ladybird/Userland/Libraries/LibSymbolication/Symbolication.cpp
Liav A 61f4914d6e Kernel+Userland: Add constants subdirectory at /sys/kernel directory
This subdirectory is meant to hold all constant data related to the
kernel. This means that this data is never meant to updated and is
relevant from system boot to system shutdown.
Move the inodes of "load_base", "cmdline" and "system_mode" to that
directory. All nodes under this new subdirectory are generated during
boot, and therefore don't require calling kmalloc each time we need to
read them. Locking is also not necessary, because these nodes and their
data are completely static once being generated.
2023-02-19 13:47:11 +01:00

262 lines
8.9 KiB
C++

/*
* Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Array.h>
#include <AK/Checked.h>
#include <AK/JsonArray.h>
#include <AK/JsonObject.h>
#include <AK/JsonValue.h>
#include <AK/LexicalPath.h>
#include <LibCore/DeprecatedFile.h>
#include <LibCore/MappedFile.h>
#include <LibDebug/DebugInfo.h>
#include <LibSymbolication/Symbolication.h>
namespace Symbolication {
struct CachedELF {
NonnullRefPtr<Core::MappedFile> mapped_file;
NonnullOwnPtr<Debug::DebugInfo> debug_info;
NonnullOwnPtr<ELF::Image> image;
};
static HashMap<DeprecatedString, OwnPtr<CachedELF>> s_cache;
enum class KernelBaseState {
Uninitialized,
Valid,
Invalid,
};
static FlatPtr s_kernel_base;
static KernelBaseState s_kernel_base_state = KernelBaseState::Uninitialized;
Optional<FlatPtr> kernel_base()
{
if (s_kernel_base_state == KernelBaseState::Uninitialized) {
auto file = Core::DeprecatedFile::open("/sys/kernel/constants/load_base", Core::OpenMode::ReadOnly);
if (file.is_error()) {
s_kernel_base_state = KernelBaseState::Invalid;
return {};
}
auto kernel_base_str = DeprecatedString { file.value()->read_all(), NoChomp };
using AddressType = u64;
auto maybe_kernel_base = kernel_base_str.to_uint<AddressType>();
if (!maybe_kernel_base.has_value()) {
s_kernel_base_state = KernelBaseState::Invalid;
return {};
}
s_kernel_base = maybe_kernel_base.value();
s_kernel_base_state = KernelBaseState::Valid;
}
if (s_kernel_base_state == KernelBaseState::Invalid)
return {};
return s_kernel_base;
}
Optional<Symbol> symbolicate(DeprecatedString const& path, FlatPtr address, IncludeSourcePosition include_source_positions)
{
DeprecatedString full_path = path;
if (!path.starts_with('/')) {
Array<StringView, 2> search_paths { "/usr/lib"sv, "/usr/local/lib"sv };
bool found = false;
for (auto& search_path : search_paths) {
full_path = LexicalPath::join(search_path, path).string();
if (Core::DeprecatedFile::exists(full_path)) {
found = true;
break;
}
}
if (!found) {
dbgln("Failed to find candidate for {}", path);
s_cache.set(path, {});
return {};
}
}
if (!s_cache.contains(full_path)) {
auto mapped_file = Core::MappedFile::map(full_path);
if (mapped_file.is_error()) {
dbgln("Failed to map {}: {}", full_path, mapped_file.error());
s_cache.set(full_path, {});
return {};
}
auto elf = make<ELF::Image>(mapped_file.value()->bytes());
if (!elf->is_valid()) {
dbgln("ELF not valid: {}", full_path);
s_cache.set(full_path, {});
return {};
}
auto cached_elf = make<CachedELF>(mapped_file.release_value(), make<Debug::DebugInfo>(*elf), move(elf));
s_cache.set(full_path, move(cached_elf));
}
auto it = s_cache.find(full_path);
VERIFY(it != s_cache.end());
auto& cached_elf = it->value;
if (!cached_elf)
return {};
u32 offset = 0;
auto symbol = cached_elf->debug_info->elf().symbolicate(address, &offset);
Vector<Debug::DebugInfo::SourcePosition> positions;
if (include_source_positions == IncludeSourcePosition::Yes) {
auto source_position_with_inlines = cached_elf->debug_info->get_source_position_with_inlines(address).release_value_but_fixme_should_propagate_errors();
for (auto& position : source_position_with_inlines.inline_chain) {
if (!positions.contains_slow(position))
positions.append(position);
}
if (source_position_with_inlines.source_position.has_value() && !positions.contains_slow(source_position_with_inlines.source_position.value())) {
positions.insert(0, source_position_with_inlines.source_position.value());
}
}
return Symbol {
.address = address,
.name = move(symbol),
.object = LexicalPath::basename(path),
.offset = offset,
.source_positions = move(positions),
};
}
Vector<Symbol> symbolicate_thread(pid_t pid, pid_t tid, IncludeSourcePosition include_source_positions)
{
struct RegionWithSymbols {
FlatPtr base { 0 };
size_t size { 0 };
DeprecatedString path;
};
Vector<FlatPtr> stack;
Vector<RegionWithSymbols> regions;
if (auto maybe_kernel_base = kernel_base(); maybe_kernel_base.has_value()) {
regions.append(RegionWithSymbols {
.base = maybe_kernel_base.value(),
.size = 0x3fffffff,
.path = "/boot/Kernel.debug",
});
}
{
auto stack_path = DeprecatedString::formatted("/proc/{}/stacks/{}", pid, tid);
auto file_or_error = Core::DeprecatedFile::open(stack_path, Core::OpenMode::ReadOnly);
if (file_or_error.is_error()) {
warnln("Could not open {}: {}", stack_path, file_or_error.error());
return {};
}
auto json = JsonValue::from_string(file_or_error.value()->read_all());
if (json.is_error() || !json.value().is_array()) {
warnln("Invalid contents in {}", stack_path);
return {};
}
stack.ensure_capacity(json.value().as_array().size());
for (auto& value : json.value().as_array().values()) {
stack.append(value.to_addr());
}
}
{
auto vm_path = DeprecatedString::formatted("/proc/{}/vm", pid);
auto file_or_error = Core::DeprecatedFile::open(vm_path, Core::OpenMode::ReadOnly);
if (file_or_error.is_error()) {
warnln("Could not open {}: {}", vm_path, file_or_error.error());
return {};
}
auto json = JsonValue::from_string(file_or_error.value()->read_all());
if (json.is_error() || !json.value().is_array()) {
warnln("Invalid contents in {}", vm_path);
return {};
}
for (auto& region_value : json.value().as_array().values()) {
auto& region = region_value.as_object();
auto name = region.get_deprecated_string("name"sv).value_or({});
auto address = region.get_addr("address"sv).value_or(0);
auto size = region.get_addr("size"sv).value_or(0);
DeprecatedString path;
if (name == "/usr/lib/Loader.so") {
path = name;
} else if (name.ends_with(": .text"sv) || name.ends_with(": .rodata"sv)) {
auto parts = name.split_view(':');
path = parts[0];
} else {
continue;
}
RegionWithSymbols r;
r.base = address;
r.size = size;
r.path = path;
regions.append(move(r));
}
}
Vector<Symbol> symbols;
bool first_frame = true;
for (auto address : stack) {
RegionWithSymbols const* found_region = nullptr;
for (auto& region : regions) {
FlatPtr region_end;
if (Checked<FlatPtr>::addition_would_overflow(region.base, region.size))
region_end = NumericLimits<FlatPtr>::max();
else
region_end = region.base + region.size;
if (address >= region.base && address < region_end) {
found_region = &region;
break;
}
}
if (!found_region) {
outln("{:p} ??", address);
continue;
}
// We found an address inside of a region, but the base of that region
// may not be the base of the ELF image. For example, there could be an
// .rodata mapping at a lower address than the first .text mapping from
// the same image. look for the lowest address region with the same path.
RegionWithSymbols const* base_region = nullptr;
for (auto& region : regions) {
if (region.path != found_region->path)
continue;
if (!base_region || region.base <= base_region->base)
base_region = &region;
}
FlatPtr adjusted_address = address - base_region->base;
// We're subtracting 1 from the address because this is the return address,
// i.e. it is one instruction past the call instruction.
// However, because the first frame represents the current
// instruction pointer rather than the return address we don't
// subtract 1 for that.
auto result = symbolicate(found_region->path, adjusted_address - (first_frame ? 0 : 1), include_source_positions);
first_frame = false;
if (!result.has_value()) {
symbols.append(Symbol {
.address = address,
.source_positions = {},
});
continue;
}
symbols.append(result.value());
}
return symbols;
}
}