omitted for non-x86 builds. The reason this works so well is the fact that x86 IO space acts in a similar fashion to the traditional memory space being available in most CPU architectures - the x86 IO space is essentially just an array of bytes like the physical memory address space, but requires x86 IO instructions to load and store data. Therefore, many devices allow host software to interact with the hardware registers in both ways, with a noticeable trend even in the modern x86 hardware to move away from the old x86 IO space to exclusively using memory-mapped IO. Therefore, the IOWindow class encapsulates both methods for x86 builds. The idea is to allow PCI devices to be used in either way in x86 builds, so when trying to map an IOWindow on a PCI BAR, the Kernel will try to find the proper method being declared with the PCI BAR flags. For old PCI hardware on non-x86 builds this might turn into a problem as we can't use port mapped IO, so the Kernel will gracefully fail with ENOTSUP error code if that's the case, as there's really nothing we can do within such case. For general IO, the read{8,16,32} and write{8,16,32} methods are available as a convenient API for other places in the Kernel. There are simply no direct 64-bit IO API methods yet, as it's not needed right now and is not considered to be Arch-agnostic too - the x86 IO space doesn't support generating 64 bit cycle on IO bus and instead requires two 2 32-bit accesses. If for whatever reason it appears to be necessary to do IO in such manner, it could probably be added with some neat tricks to do so. It is recommended to use Memory::TypedMapping struct if direct 64 bit IO is actually needed.
285 lines
13 KiB
C++
285 lines
13 KiB
C++
/*
|
||
* Copyright (c) 2022, Liav A. <liavalb@hotmail.co.il>
|
||
*
|
||
* SPDX-License-Identifier: BSD-2-Clause
|
||
*/
|
||
|
||
#include <Kernel/Bus/PCI/API.h>
|
||
#include <Kernel/Bus/PCI/Definitions.h>
|
||
#include <Kernel/IOWindow.h>
|
||
|
||
namespace Kernel {
|
||
|
||
#if ARCH(I386) || ARCH(X86_64)
|
||
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_io_space(IOAddress address, u64 space_length)
|
||
{
|
||
VERIFY(!Checked<u64>::addition_would_overflow(address.get(), space_length));
|
||
auto io_address_range = TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOAddressData(address.get(), space_length)));
|
||
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(io_address_range))));
|
||
}
|
||
|
||
IOWindow::IOWindow(NonnullOwnPtr<IOAddressData> io_range)
|
||
: m_space_type(SpaceType::IO)
|
||
, m_io_range(move(io_range))
|
||
{
|
||
}
|
||
#endif
|
||
|
||
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_from_io_window_with_offset(u64 offset, u64 space_length)
|
||
{
|
||
#if ARCH(I386) || ARCH(X86_64)
|
||
if (m_space_type == SpaceType::IO) {
|
||
VERIFY(m_io_range);
|
||
if (Checked<u64>::addition_would_overflow(m_io_range->address(), space_length))
|
||
return Error::from_errno(EOVERFLOW);
|
||
auto io_address_range = TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOAddressData(as_io_address().offset(offset).get(), space_length)));
|
||
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(io_address_range))));
|
||
}
|
||
#endif
|
||
VERIFY(space_type() == SpaceType::Memory);
|
||
VERIFY(m_memory_mapped_range);
|
||
|
||
// Note: x86-IA32 is the only 32 bit CPU architecture currently being supported and
|
||
// probably will be the only such in the foreseeable future.
|
||
#if ARCH(I386)
|
||
if (Checked<u32>::addition_would_overflow(m_memory_mapped_range->paddr.get(), offset))
|
||
return Error::from_errno(EOVERFLOW);
|
||
if (Checked<u32>::addition_would_overflow(m_memory_mapped_range->paddr.get() + offset, space_length))
|
||
return Error::from_errno(EOVERFLOW);
|
||
#else
|
||
if (Checked<u64>::addition_would_overflow(m_memory_mapped_range->paddr.get(), offset))
|
||
return Error::from_errno(EOVERFLOW);
|
||
if (Checked<u64>::addition_would_overflow(m_memory_mapped_range->paddr.get() + offset, space_length))
|
||
return Error::from_errno(EOVERFLOW);
|
||
#endif
|
||
|
||
auto memory_mapped_range = TRY(Memory::adopt_new_nonnull_own_typed_mapping<volatile u8>(m_memory_mapped_range->paddr.offset(offset), space_length, Memory::Region::Access::ReadWrite));
|
||
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(memory_mapped_range))));
|
||
}
|
||
|
||
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_from_io_window_with_offset(u64 offset)
|
||
{
|
||
|
||
#if ARCH(I386) || ARCH(X86_64)
|
||
if (m_space_type == SpaceType::IO) {
|
||
VERIFY(m_io_range);
|
||
VERIFY(m_io_range->space_length() >= offset);
|
||
return create_from_io_window_with_offset(offset, m_io_range->space_length() - offset);
|
||
}
|
||
#endif
|
||
VERIFY(space_type() == SpaceType::Memory);
|
||
VERIFY(m_memory_mapped_range);
|
||
VERIFY(m_memory_mapped_range->length >= offset);
|
||
return create_from_io_window_with_offset(offset, m_memory_mapped_range->length - offset);
|
||
}
|
||
|
||
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_pci_device_bar(PCI::Address const& pci_address, PCI::HeaderType0BaseRegister pci_bar, u64 space_length)
|
||
{
|
||
u64 pci_bar_value = PCI::get_BAR(pci_address, pci_bar);
|
||
auto pci_bar_space_type = PCI::get_BAR_space_type(pci_bar_value);
|
||
if (pci_bar_space_type == PCI::BARSpaceType::Memory64BitSpace) {
|
||
// FIXME: In theory, BAR5 cannot be assigned to 64 bit as it is the last one...
|
||
// however, there might be 64 bit BAR5 for real bare metal hardware, so remove this
|
||
// if it makes a problem.
|
||
if (pci_bar == PCI::HeaderType0BaseRegister::BAR5) {
|
||
return Error::from_errno(EINVAL);
|
||
}
|
||
u64 next_pci_bar_value = PCI::get_BAR(pci_address, static_cast<PCI::HeaderType0BaseRegister>(to_underlying(pci_bar) + 1));
|
||
pci_bar_value |= next_pci_bar_value << 32;
|
||
}
|
||
|
||
auto pci_bar_space_size = PCI::get_BAR_space_size(pci_address, pci_bar);
|
||
if (pci_bar_space_size < space_length)
|
||
return Error::from_errno(EIO);
|
||
|
||
if (pci_bar_space_type == PCI::BARSpaceType::IOSpace) {
|
||
#if ARCH(I386) || ARCH(X86_64)
|
||
if (Checked<u64>::addition_would_overflow(pci_bar_value, space_length))
|
||
return Error::from_errno(EOVERFLOW);
|
||
auto io_address_range = TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOAddressData((pci_bar_value & 0xfffffffc), space_length)));
|
||
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(io_address_range))));
|
||
#else
|
||
// Note: For non-x86 platforms, IO PCI BARs are simply not useable.
|
||
return Error::from_errno(ENOTSUP);
|
||
#endif
|
||
}
|
||
|
||
if (pci_bar_space_type == PCI::BARSpaceType::Memory32BitSpace && Checked<u32>::addition_would_overflow(pci_bar_value, space_length))
|
||
return Error::from_errno(EOVERFLOW);
|
||
if (pci_bar_space_type == PCI::BARSpaceType::Memory16BitSpace && Checked<u16>::addition_would_overflow(pci_bar_value, space_length))
|
||
return Error::from_errno(EOVERFLOW);
|
||
if (pci_bar_space_type == PCI::BARSpaceType::Memory64BitSpace && Checked<u64>::addition_would_overflow(pci_bar_value, space_length))
|
||
return Error::from_errno(EOVERFLOW);
|
||
auto memory_mapped_range = TRY(Memory::adopt_new_nonnull_own_typed_mapping<volatile u8>(PhysicalAddress(pci_bar_value & 0xfffffff0), space_length, Memory::Region::Access::ReadWrite));
|
||
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(memory_mapped_range))));
|
||
}
|
||
|
||
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_pci_device_bar(PCI::Address const& pci_address, PCI::HeaderType0BaseRegister pci_bar)
|
||
{
|
||
u64 pci_bar_space_size = PCI::get_BAR_space_size(pci_address, pci_bar);
|
||
return create_for_pci_device_bar(pci_address, pci_bar, pci_bar_space_size);
|
||
}
|
||
|
||
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_pci_device_bar(PCI::DeviceIdentifier const& pci_device_identifier, PCI::HeaderType0BaseRegister pci_bar)
|
||
{
|
||
u64 pci_bar_space_size = PCI::get_BAR_space_size(pci_device_identifier.address(), pci_bar);
|
||
return create_for_pci_device_bar(pci_device_identifier.address(), pci_bar, pci_bar_space_size);
|
||
}
|
||
|
||
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_pci_device_bar(PCI::DeviceIdentifier const& pci_device_identifier, PCI::HeaderType0BaseRegister pci_bar, u64 space_length)
|
||
{
|
||
return create_for_pci_device_bar(pci_device_identifier.address(), pci_bar, space_length);
|
||
}
|
||
|
||
IOWindow::IOWindow(NonnullOwnPtr<Memory::TypedMapping<volatile u8>> memory_mapped_range)
|
||
: m_space_type(SpaceType::Memory)
|
||
, m_memory_mapped_range(move(memory_mapped_range))
|
||
{
|
||
}
|
||
|
||
IOWindow::~IOWindow() = default;
|
||
|
||
bool IOWindow::is_access_aligned(u64 offset, size_t byte_size_access) const
|
||
{
|
||
return (offset % byte_size_access) == 0;
|
||
}
|
||
|
||
bool IOWindow::is_access_in_range(u64 offset, size_t byte_size_access) const
|
||
{
|
||
if (Checked<u64>::addition_would_overflow(offset, byte_size_access))
|
||
return false;
|
||
#if ARCH(I386) || ARCH(X86_64)
|
||
if (m_space_type == SpaceType::IO) {
|
||
VERIFY(m_io_range);
|
||
VERIFY(!Checked<u64>::addition_would_overflow(m_io_range->address(), m_io_range->space_length()));
|
||
// To understand how we treat IO address space with the corresponding calculation, the Intel Software Developer manual
|
||
// helps us to understand the layout of the IO address space -
|
||
//
|
||
// Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture, 16.3 I/O ADDRESS SPACE, page 16-1 wrote:
|
||
// Any two consecutive 8-bit ports can be treated as a 16-bit port, and any four consecutive ports can be a 32-bit port.
|
||
// In this manner, the processor can transfer 8, 16, or 32 bits to or from a device in the I/O address space.
|
||
// Like words in memory, 16-bit ports should be aligned to even addresses (0, 2, 4, ...) so that all 16 bits can be transferred in a single bus cycle.
|
||
// Likewise, 32-bit ports should be aligned to addresses that are multiples of four (0, 4, 8, ...).
|
||
// The processor supports data transfers to unaligned ports, but there is a performance penalty because one or more
|
||
// extra bus cycle must be used.
|
||
return (m_io_range->address() + m_io_range->space_length()) >= (offset + byte_size_access);
|
||
}
|
||
#endif
|
||
VERIFY(space_type() == SpaceType::Memory);
|
||
VERIFY(m_memory_mapped_range);
|
||
VERIFY(!Checked<u64>::addition_would_overflow(m_memory_mapped_range->offset, m_memory_mapped_range->length));
|
||
return (m_memory_mapped_range->offset + m_memory_mapped_range->length) >= (offset + byte_size_access);
|
||
}
|
||
|
||
u8 IOWindow::read8(u64 offset)
|
||
{
|
||
VERIFY(is_access_in_range(offset, sizeof(u8)));
|
||
u8 data { 0 };
|
||
in<u8>(offset, data);
|
||
return data;
|
||
}
|
||
u16 IOWindow::read16(u64 offset)
|
||
{
|
||
// Note: Although it might be OK to allow unaligned access on regular memory,
|
||
// for memory mapped IO access, it should always be considered a bug.
|
||
// The same goes for port mapped IO access, because in x86 unaligned access to ports
|
||
// is possible but there's a performance penalty.
|
||
VERIFY(is_access_in_range(offset, sizeof(u16)));
|
||
VERIFY(is_access_aligned(offset, sizeof(u16)));
|
||
u16 data { 0 };
|
||
in<u16>(offset, data);
|
||
return data;
|
||
}
|
||
u32 IOWindow::read32(u64 offset)
|
||
{
|
||
// Note: Although it might be OK to allow unaligned access on regular memory,
|
||
// for memory mapped IO access, it should always be considered a bug.
|
||
// The same goes for port mapped IO access, because in x86 unaligned access to ports
|
||
// is possible but there's a performance penalty.
|
||
VERIFY(is_access_in_range(offset, sizeof(u32)));
|
||
VERIFY(is_access_aligned(offset, sizeof(u32)));
|
||
u32 data { 0 };
|
||
in<u32>(offset, data);
|
||
return data;
|
||
}
|
||
|
||
void IOWindow::write8(u64 offset, u8 data)
|
||
{
|
||
VERIFY(is_access_in_range(offset, sizeof(u8)));
|
||
out<u8>(offset, data);
|
||
}
|
||
void IOWindow::write16(u64 offset, u16 data)
|
||
{
|
||
// Note: Although it might be OK to allow unaligned access on regular memory,
|
||
// for memory mapped IO access, it should always be considered a bug.
|
||
// The same goes for port mapped IO access, because in x86 unaligned access to ports
|
||
// is possible but there's a performance penalty.
|
||
VERIFY(is_access_in_range(offset, sizeof(u16)));
|
||
VERIFY(is_access_aligned(offset, sizeof(u16)));
|
||
out<u16>(offset, data);
|
||
}
|
||
void IOWindow::write32(u64 offset, u32 data)
|
||
{
|
||
// Note: Although it might be OK to allow unaligned access on regular memory,
|
||
// for memory mapped IO access, it should always be considered a bug.
|
||
// The same goes for port mapped IO access, because in x86 unaligned access to ports
|
||
// is possible but there's a performance penalty.
|
||
VERIFY(is_access_in_range(offset, sizeof(u32)));
|
||
VERIFY(is_access_aligned(offset, sizeof(u32)));
|
||
out<u32>(offset, data);
|
||
}
|
||
|
||
void IOWindow::write32_unaligned(u64 offset, u32 data)
|
||
{
|
||
// Note: We only verify that we access IO in the expected range.
|
||
// Note: for port mapped IO access, because in x86 unaligned access to ports
|
||
// is possible but there's a performance penalty, we can still allow that to happen.
|
||
// However, it should be noted that most cases should not use unaligned access
|
||
// to hardware IO, so this is a valid case in emulators or hypervisors only.
|
||
// Note: Using this for memory mapped IO will fail for unaligned access, because
|
||
// there's no valid use case for it (yet).
|
||
VERIFY(space_type() != SpaceType::Memory);
|
||
VERIFY(is_access_in_range(offset, sizeof(u32)));
|
||
out<u32>(offset, data);
|
||
}
|
||
|
||
u32 IOWindow::read32_unaligned(u64 offset)
|
||
{
|
||
// Note: We only verify that we access IO in the expected range.
|
||
// Note: for port mapped IO access, because in x86 unaligned access to ports
|
||
// is possible but there's a performance penalty, we can still allow that to happen.
|
||
// However, it should be noted that most cases should not use unaligned access
|
||
// to hardware IO, so this is a valid case in emulators or hypervisors only.
|
||
// Note: Using this for memory mapped IO will fail for unaligned access, because
|
||
// there's no valid use case for it (yet).
|
||
VERIFY(space_type() != SpaceType::Memory);
|
||
VERIFY(is_access_in_range(offset, sizeof(u32)));
|
||
u32 data { 0 };
|
||
in<u32>(offset, data);
|
||
return data;
|
||
}
|
||
|
||
PhysicalAddress IOWindow::as_physical_memory_address() const
|
||
{
|
||
VERIFY(space_type() == SpaceType::Memory);
|
||
VERIFY(m_memory_mapped_range);
|
||
return m_memory_mapped_range->paddr;
|
||
}
|
||
|
||
u8 volatile* IOWindow::as_memory_address_pointer()
|
||
{
|
||
VERIFY(space_type() == SpaceType::Memory);
|
||
VERIFY(m_memory_mapped_range);
|
||
return m_memory_mapped_range->ptr();
|
||
}
|
||
|
||
#if ARCH(I386) || ARCH(X86_64)
|
||
IOAddress IOWindow::as_io_address() const
|
||
{
|
||
VERIFY(space_type() == SpaceType::IO);
|
||
VERIFY(m_io_range);
|
||
return IOAddress(m_io_range->address());
|
||
}
|
||
#endif
|
||
|
||
}
|