ladybird/Userland/Libraries/LibGL/SoftwareGLContext.cpp
Jelle Raaijmakers db0616c67a LibSoftGPU: Generalize pixel buffers and standardize on BGRA8888
Between the OpenGL client and server, a lot of data type and color
conversion needs to happen. We are performing these conversions both in
`LibSoftGPU` and `LibGL`, which is not ideal. Additionally, some
concepts like the color, depth and stencil buffers should share their
logic but have separate implementations.

This is the first step towards generalizing our `LibSoftGPU` frame
buffer: a generalized `Typed3DBuffer` is introduced for arbitrary 3D
value storage and retrieval, and `Typed2DBuffer` wraps around it to
provide in an easy-to-use 2D pixel buffer. The color, depth and stencil
buffers are replaced by `Typed2DBuffer` and are now managed by the new
`FrameBuffer` class.

The `Image` class now uses multiple `Typed3DBuffer`s for layers and
mipmap levels. Additionally, the textures are now always stored as
BGRA8888, only converting between formats when reading or writing
pixels.

Ideally this refactor should have no functional changes, but some
graphical glitches in Grim Fandango seem to be fixed and most OpenGL
ports get an FPS boost on my machine. :^)
2022-02-22 23:48:59 +00:00

3692 lines
140 KiB
C++

/*
* Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
* Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Assertions.h>
#include <AK/Debug.h>
#include <AK/Format.h>
#include <AK/QuickSort.h>
#include <AK/StringBuilder.h>
#include <AK/TemporaryChange.h>
#include <AK/Variant.h>
#include <AK/Vector.h>
#include <LibGL/SoftwareGLContext.h>
#include <LibGfx/Bitmap.h>
#include <LibGfx/Painter.h>
#include <LibGfx/Vector4.h>
#include <LibSoftGPU/Device.h>
#include <LibSoftGPU/Enums.h>
#include <LibSoftGPU/ImageFormat.h>
namespace GL {
static constexpr size_t MODELVIEW_MATRIX_STACK_LIMIT = 64;
static constexpr size_t PROJECTION_MATRIX_STACK_LIMIT = 8;
static constexpr size_t TEXTURE_MATRIX_STACK_LIMIT = 8;
#define APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(name, ...) \
if (should_append_to_listing()) { \
append_to_listing<&SoftwareGLContext::name>(__VA_ARGS__); \
if (!should_execute_after_appending_to_listing()) \
return; \
}
#define APPEND_TO_CALL_LIST_WITH_ARG_AND_RETURN_IF_NEEDED(name, arg) \
if (should_append_to_listing()) { \
auto ptr = store_in_listing(arg); \
append_to_listing<&SoftwareGLContext::name>(*ptr); \
if (!should_execute_after_appending_to_listing()) \
return; \
}
#define RETURN_WITH_ERROR_IF(condition, error) \
if (condition) { \
dbgln_if(GL_DEBUG, "{}(): error {:#x}", __func__, error); \
if (m_error == GL_NO_ERROR) \
m_error = error; \
return; \
}
#define RETURN_VALUE_WITH_ERROR_IF(condition, error, return_value) \
if (condition) { \
dbgln_if(GL_DEBUG, "{}(): error {:#x}", __func__, error); \
if (m_error == GL_NO_ERROR) \
m_error = error; \
return return_value; \
}
SoftwareGLContext::SoftwareGLContext(Gfx::Bitmap& frontbuffer)
: m_viewport(frontbuffer.rect())
, m_frontbuffer(frontbuffer)
, m_rasterizer(frontbuffer.size())
, m_device_info(m_rasterizer.info())
{
m_texture_units.resize(m_device_info.num_texture_units);
m_active_texture_unit = &m_texture_units[0];
// Query the number lights from the device and set set up their state
// locally in the GL
m_light_states.resize(m_device_info.num_lights);
// Set-up light0's state, as it has a different default state
// to the other lights, as per the OpenGL 1.5 spec
auto& light0 = m_light_states.at(0);
light0.diffuse_intensity = { 1.0f, 1.0f, 1.0f, 1.0f };
light0.specular_intensity = { 1.0f, 1.0f, 1.0f, 1.0f };
m_light_state_is_dirty = true;
m_client_side_texture_coord_array_enabled.resize(m_device_info.num_texture_units);
m_client_tex_coord_pointer.resize(m_device_info.num_texture_units);
m_current_vertex_tex_coord.resize(m_device_info.num_texture_units);
for (auto& tex_coord : m_current_vertex_tex_coord)
tex_coord = { 0.0f, 0.0f, 0.0f, 1.0f };
// Initialize the texture coordinate generation coefficients
// Indices 0,1,2,3 refer to the S,T,R and Q coordinate of the respective texture
// coordinate generation config.
m_texture_coordinate_generation.resize(m_device_info.num_texture_units);
for (auto& texture_coordinate_generation : m_texture_coordinate_generation) {
texture_coordinate_generation[0].object_plane_coefficients = { 1.0f, 0.0f, 0.0f, 0.0f };
texture_coordinate_generation[0].eye_plane_coefficients = { 1.0f, 0.0f, 0.0f, 0.0f };
texture_coordinate_generation[1].object_plane_coefficients = { 0.0f, 1.0f, 0.0f, 0.0f };
texture_coordinate_generation[1].eye_plane_coefficients = { 0.0f, 1.0f, 0.0f, 0.0f };
texture_coordinate_generation[2].object_plane_coefficients = { 0.0f, 0.0f, 0.0f, 0.0f };
texture_coordinate_generation[2].eye_plane_coefficients = { 0.0f, 0.0f, 0.0f, 0.0f };
texture_coordinate_generation[3].object_plane_coefficients = { 0.0f, 0.0f, 0.0f, 0.0f };
texture_coordinate_generation[3].eye_plane_coefficients = { 0.0f, 0.0f, 0.0f, 0.0f };
}
build_extension_string();
}
Optional<ContextParameter> SoftwareGLContext::get_context_parameter(GLenum name)
{
switch (name) {
case GL_ALPHA_BITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } };
case GL_ALPHA_TEST:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_alpha_test_enabled } };
case GL_BLEND:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_blend_enabled } };
case GL_BLEND_DST_ALPHA:
return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast<GLint>(m_blend_destination_factor) } };
case GL_BLEND_SRC_ALPHA:
return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast<GLint>(m_blend_source_factor) } };
case GL_BLUE_BITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } };
case GL_COLOR_MATERIAL:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_color_material_enabled } };
case GL_COLOR_MATERIAL_FACE:
return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast<GLint>(m_color_material_face) } };
case GL_COLOR_MATERIAL_MODE:
return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast<GLint>(m_color_material_mode) } };
case GL_CULL_FACE:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_cull_faces } };
case GL_DEPTH_BITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } };
case GL_DEPTH_TEST:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_depth_test_enabled } };
case GL_DITHER:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_dither_enabled } };
case GL_DOUBLEBUFFER:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = true } };
case GL_FOG: {
auto fog_enabled = m_rasterizer.options().fog_enabled;
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = fog_enabled } };
}
case GL_GREEN_BITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } };
case GL_LIGHTING:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_lighting_enabled } };
case GL_MAX_LIGHTS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast<GLint>(m_device_info.num_lights) } };
case GL_MAX_MODELVIEW_STACK_DEPTH:
return ContextParameter { .type = GL_INT, .value = { .integer_value = MODELVIEW_MATRIX_STACK_LIMIT } };
case GL_MAX_PROJECTION_STACK_DEPTH:
return ContextParameter { .type = GL_INT, .value = { .integer_value = PROJECTION_MATRIX_STACK_LIMIT } };
case GL_MAX_TEXTURE_SIZE:
return ContextParameter { .type = GL_INT, .value = { .integer_value = 4096 } };
case GL_MAX_TEXTURE_STACK_DEPTH:
return ContextParameter { .type = GL_INT, .value = { .integer_value = TEXTURE_MATRIX_STACK_LIMIT } };
case GL_MAX_TEXTURE_UNITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast<GLint>(m_texture_units.size()) } };
case GL_NORMALIZE:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_normalize } };
case GL_PACK_ALIGNMENT:
return ContextParameter { .type = GL_INT, .value = { .integer_value = m_pack_alignment } };
case GL_PACK_IMAGE_HEIGHT:
return ContextParameter { .type = GL_BOOL, .value = { .integer_value = 0 } };
case GL_PACK_LSB_FIRST:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = false } };
case GL_PACK_ROW_LENGTH:
return ContextParameter { .type = GL_INT, .value = { .integer_value = 0 } };
case GL_PACK_SKIP_PIXELS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = 0 } };
case GL_PACK_SKIP_ROWS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = 0 } };
case GL_PACK_SWAP_BYTES:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = false } };
case GL_POLYGON_OFFSET_FILL:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_depth_offset_enabled } };
case GL_RED_BITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } };
case GL_SCISSOR_BOX: {
auto scissor_box = m_rasterizer.options().scissor_box;
return ContextParameter {
.type = GL_INT,
.count = 4,
.value = {
.integer_list = {
scissor_box.x(),
scissor_box.y(),
scissor_box.width(),
scissor_box.height(),
} }
};
} break;
case GL_SCISSOR_TEST: {
auto scissor_enabled = m_rasterizer.options().scissor_enabled;
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = scissor_enabled } };
}
case GL_STENCIL_BITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = m_device_info.stencil_bits } };
case GL_STENCIL_CLEAR_VALUE:
return ContextParameter { .type = GL_INT, .value = { .integer_value = m_clear_stencil } };
case GL_STENCIL_TEST:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_stencil_test_enabled } };
case GL_TEXTURE_1D:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_active_texture_unit->texture_1d_enabled() } };
case GL_TEXTURE_2D:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_active_texture_unit->texture_2d_enabled() } };
case GL_TEXTURE_3D:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_active_texture_unit->texture_3d_enabled() } };
case GL_TEXTURE_CUBE_MAP:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_active_texture_unit->texture_cube_map_enabled() } };
case GL_TEXTURE_GEN_Q:
case GL_TEXTURE_GEN_R:
case GL_TEXTURE_GEN_S:
case GL_TEXTURE_GEN_T: {
auto generation_enabled = texture_coordinate_generation(m_active_texture_unit_index, name).enabled;
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = generation_enabled } };
}
case GL_UNPACK_ALIGNMENT:
return ContextParameter { .type = GL_INT, .value = { .integer_value = m_unpack_alignment } };
case GL_UNPACK_IMAGE_HEIGHT:
return ContextParameter { .type = GL_BOOL, .value = { .integer_value = 0 } };
case GL_UNPACK_LSB_FIRST:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = false } };
case GL_UNPACK_ROW_LENGTH:
return ContextParameter { .type = GL_INT, .value = { .integer_value = m_unpack_row_length } };
case GL_UNPACK_SKIP_PIXELS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = 0 } };
case GL_UNPACK_SKIP_ROWS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = 0 } };
case GL_UNPACK_SWAP_BYTES:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = false } };
case GL_VIEWPORT:
return ContextParameter {
.type = GL_INT,
.count = 4,
.value = {
.integer_list = {
m_viewport.x(),
m_viewport.y(),
m_viewport.width(),
m_viewport.height(),
} }
};
default:
dbgln_if(GL_DEBUG, "get_context_parameter({:#x}): unknown context parameter", name);
return {};
}
}
void SoftwareGLContext::gl_begin(GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_begin, mode);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(mode > GL_POLYGON, GL_INVALID_ENUM);
m_current_draw_mode = mode;
m_in_draw_state = true; // Certain commands will now generate an error
}
void SoftwareGLContext::gl_clear(GLbitfield mask)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear, mask);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(mask & ~(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT), GL_INVALID_ENUM);
if (mask & GL_COLOR_BUFFER_BIT)
m_rasterizer.clear_color(m_clear_color);
if (mask & GL_DEPTH_BUFFER_BIT)
m_rasterizer.clear_depth(static_cast<float>(m_clear_depth));
if (mask & GL_STENCIL_BUFFER_BIT)
m_rasterizer.clear_stencil(m_clear_stencil);
}
void SoftwareGLContext::gl_clear_color(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear_color, red, green, blue, alpha);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
m_clear_color = { red, green, blue, alpha };
}
void SoftwareGLContext::gl_clear_depth(GLdouble depth)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear_depth, depth);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
m_clear_depth = depth;
}
void SoftwareGLContext::gl_clear_stencil(GLint s)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear_stencil, s);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
m_clear_stencil = static_cast<u8>(s & ((1 << m_device_info.stencil_bits) - 1));
}
void SoftwareGLContext::gl_color(GLdouble r, GLdouble g, GLdouble b, GLdouble a)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_color, r, g, b, a);
m_current_vertex_color = {
static_cast<float>(r),
static_cast<float>(g),
static_cast<float>(b),
static_cast<float>(a),
};
}
void SoftwareGLContext::gl_end()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_end);
// Make sure we had a `glBegin` before this call...
RETURN_WITH_ERROR_IF(!m_in_draw_state, GL_INVALID_OPERATION);
m_in_draw_state = false;
// FIXME: Add support for the remaining primitive types.
if (m_current_draw_mode != GL_TRIANGLES
&& m_current_draw_mode != GL_TRIANGLE_FAN
&& m_current_draw_mode != GL_TRIANGLE_STRIP
&& m_current_draw_mode != GL_QUADS
&& m_current_draw_mode != GL_QUAD_STRIP
&& m_current_draw_mode != GL_POLYGON) {
m_vertex_list.clear_with_capacity();
dbgln_if(GL_DEBUG, "gl_end(): draw mode {:#x} unsupported", m_current_draw_mode);
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
Vector<size_t, 32> enabled_texture_units;
for (size_t i = 0; i < m_texture_units.size(); ++i) {
if (m_texture_units[i].texture_2d_enabled())
enabled_texture_units.append(i);
}
sync_device_config();
SoftGPU::PrimitiveType primitive_type;
switch (m_current_draw_mode) {
case GL_TRIANGLES:
primitive_type = SoftGPU::PrimitiveType::Triangles;
break;
case GL_TRIANGLE_STRIP:
case GL_QUAD_STRIP:
primitive_type = SoftGPU::PrimitiveType::TriangleStrip;
break;
case GL_TRIANGLE_FAN:
case GL_POLYGON:
primitive_type = SoftGPU::PrimitiveType::TriangleFan;
break;
case GL_QUADS:
primitive_type = SoftGPU::PrimitiveType::Quads;
break;
default:
VERIFY_NOT_REACHED();
}
// Set up normals transform by taking the upper left 3x3 elements from the model view matrix
// See section 2.11.3 of the OpenGL 1.5 spec
auto const& mv_elements = m_model_view_matrix.elements();
auto const model_view_transposed = FloatMatrix3x3(
mv_elements[0][0], mv_elements[1][0], mv_elements[2][0],
mv_elements[0][1], mv_elements[1][1], mv_elements[2][1],
mv_elements[0][2], mv_elements[1][2], mv_elements[2][2]);
auto const& normal_transform = model_view_transposed.inverse();
m_rasterizer.draw_primitives(primitive_type, m_model_view_matrix, normal_transform, m_projection_matrix, m_texture_matrix, m_vertex_list, enabled_texture_units);
m_vertex_list.clear_with_capacity();
}
void SoftwareGLContext::gl_frustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near_val, GLdouble far_val)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_frustum, left, right, bottom, top, near_val, far_val);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// Let's do some math!
// FIXME: Are we losing too much precision by doing this?
float a = static_cast<float>((right + left) / (right - left));
float b = static_cast<float>((top + bottom) / (top - bottom));
float c = static_cast<float>(-((far_val + near_val) / (far_val - near_val)));
float d = static_cast<float>(-((2 * (far_val * near_val)) / (far_val - near_val)));
FloatMatrix4x4 frustum {
((2 * (float)near_val) / ((float)right - (float)left)), 0, a, 0,
0, ((2 * (float)near_val) / ((float)top - (float)bottom)), b, 0,
0, 0, c, d,
0, 0, -1, 0
};
if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = m_projection_matrix * frustum;
else if (m_current_matrix_mode == GL_MODELVIEW)
m_projection_matrix = m_model_view_matrix * frustum;
else if (m_current_matrix_mode == GL_TEXTURE)
m_texture_matrix = m_texture_matrix * frustum;
else
VERIFY_NOT_REACHED();
}
void SoftwareGLContext::gl_ortho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near_val, GLdouble far_val)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_ortho, left, right, bottom, top, near_val, far_val);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(left == right || bottom == top || near_val == far_val, GL_INVALID_VALUE);
auto rl = right - left;
auto tb = top - bottom;
auto fn = far_val - near_val;
auto tx = -(right + left) / rl;
auto ty = -(top + bottom) / tb;
auto tz = -(far_val + near_val) / fn;
FloatMatrix4x4 projection {
static_cast<float>(2 / rl), 0, 0, static_cast<float>(tx),
0, static_cast<float>(2 / tb), 0, static_cast<float>(ty),
0, 0, static_cast<float>(-2 / fn), static_cast<float>(tz),
0, 0, 0, 1
};
if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = m_projection_matrix * projection;
else if (m_current_matrix_mode == GL_MODELVIEW)
m_projection_matrix = m_model_view_matrix * projection;
else if (m_current_matrix_mode == GL_TEXTURE)
m_texture_matrix = m_texture_matrix * projection;
else
VERIFY_NOT_REACHED();
}
GLenum SoftwareGLContext::gl_get_error()
{
if (m_in_draw_state)
return GL_INVALID_OPERATION;
auto last_error = m_error;
m_error = GL_NO_ERROR;
return last_error;
}
GLubyte* SoftwareGLContext::gl_get_string(GLenum name)
{
RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, nullptr);
switch (name) {
case GL_VENDOR:
return reinterpret_cast<GLubyte*>(const_cast<char*>(m_device_info.vendor_name.characters()));
case GL_RENDERER:
return reinterpret_cast<GLubyte*>(const_cast<char*>(m_device_info.device_name.characters()));
case GL_VERSION:
return reinterpret_cast<GLubyte*>(const_cast<char*>("1.5"));
case GL_EXTENSIONS:
return reinterpret_cast<GLubyte*>(const_cast<char*>(m_extensions.characters()));
case GL_SHADING_LANGUAGE_VERSION:
return reinterpret_cast<GLubyte*>(const_cast<char*>("0.0"));
default:
dbgln_if(GL_DEBUG, "gl_get_string({:#x}): unknown name", name);
break;
}
RETURN_VALUE_WITH_ERROR_IF(true, GL_INVALID_ENUM, nullptr);
}
void SoftwareGLContext::gl_load_identity()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_load_identity);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = FloatMatrix4x4::identity();
else if (m_current_matrix_mode == GL_MODELVIEW)
m_model_view_matrix = FloatMatrix4x4::identity();
else if (m_current_matrix_mode == GL_TEXTURE)
m_texture_matrix = FloatMatrix4x4::identity();
else
VERIFY_NOT_REACHED();
}
void SoftwareGLContext::gl_load_matrix(const FloatMatrix4x4& matrix)
{
APPEND_TO_CALL_LIST_WITH_ARG_AND_RETURN_IF_NEEDED(gl_load_matrix, matrix);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = matrix;
else if (m_current_matrix_mode == GL_MODELVIEW)
m_model_view_matrix = matrix;
else if (m_current_matrix_mode == GL_TEXTURE)
m_texture_matrix = matrix;
else
VERIFY_NOT_REACHED();
}
void SoftwareGLContext::gl_matrix_mode(GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_matrix_mode, mode);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(mode < GL_MODELVIEW || mode > GL_TEXTURE, GL_INVALID_ENUM);
m_current_matrix_mode = mode;
}
void SoftwareGLContext::gl_push_matrix()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_push_matrix);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
switch (m_current_matrix_mode) {
case GL_PROJECTION:
RETURN_WITH_ERROR_IF(m_projection_matrix_stack.size() >= PROJECTION_MATRIX_STACK_LIMIT, GL_STACK_OVERFLOW);
m_projection_matrix_stack.append(m_projection_matrix);
break;
case GL_MODELVIEW:
RETURN_WITH_ERROR_IF(m_model_view_matrix_stack.size() >= MODELVIEW_MATRIX_STACK_LIMIT, GL_STACK_OVERFLOW);
m_model_view_matrix_stack.append(m_model_view_matrix);
break;
case GL_TEXTURE:
RETURN_WITH_ERROR_IF(m_texture_matrix_stack.size() >= TEXTURE_MATRIX_STACK_LIMIT, GL_STACK_OVERFLOW);
m_texture_matrix_stack.append(m_texture_matrix);
break;
default:
VERIFY_NOT_REACHED();
}
}
void SoftwareGLContext::gl_pop_matrix()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_pop_matrix);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
switch (m_current_matrix_mode) {
case GL_PROJECTION:
RETURN_WITH_ERROR_IF(m_projection_matrix_stack.size() == 0, GL_STACK_UNDERFLOW);
m_projection_matrix = m_projection_matrix_stack.take_last();
break;
case GL_MODELVIEW:
RETURN_WITH_ERROR_IF(m_model_view_matrix_stack.size() == 0, GL_STACK_UNDERFLOW);
m_model_view_matrix = m_model_view_matrix_stack.take_last();
break;
case GL_TEXTURE:
RETURN_WITH_ERROR_IF(m_texture_matrix_stack.size() == 0, GL_STACK_UNDERFLOW);
m_texture_matrix = m_texture_matrix_stack.take_last();
break;
default:
VERIFY_NOT_REACHED();
}
}
void SoftwareGLContext::gl_mult_matrix(FloatMatrix4x4 const& matrix)
{
APPEND_TO_CALL_LIST_WITH_ARG_AND_RETURN_IF_NEEDED(gl_mult_matrix, matrix);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
if (m_current_matrix_mode == GL_MODELVIEW)
m_model_view_matrix = m_model_view_matrix * matrix;
else if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = m_projection_matrix * matrix;
else if (m_current_matrix_mode == GL_TEXTURE)
m_texture_matrix = m_texture_matrix * matrix;
else
VERIFY_NOT_REACHED();
}
void SoftwareGLContext::gl_rotate(GLdouble angle, GLdouble x, GLdouble y, GLdouble z)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_rotate, angle, x, y, z);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
FloatVector3 axis = { (float)x, (float)y, (float)z };
axis.normalize();
auto rotation_mat = Gfx::rotation_matrix(axis, static_cast<float>(angle * M_PI * 2 / 360));
if (m_current_matrix_mode == GL_MODELVIEW)
m_model_view_matrix = m_model_view_matrix * rotation_mat;
else if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = m_projection_matrix * rotation_mat;
else if (m_current_matrix_mode == GL_TEXTURE)
m_texture_matrix = m_texture_matrix * rotation_mat;
else
VERIFY_NOT_REACHED();
}
void SoftwareGLContext::gl_scale(GLdouble x, GLdouble y, GLdouble z)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_scale, x, y, z);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto scale_matrix = Gfx::scale_matrix(FloatVector3 { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z) });
if (m_current_matrix_mode == GL_MODELVIEW)
m_model_view_matrix = m_model_view_matrix * scale_matrix;
else if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = m_projection_matrix * scale_matrix;
else if (m_current_matrix_mode == GL_TEXTURE)
m_texture_matrix = m_texture_matrix * scale_matrix;
else
VERIFY_NOT_REACHED();
}
void SoftwareGLContext::gl_translate(GLdouble x, GLdouble y, GLdouble z)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_translate, x, y, z);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto translation_matrix = Gfx::translation_matrix(FloatVector3 { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z) });
if (m_current_matrix_mode == GL_MODELVIEW)
m_model_view_matrix = m_model_view_matrix * translation_matrix;
else if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = m_projection_matrix * translation_matrix;
else if (m_current_matrix_mode == GL_TEXTURE)
m_texture_matrix = m_texture_matrix * translation_matrix;
else
VERIFY_NOT_REACHED();
}
void SoftwareGLContext::gl_vertex(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_vertex, x, y, z, w);
SoftGPU::Vertex vertex;
vertex.position = { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(w) };
vertex.color = m_current_vertex_color;
for (size_t i = 0; i < m_device_info.num_texture_units; ++i)
vertex.tex_coords[i] = m_current_vertex_tex_coord[i];
vertex.normal = m_current_vertex_normal;
m_vertex_list.append(vertex);
}
void SoftwareGLContext::gl_tex_coord(GLfloat s, GLfloat t, GLfloat r, GLfloat q)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_coord, s, t, r, q);
m_current_vertex_tex_coord[0] = { s, t, r, q };
}
void SoftwareGLContext::gl_multi_tex_coord(GLenum target, GLfloat s, GLfloat t, GLfloat r, GLfloat q)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_multi_tex_coord, target, s, t, r, q);
RETURN_WITH_ERROR_IF(target < GL_TEXTURE0 || target >= GL_TEXTURE0 + m_device_info.num_texture_units, GL_INVALID_ENUM);
m_current_vertex_tex_coord[target - GL_TEXTURE0] = { s, t, r, q };
}
void SoftwareGLContext::gl_viewport(GLint x, GLint y, GLsizei width, GLsizei height)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_viewport, x, y, width, height);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(width < 0 || height < 0, GL_INVALID_VALUE);
m_viewport = { x, y, width, height };
auto rasterizer_options = m_rasterizer.options();
rasterizer_options.viewport = m_viewport;
m_rasterizer.set_options(rasterizer_options);
}
void SoftwareGLContext::gl_enable(GLenum capability)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_enable, capability);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto rasterizer_options = m_rasterizer.options();
bool update_rasterizer_options = false;
switch (capability) {
case GL_COLOR_MATERIAL:
m_color_material_enabled = true;
break;
case GL_CULL_FACE:
m_cull_faces = true;
rasterizer_options.enable_culling = true;
update_rasterizer_options = true;
break;
case GL_DEPTH_TEST:
m_depth_test_enabled = true;
rasterizer_options.enable_depth_test = true;
update_rasterizer_options = true;
break;
case GL_BLEND:
m_blend_enabled = true;
rasterizer_options.enable_blending = true;
update_rasterizer_options = true;
break;
case GL_ALPHA_TEST:
m_alpha_test_enabled = true;
rasterizer_options.enable_alpha_test = true;
update_rasterizer_options = true;
break;
case GL_DITHER:
m_dither_enabled = true;
break;
case GL_FOG:
rasterizer_options.fog_enabled = true;
update_rasterizer_options = true;
break;
case GL_LIGHTING:
m_lighting_enabled = true;
rasterizer_options.lighting_enabled = true;
update_rasterizer_options = true;
break;
case GL_NORMALIZE:
m_normalize = true;
rasterizer_options.normalization_enabled = true;
update_rasterizer_options = true;
break;
case GL_POLYGON_OFFSET_FILL:
m_depth_offset_enabled = true;
rasterizer_options.depth_offset_enabled = true;
update_rasterizer_options = true;
break;
case GL_SCISSOR_TEST:
rasterizer_options.scissor_enabled = true;
update_rasterizer_options = true;
break;
case GL_STENCIL_TEST:
m_stencil_test_enabled = true;
rasterizer_options.enable_stencil_test = true;
update_rasterizer_options = true;
break;
case GL_TEXTURE_1D:
m_active_texture_unit->set_texture_1d_enabled(true);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_2D:
m_active_texture_unit->set_texture_2d_enabled(true);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_3D:
m_active_texture_unit->set_texture_3d_enabled(true);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_CUBE_MAP:
m_active_texture_unit->set_texture_cube_map_enabled(true);
m_sampler_config_is_dirty = true;
break;
case GL_LIGHT0:
case GL_LIGHT1:
case GL_LIGHT2:
case GL_LIGHT3:
case GL_LIGHT4:
case GL_LIGHT5:
case GL_LIGHT6:
case GL_LIGHT7:
m_light_states.at(capability - GL_LIGHT0).is_enabled = true;
m_light_state_is_dirty = true;
break;
case GL_TEXTURE_GEN_Q:
case GL_TEXTURE_GEN_R:
case GL_TEXTURE_GEN_S:
case GL_TEXTURE_GEN_T:
texture_coordinate_generation(m_active_texture_unit_index, capability).enabled = true;
m_texcoord_generation_dirty = true;
break;
default:
dbgln_if(GL_DEBUG, "gl_enable({:#x}): unknown parameter", capability);
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
if (update_rasterizer_options)
m_rasterizer.set_options(rasterizer_options);
}
void SoftwareGLContext::gl_disable(GLenum capability)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_disable, capability);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto rasterizer_options = m_rasterizer.options();
bool update_rasterizer_options = false;
switch (capability) {
case GL_COLOR_MATERIAL:
m_color_material_enabled = false;
break;
case GL_CULL_FACE:
m_cull_faces = false;
rasterizer_options.enable_culling = false;
update_rasterizer_options = true;
break;
case GL_DEPTH_TEST:
m_depth_test_enabled = false;
rasterizer_options.enable_depth_test = false;
update_rasterizer_options = true;
break;
case GL_BLEND:
m_blend_enabled = false;
rasterizer_options.enable_blending = false;
update_rasterizer_options = true;
break;
case GL_ALPHA_TEST:
m_alpha_test_enabled = false;
rasterizer_options.enable_alpha_test = false;
update_rasterizer_options = true;
break;
case GL_DITHER:
m_dither_enabled = false;
break;
case GL_FOG:
rasterizer_options.fog_enabled = false;
update_rasterizer_options = true;
break;
case GL_LIGHTING:
m_lighting_enabled = false;
rasterizer_options.lighting_enabled = false;
update_rasterizer_options = true;
break;
case GL_LIGHT0:
case GL_LIGHT1:
case GL_LIGHT2:
case GL_LIGHT3:
case GL_LIGHT4:
case GL_LIGHT5:
case GL_LIGHT6:
case GL_LIGHT7:
m_light_states.at(capability - GL_LIGHT0).is_enabled = false;
m_light_state_is_dirty = true;
break;
case GL_NORMALIZE:
m_normalize = false;
rasterizer_options.normalization_enabled = false;
update_rasterizer_options = true;
break;
case GL_POLYGON_OFFSET_FILL:
m_depth_offset_enabled = false;
rasterizer_options.depth_offset_enabled = false;
update_rasterizer_options = true;
break;
case GL_SCISSOR_TEST:
rasterizer_options.scissor_enabled = false;
update_rasterizer_options = true;
break;
case GL_STENCIL_TEST:
m_stencil_test_enabled = false;
rasterizer_options.enable_stencil_test = false;
update_rasterizer_options = true;
break;
case GL_TEXTURE_1D:
m_active_texture_unit->set_texture_1d_enabled(false);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_2D:
m_active_texture_unit->set_texture_2d_enabled(false);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_3D:
m_active_texture_unit->set_texture_3d_enabled(false);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_CUBE_MAP:
m_active_texture_unit->set_texture_cube_map_enabled(false);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_GEN_Q:
case GL_TEXTURE_GEN_R:
case GL_TEXTURE_GEN_S:
case GL_TEXTURE_GEN_T:
texture_coordinate_generation(m_active_texture_unit_index, capability).enabled = false;
m_texcoord_generation_dirty = true;
break;
default:
dbgln_if(GL_DEBUG, "gl_disable({:#x}): unknown parameter", capability);
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
if (update_rasterizer_options)
m_rasterizer.set_options(rasterizer_options);
}
GLboolean SoftwareGLContext::gl_is_enabled(GLenum capability)
{
RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, 0);
auto optional_parameter = get_context_parameter(capability);
RETURN_VALUE_WITH_ERROR_IF(!optional_parameter.has_value(), GL_INVALID_ENUM, 0);
auto parameter = optional_parameter.release_value();
RETURN_VALUE_WITH_ERROR_IF(!parameter.is_capability, GL_INVALID_ENUM, 0);
return parameter.value.boolean_value;
}
void SoftwareGLContext::gl_gen_textures(GLsizei n, GLuint* textures)
{
RETURN_WITH_ERROR_IF(n < 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
m_name_allocator.allocate(n, textures);
// Initialize all texture names with a nullptr
for (auto i = 0; i < n; i++) {
GLuint name = textures[i];
m_allocated_textures.set(name, nullptr);
}
}
void SoftwareGLContext::gl_delete_textures(GLsizei n, const GLuint* textures)
{
RETURN_WITH_ERROR_IF(n < 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
for (auto i = 0; i < n; i++) {
GLuint name = textures[i];
if (name == 0)
continue;
m_name_allocator.free(name);
auto texture_object = m_allocated_textures.find(name);
if (texture_object == m_allocated_textures.end() || texture_object->value.is_null())
continue;
// Check all texture units
for (auto& texture_unit : m_texture_units) {
if (texture_object->value == texture_unit.bound_texture())
texture_unit.bind_texture_to_target(GL_TEXTURE_2D, nullptr);
}
m_allocated_textures.remove(name);
}
}
void SoftwareGLContext::gl_tex_image_2d(GLenum target, GLint level, GLint internal_format, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, const GLvoid* data)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// We only support GL_TEXTURE_2D for now
RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM);
// Check if there is actually a texture bound
RETURN_WITH_ERROR_IF(target == GL_TEXTURE_2D && m_active_texture_unit->currently_bound_target() != GL_TEXTURE_2D, GL_INVALID_OPERATION);
// Internal format can also be a number between 1 and 4. Symbolic formats were only added with EXT_texture, promoted to core in OpenGL 1.1
if (internal_format == 1)
internal_format = GL_ALPHA;
else if (internal_format == 2)
internal_format = GL_LUMINANCE_ALPHA;
else if (internal_format == 3)
internal_format = GL_RGB;
else if (internal_format == 4)
internal_format = GL_RGBA;
// We only support symbolic constants for now
RETURN_WITH_ERROR_IF(!(internal_format == GL_RGB || internal_format == GL_RGBA || internal_format == GL_LUMINANCE8 || internal_format == GL_LUMINANCE8_ALPHA8), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(type == GL_UNSIGNED_BYTE || type == GL_UNSIGNED_SHORT_5_6_5), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(level < 0 || level > Texture2D::LOG2_MAX_TEXTURE_SIZE, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(width < 0 || height < 0 || width > (2 + Texture2D::MAX_TEXTURE_SIZE) || height > (2 + Texture2D::MAX_TEXTURE_SIZE), GL_INVALID_VALUE);
// Check if width and height are a power of 2
if (!m_device_info.supports_npot_textures) {
RETURN_WITH_ERROR_IF((width & (width - 1)) != 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF((height & (height - 1)) != 0, GL_INVALID_VALUE);
}
RETURN_WITH_ERROR_IF(border != 0, GL_INVALID_VALUE);
if (level == 0) {
// FIXME: OpenGL has the concept of texture and mipmap completeness. A texture has to fulfill certain criteria to be considered complete.
// Trying to render while an incomplete texture is bound will result in an error.
// Here we simply create a complete device image when mipmap level 0 is attached to the texture object. This has the unfortunate side effect
// that constructing GL textures in any but the default mipmap order, going from level 0 upwards will cause mip levels to stay uninitialized.
// To be spec compliant we should create the device image once the texture has become complete and is used for rendering the first time.
// All images that were attached before the device image was created need to be stored somewhere to be used to initialize the device image once complete.
m_active_texture_unit->bound_texture_2d()->set_device_image(m_rasterizer.create_image(SoftGPU::ImageFormat::BGRA8888, width, height, 1, 999, 1));
m_sampler_config_is_dirty = true;
}
m_active_texture_unit->bound_texture_2d()->upload_texture_data(level, internal_format, width, height, format, type, data, m_unpack_row_length, m_unpack_alignment);
}
void SoftwareGLContext::gl_tex_sub_image_2d(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, const GLvoid* data)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// We only support GL_TEXTURE_2D for now
RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM);
// Check if there is actually a texture bound
RETURN_WITH_ERROR_IF(target == GL_TEXTURE_2D && m_active_texture_unit->currently_bound_target() != GL_TEXTURE_2D, GL_INVALID_OPERATION);
// We only support symbolic constants for now
RETURN_WITH_ERROR_IF(!(format == GL_RGBA || format == GL_RGB), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(!(type == GL_UNSIGNED_BYTE || type == GL_UNSIGNED_SHORT_5_6_5), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(level < 0 || level > Texture2D::LOG2_MAX_TEXTURE_SIZE, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(width < 0 || height < 0 || width > (2 + Texture2D::MAX_TEXTURE_SIZE) || height > (2 + Texture2D::MAX_TEXTURE_SIZE), GL_INVALID_VALUE);
auto texture = m_active_texture_unit->bound_texture_2d();
RETURN_WITH_ERROR_IF(xoffset < 0 || yoffset < 0 || xoffset + width > texture->width_at_lod(level) || yoffset + height > texture->height_at_lod(level), GL_INVALID_VALUE);
texture->replace_sub_texture_data(level, xoffset, yoffset, width, height, format, type, data, m_unpack_row_length, m_unpack_alignment);
}
void SoftwareGLContext::gl_tex_parameter(GLenum target, GLenum pname, GLfloat param)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_parameter, target, pname, param);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: We currently only support GL_TETXURE_2D targets. 1D, 3D and CUBE should also be supported (https://docs.gl/gl2/glTexParameter)
RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM);
// FIXME: implement the remaining parameters. (https://docs.gl/gl2/glTexParameter)
RETURN_WITH_ERROR_IF(!(pname == GL_TEXTURE_MIN_FILTER
|| pname == GL_TEXTURE_MAG_FILTER
|| pname == GL_TEXTURE_WRAP_S
|| pname == GL_TEXTURE_WRAP_T),
GL_INVALID_ENUM);
if (target == GL_TEXTURE_2D) {
auto texture2d = m_active_texture_unit->bound_texture_2d();
if (texture2d.is_null())
return;
switch (pname) {
case GL_TEXTURE_MIN_FILTER:
RETURN_WITH_ERROR_IF(!(param == GL_NEAREST
|| param == GL_LINEAR
|| param == GL_NEAREST_MIPMAP_NEAREST
|| param == GL_LINEAR_MIPMAP_NEAREST
|| param == GL_NEAREST_MIPMAP_LINEAR
|| param == GL_LINEAR_MIPMAP_LINEAR),
GL_INVALID_ENUM);
texture2d->sampler().set_min_filter(param);
break;
case GL_TEXTURE_MAG_FILTER:
RETURN_WITH_ERROR_IF(!(param == GL_NEAREST
|| param == GL_LINEAR),
GL_INVALID_ENUM);
texture2d->sampler().set_mag_filter(param);
break;
case GL_TEXTURE_WRAP_S:
RETURN_WITH_ERROR_IF(!(param == GL_CLAMP
|| param == GL_CLAMP_TO_BORDER
|| param == GL_CLAMP_TO_EDGE
|| param == GL_MIRRORED_REPEAT
|| param == GL_REPEAT),
GL_INVALID_ENUM);
texture2d->sampler().set_wrap_s_mode(param);
break;
case GL_TEXTURE_WRAP_T:
RETURN_WITH_ERROR_IF(!(param == GL_CLAMP
|| param == GL_CLAMP_TO_BORDER
|| param == GL_CLAMP_TO_EDGE
|| param == GL_MIRRORED_REPEAT
|| param == GL_REPEAT),
GL_INVALID_ENUM);
texture2d->sampler().set_wrap_t_mode(param);
break;
default:
VERIFY_NOT_REACHED();
}
}
m_sampler_config_is_dirty = true;
}
void SoftwareGLContext::gl_front_face(GLenum face)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_front_face, face);
RETURN_WITH_ERROR_IF(face < GL_CW || face > GL_CCW, GL_INVALID_ENUM);
m_front_face = face;
auto rasterizer_options = m_rasterizer.options();
rasterizer_options.front_face = (face == GL_CW) ? SoftGPU::WindingOrder::Clockwise : SoftGPU::WindingOrder::CounterClockwise;
m_rasterizer.set_options(rasterizer_options);
}
void SoftwareGLContext::gl_cull_face(GLenum cull_mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_cull_face, cull_mode);
RETURN_WITH_ERROR_IF(cull_mode < GL_FRONT || cull_mode > GL_FRONT_AND_BACK, GL_INVALID_ENUM);
m_culled_sides = cull_mode;
auto rasterizer_options = m_rasterizer.options();
rasterizer_options.cull_back = cull_mode == GL_BACK || cull_mode == GL_FRONT_AND_BACK;
rasterizer_options.cull_front = cull_mode == GL_FRONT || cull_mode == GL_FRONT_AND_BACK;
m_rasterizer.set_options(rasterizer_options);
}
GLuint SoftwareGLContext::gl_gen_lists(GLsizei range)
{
RETURN_VALUE_WITH_ERROR_IF(range <= 0, GL_INVALID_VALUE, 0);
RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, 0);
auto initial_entry = m_listings.size();
m_listings.resize(range + initial_entry);
return initial_entry + 1;
}
void SoftwareGLContext::invoke_list(size_t list_index)
{
auto& listing = m_listings[list_index - 1];
for (auto& entry : listing.entries) {
entry.function.visit([&](auto& function) {
entry.arguments.visit([&](auto& arguments) {
auto apply = [&]<typename... Args>(Args && ... args)
{
if constexpr (requires { (this->*function)(forward<Args>(args)...); })
(this->*function)(forward<Args>(args)...);
};
arguments.apply_as_args(apply);
});
});
}
}
void SoftwareGLContext::gl_call_list(GLuint list)
{
if (m_gl_call_depth > max_allowed_gl_call_depth)
return;
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_call_list, list);
if (m_listings.size() < list)
return;
TemporaryChange change { m_gl_call_depth, m_gl_call_depth + 1 };
invoke_list(list);
}
void SoftwareGLContext::gl_call_lists(GLsizei n, GLenum type, void const* lists)
{
if (m_gl_call_depth > max_allowed_gl_call_depth)
return;
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_call_lists, n, type, lists);
RETURN_WITH_ERROR_IF(n < 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(!(type == GL_BYTE
|| type == GL_UNSIGNED_BYTE
|| type == GL_SHORT
|| type == GL_UNSIGNED_SHORT
|| type == GL_INT
|| type == GL_UNSIGNED_INT
|| type == GL_FLOAT
|| type == GL_2_BYTES
|| type == GL_3_BYTES
|| type == GL_4_BYTES),
GL_INVALID_ENUM);
TemporaryChange change { m_gl_call_depth, m_gl_call_depth + 1 };
auto invoke_all_lists = [&]<typename T>(T const* lists) {
for (int i = 0; i < n; ++i) {
auto list = static_cast<size_t>(lists[i]);
invoke_list(m_list_base + list);
}
};
switch (type) {
case GL_BYTE:
invoke_all_lists(static_cast<GLbyte const*>(lists));
break;
case GL_UNSIGNED_BYTE:
invoke_all_lists(static_cast<GLubyte const*>(lists));
break;
case GL_SHORT:
invoke_all_lists(static_cast<GLshort const*>(lists));
break;
case GL_UNSIGNED_SHORT:
invoke_all_lists(static_cast<GLushort const*>(lists));
break;
case GL_INT:
invoke_all_lists(static_cast<GLint const*>(lists));
break;
case GL_UNSIGNED_INT:
invoke_all_lists(static_cast<GLuint const*>(lists));
break;
case GL_FLOAT:
invoke_all_lists(static_cast<GLfloat const*>(lists));
break;
case GL_2_BYTES:
case GL_3_BYTES:
case GL_4_BYTES:
dbgln("SoftwareGLContext FIXME: unimplemented glCallLists() with type {}", type);
break;
default:
VERIFY_NOT_REACHED();
}
}
void SoftwareGLContext::gl_delete_lists(GLuint list, GLsizei range)
{
if (m_listings.size() < list || m_listings.size() <= list + range)
return;
for (auto& entry : m_listings.span().slice(list - 1, range))
entry.entries.clear_with_capacity();
}
void SoftwareGLContext::gl_list_base(GLuint base)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_list_base, base);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
m_list_base = base;
}
void SoftwareGLContext::gl_end_list()
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!m_current_listing_index.has_value(), GL_INVALID_OPERATION);
m_listings[m_current_listing_index->index] = move(m_current_listing_index->listing);
m_current_listing_index.clear();
}
void SoftwareGLContext::gl_new_list(GLuint list, GLenum mode)
{
RETURN_WITH_ERROR_IF(list == 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(mode != GL_COMPILE && mode != GL_COMPILE_AND_EXECUTE, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(m_current_listing_index.has_value(), GL_INVALID_OPERATION);
if (m_listings.size() < list)
return;
m_current_listing_index = CurrentListing { {}, static_cast<size_t>(list - 1), mode };
}
GLboolean SoftwareGLContext::gl_is_list(GLuint list)
{
RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, GL_FALSE);
return list < m_listings.size() ? GL_TRUE : GL_FALSE;
}
void SoftwareGLContext::gl_flush()
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// No-op since SoftwareGLContext is completely synchronous at the moment
}
void SoftwareGLContext::gl_finish()
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// No-op since SoftwareGLContext is completely synchronous at the moment
}
void SoftwareGLContext::gl_blend_func(GLenum src_factor, GLenum dst_factor)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_blend_func, src_factor, dst_factor);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: The list of allowed enums differs between API versions
// This was taken from the 2.0 spec on https://docs.gl/gl2/glBlendFunc
RETURN_WITH_ERROR_IF(!(src_factor == GL_ZERO
|| src_factor == GL_ONE
|| src_factor == GL_SRC_COLOR
|| src_factor == GL_ONE_MINUS_SRC_COLOR
|| src_factor == GL_DST_COLOR
|| src_factor == GL_ONE_MINUS_DST_COLOR
|| src_factor == GL_SRC_ALPHA
|| src_factor == GL_ONE_MINUS_SRC_ALPHA
|| src_factor == GL_DST_ALPHA
|| src_factor == GL_ONE_MINUS_DST_ALPHA
|| src_factor == GL_CONSTANT_COLOR
|| src_factor == GL_ONE_MINUS_CONSTANT_COLOR
|| src_factor == GL_CONSTANT_ALPHA
|| src_factor == GL_ONE_MINUS_CONSTANT_ALPHA
|| src_factor == GL_SRC_ALPHA_SATURATE),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(dst_factor == GL_ZERO
|| dst_factor == GL_ONE
|| dst_factor == GL_SRC_COLOR
|| dst_factor == GL_ONE_MINUS_SRC_COLOR
|| dst_factor == GL_DST_COLOR
|| dst_factor == GL_ONE_MINUS_DST_COLOR
|| dst_factor == GL_SRC_ALPHA
|| dst_factor == GL_ONE_MINUS_SRC_ALPHA
|| dst_factor == GL_DST_ALPHA
|| dst_factor == GL_ONE_MINUS_DST_ALPHA
|| dst_factor == GL_CONSTANT_COLOR
|| dst_factor == GL_ONE_MINUS_CONSTANT_COLOR
|| dst_factor == GL_CONSTANT_ALPHA
|| dst_factor == GL_ONE_MINUS_CONSTANT_ALPHA),
GL_INVALID_ENUM);
m_blend_source_factor = src_factor;
m_blend_destination_factor = dst_factor;
auto map_gl_blend_factor_to_device = [](GLenum factor) constexpr
{
switch (factor) {
case GL_ZERO:
return SoftGPU::BlendFactor::Zero;
case GL_ONE:
return SoftGPU::BlendFactor::One;
case GL_SRC_ALPHA:
return SoftGPU::BlendFactor::SrcAlpha;
case GL_ONE_MINUS_SRC_ALPHA:
return SoftGPU::BlendFactor::OneMinusSrcAlpha;
case GL_SRC_COLOR:
return SoftGPU::BlendFactor::SrcColor;
case GL_ONE_MINUS_SRC_COLOR:
return SoftGPU::BlendFactor::OneMinusSrcColor;
case GL_DST_ALPHA:
return SoftGPU::BlendFactor::DstAlpha;
case GL_ONE_MINUS_DST_ALPHA:
return SoftGPU::BlendFactor::OneMinusDstAlpha;
case GL_DST_COLOR:
return SoftGPU::BlendFactor::DstColor;
case GL_ONE_MINUS_DST_COLOR:
return SoftGPU::BlendFactor::OneMinusDstColor;
case GL_SRC_ALPHA_SATURATE:
return SoftGPU::BlendFactor::SrcAlphaSaturate;
default:
VERIFY_NOT_REACHED();
}
};
auto options = m_rasterizer.options();
options.blend_source_factor = map_gl_blend_factor_to_device(m_blend_source_factor);
options.blend_destination_factor = map_gl_blend_factor_to_device(m_blend_destination_factor);
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_shade_model(GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_shade_model, mode);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(mode != GL_FLAT && mode != GL_SMOOTH, GL_INVALID_ENUM);
auto options = m_rasterizer.options();
options.shade_smooth = (mode == GL_SMOOTH);
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_alpha_func(GLenum func, GLclampf ref)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_alpha_func, func, ref);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(func < GL_NEVER || func > GL_ALWAYS, GL_INVALID_ENUM);
m_alpha_test_func = func;
m_alpha_test_ref_value = ref;
auto options = m_rasterizer.options();
switch (func) {
case GL_NEVER:
options.alpha_test_func = SoftGPU::AlphaTestFunction::Never;
break;
case GL_ALWAYS:
options.alpha_test_func = SoftGPU::AlphaTestFunction::Always;
break;
case GL_LESS:
options.alpha_test_func = SoftGPU::AlphaTestFunction::Less;
break;
case GL_LEQUAL:
options.alpha_test_func = SoftGPU::AlphaTestFunction::LessOrEqual;
break;
case GL_EQUAL:
options.alpha_test_func = SoftGPU::AlphaTestFunction::Equal;
break;
case GL_NOTEQUAL:
options.alpha_test_func = SoftGPU::AlphaTestFunction::NotEqual;
break;
case GL_GEQUAL:
options.alpha_test_func = SoftGPU::AlphaTestFunction::GreaterOrEqual;
break;
case GL_GREATER:
options.alpha_test_func = SoftGPU::AlphaTestFunction::Greater;
break;
default:
VERIFY_NOT_REACHED();
}
options.alpha_test_ref_value = m_alpha_test_ref_value;
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_hint(GLenum target, GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_hint, target, mode);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(target != GL_PERSPECTIVE_CORRECTION_HINT
&& target != GL_POINT_SMOOTH_HINT
&& target != GL_LINE_SMOOTH_HINT
&& target != GL_POLYGON_SMOOTH_HINT
&& target != GL_FOG_HINT
&& target != GL_GENERATE_MIPMAP_HINT
&& target != GL_TEXTURE_COMPRESSION_HINT,
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(mode != GL_DONT_CARE
&& mode != GL_FASTEST
&& mode != GL_NICEST,
GL_INVALID_ENUM);
// According to the spec implementors are free to ignore glHint. So we do.
}
void SoftwareGLContext::gl_read_buffer(GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_read_buffer, mode);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: Also allow aux buffers GL_AUX0 through GL_AUX3 here
// plus any aux buffer between 0 and GL_AUX_BUFFERS
RETURN_WITH_ERROR_IF(mode != GL_FRONT_LEFT
&& mode != GL_FRONT_RIGHT
&& mode != GL_BACK_LEFT
&& mode != GL_BACK_RIGHT
&& mode != GL_FRONT
&& mode != GL_BACK
&& mode != GL_LEFT
&& mode != GL_RIGHT,
GL_INVALID_ENUM);
// FIXME: We do not currently have aux buffers, so make it an invalid
// operation to select anything but front or back buffers. Also we do
// not allow selecting the stereoscopic RIGHT buffers since we do not
// have them configured.
RETURN_WITH_ERROR_IF(mode != GL_FRONT_LEFT
&& mode != GL_FRONT
&& mode != GL_BACK_LEFT
&& mode != GL_BACK
&& mode != GL_FRONT
&& mode != GL_BACK
&& mode != GL_LEFT,
GL_INVALID_OPERATION);
m_current_read_buffer = mode;
}
void SoftwareGLContext::gl_draw_buffer(GLenum buffer)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_draw_buffer, buffer);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: Also allow aux buffers GL_AUX0 through GL_AUX3 here
// plus any aux buffer between 0 and GL_AUX_BUFFERS
RETURN_WITH_ERROR_IF(buffer != GL_NONE
&& buffer != GL_FRONT_LEFT
&& buffer != GL_FRONT_RIGHT
&& buffer != GL_BACK_LEFT
&& buffer != GL_BACK_RIGHT
&& buffer != GL_FRONT
&& buffer != GL_BACK
&& buffer != GL_LEFT
&& buffer != GL_RIGHT,
GL_INVALID_ENUM);
// FIXME: We do not currently have aux buffers, so make it an invalid
// operation to select anything but front or back buffers. Also we do
// not allow selecting the stereoscopic RIGHT buffers since we do not
// have them configured.
RETURN_WITH_ERROR_IF(buffer != GL_NONE
&& buffer != GL_FRONT_LEFT
&& buffer != GL_FRONT
&& buffer != GL_BACK_LEFT
&& buffer != GL_BACK
&& buffer != GL_FRONT
&& buffer != GL_BACK
&& buffer != GL_LEFT,
GL_INVALID_OPERATION);
m_current_draw_buffer = buffer;
auto rasterizer_options = m_rasterizer.options();
// FIXME: We only have a single draw buffer in SoftGPU at the moment,
// so we simply disable color writes if GL_NONE is selected
rasterizer_options.enable_color_write = m_current_draw_buffer != GL_NONE;
m_rasterizer.set_options(rasterizer_options);
}
void SoftwareGLContext::gl_read_pixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLvoid* pixels)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(width < 0 || height < 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(format != GL_COLOR_INDEX
&& format != GL_STENCIL_INDEX
&& format != GL_DEPTH_COMPONENT
&& format != GL_RED
&& format != GL_GREEN
&& format != GL_BLUE
&& format != GL_ALPHA
&& format != GL_RGB
&& format != GL_RGBA
&& format != GL_LUMINANCE
&& format != GL_LUMINANCE_ALPHA,
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(type != GL_UNSIGNED_BYTE
&& type != GL_BYTE
&& type != GL_BITMAP
&& type != GL_UNSIGNED_SHORT
&& type != GL_SHORT
&& type != GL_BLUE
&& type != GL_UNSIGNED_INT
&& type != GL_INT
&& type != GL_FLOAT,
GL_INVALID_ENUM);
// FIXME: We only support RGBA buffers for now.
// Once we add support for indexed color modes do the correct check here
RETURN_WITH_ERROR_IF(format == GL_COLOR_INDEX, GL_INVALID_OPERATION);
// FIXME: We do not have stencil buffers yet
// Once we add support for stencil buffers do the correct check here
RETURN_WITH_ERROR_IF(format == GL_STENCIL_INDEX, GL_INVALID_OPERATION);
if (format == GL_DEPTH_COMPONENT) {
// FIXME: This check needs to be a bit more sophisticated. Currently the buffers
// are hardcoded. Once we add proper structures for them we need to correct this check
// Error because only back buffer has a depth buffer
RETURN_WITH_ERROR_IF(m_current_read_buffer == GL_FRONT
|| m_current_read_buffer == GL_FRONT_LEFT
|| m_current_read_buffer == GL_FRONT_RIGHT,
GL_INVALID_OPERATION);
}
// Some helper functions for converting float values to integer types
auto float_to_i8 = [](float f) -> GLchar {
return static_cast<GLchar>((0x7f * min(max(f, 0.0f), 1.0f) - 1) / 2);
};
auto float_to_i16 = [](float f) -> GLshort {
return static_cast<GLshort>((0x7fff * min(max(f, 0.0f), 1.0f) - 1) / 2);
};
auto float_to_i32 = [](float f) -> GLint {
return static_cast<GLint>((0x7fffffff * min(max(f, 0.0f), 1.0f) - 1) / 2);
};
auto float_to_u8 = [](float f) -> GLubyte {
return static_cast<GLubyte>(0xff * min(max(f, 0.0f), 1.0f));
};
auto float_to_u16 = [](float f) -> GLushort {
return static_cast<GLushort>(0xffff * min(max(f, 0.0f), 1.0f));
};
auto float_to_u32 = [](float f) -> GLuint {
return static_cast<GLuint>(0xffffffff * min(max(f, 0.0f), 1.0f));
};
u8 component_size = 0;
switch (type) {
case GL_BYTE:
case GL_UNSIGNED_BYTE:
component_size = 1;
break;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
component_size = 2;
break;
case GL_INT:
case GL_UNSIGNED_INT:
case GL_FLOAT:
component_size = 4;
break;
}
if (format == GL_DEPTH_COMPONENT) {
auto const row_stride = (width * component_size + m_pack_alignment - 1) / m_pack_alignment * m_pack_alignment;
// Read from depth buffer
for (GLsizei i = 0; i < height; ++i) {
for (GLsizei j = 0; j < width; ++j) {
float depth = m_rasterizer.get_depthbuffer_value(x + j, y + i);
auto char_ptr = reinterpret_cast<char*>(pixels) + i * row_stride + j * component_size;
switch (type) {
case GL_BYTE:
*reinterpret_cast<GLchar*>(char_ptr) = float_to_i8(depth);
break;
case GL_SHORT:
*reinterpret_cast<GLshort*>(char_ptr) = float_to_i16(depth);
break;
case GL_INT:
*reinterpret_cast<GLint*>(char_ptr) = float_to_i32(depth);
break;
case GL_UNSIGNED_BYTE:
*reinterpret_cast<GLubyte*>(char_ptr) = float_to_u8(depth);
break;
case GL_UNSIGNED_SHORT:
*reinterpret_cast<GLushort*>(char_ptr) = float_to_u16(depth);
break;
case GL_UNSIGNED_INT:
*reinterpret_cast<GLuint*>(char_ptr) = float_to_u32(depth);
break;
case GL_FLOAT:
*reinterpret_cast<GLfloat*>(char_ptr) = min(max(depth, 0.0f), 1.0f);
break;
}
}
}
return;
}
bool write_red = false;
bool write_green = false;
bool write_blue = false;
bool write_alpha = false;
size_t component_count = 0;
size_t red_offset = 0;
size_t green_offset = 0;
size_t blue_offset = 0;
size_t alpha_offset = 0;
char* red_ptr = nullptr;
char* green_ptr = nullptr;
char* blue_ptr = nullptr;
char* alpha_ptr = nullptr;
switch (format) {
case GL_RGB:
write_red = true;
write_green = true;
write_blue = true;
component_count = 3;
red_offset = 2;
green_offset = 1;
blue_offset = 0;
break;
case GL_RGBA:
write_red = true;
write_green = true;
write_blue = true;
write_alpha = true;
component_count = 4;
red_offset = 3;
green_offset = 2;
blue_offset = 1;
alpha_offset = 0;
break;
case GL_RED:
write_red = true;
component_count = 1;
red_offset = 0;
break;
case GL_GREEN:
write_green = true;
component_count = 1;
green_offset = 0;
break;
case GL_BLUE:
write_blue = true;
component_count = 1;
blue_offset = 0;
break;
case GL_ALPHA:
write_alpha = true;
component_count = 1;
alpha_offset = 0;
break;
}
auto const pixel_bytes = component_size * component_count;
auto const row_alignment_bytes = (m_pack_alignment - ((width * pixel_bytes) % m_pack_alignment)) % m_pack_alignment;
char* out_ptr = reinterpret_cast<char*>(pixels);
for (int i = 0; i < (int)height; ++i) {
for (int j = 0; j < (int)width; ++j) {
Gfx::RGBA32 color {};
if (m_current_read_buffer == GL_FRONT || m_current_read_buffer == GL_LEFT || m_current_read_buffer == GL_FRONT_LEFT) {
if (y + i >= m_frontbuffer->width() || x + j >= m_frontbuffer->height())
color = 0;
else
color = m_frontbuffer->scanline(y + i)[x + j];
} else {
color = m_rasterizer.get_color_buffer_pixel(x + j, y + i);
}
float red = ((color >> 24) & 0xff) / 255.0f;
float green = ((color >> 16) & 0xff) / 255.0f;
float blue = ((color >> 8) & 0xff) / 255.0f;
float alpha = (color & 0xff) / 255.0f;
// FIXME: Set up write pointers based on selected endianness (glPixelStore)
red_ptr = out_ptr + (component_size * red_offset);
green_ptr = out_ptr + (component_size * green_offset);
blue_ptr = out_ptr + (component_size * blue_offset);
alpha_ptr = out_ptr + (component_size * alpha_offset);
switch (type) {
case GL_BYTE:
if (write_red)
*reinterpret_cast<GLchar*>(red_ptr) = float_to_i8(red);
if (write_green)
*reinterpret_cast<GLchar*>(green_ptr) = float_to_i8(green);
if (write_blue)
*reinterpret_cast<GLchar*>(blue_ptr) = float_to_i8(blue);
if (write_alpha)
*reinterpret_cast<GLchar*>(alpha_ptr) = float_to_i8(alpha);
break;
case GL_UNSIGNED_BYTE:
if (write_red)
*reinterpret_cast<GLubyte*>(red_ptr) = float_to_u8(red);
if (write_green)
*reinterpret_cast<GLubyte*>(green_ptr) = float_to_u8(green);
if (write_blue)
*reinterpret_cast<GLubyte*>(blue_ptr) = float_to_u8(blue);
if (write_alpha)
*reinterpret_cast<GLubyte*>(alpha_ptr) = float_to_u8(alpha);
break;
case GL_SHORT:
if (write_red)
*reinterpret_cast<GLshort*>(red_ptr) = float_to_i16(red);
if (write_green)
*reinterpret_cast<GLshort*>(green_ptr) = float_to_i16(green);
if (write_blue)
*reinterpret_cast<GLshort*>(blue_ptr) = float_to_i16(blue);
if (write_alpha)
*reinterpret_cast<GLshort*>(alpha_ptr) = float_to_i16(alpha);
break;
case GL_UNSIGNED_SHORT:
if (write_red)
*reinterpret_cast<GLushort*>(red_ptr) = float_to_u16(red);
if (write_green)
*reinterpret_cast<GLushort*>(green_ptr) = float_to_u16(green);
if (write_blue)
*reinterpret_cast<GLushort*>(blue_ptr) = float_to_u16(blue);
if (write_alpha)
*reinterpret_cast<GLushort*>(alpha_ptr) = float_to_u16(alpha);
break;
case GL_INT:
if (write_red)
*reinterpret_cast<GLint*>(red_ptr) = float_to_i32(red);
if (write_green)
*reinterpret_cast<GLint*>(green_ptr) = float_to_i32(green);
if (write_blue)
*reinterpret_cast<GLint*>(blue_ptr) = float_to_i32(blue);
if (write_alpha)
*reinterpret_cast<GLint*>(alpha_ptr) = float_to_i32(alpha);
break;
case GL_UNSIGNED_INT:
if (write_red)
*reinterpret_cast<GLuint*>(red_ptr) = float_to_u32(red);
if (write_green)
*reinterpret_cast<GLuint*>(green_ptr) = float_to_u32(green);
if (write_blue)
*reinterpret_cast<GLuint*>(blue_ptr) = float_to_u32(blue);
if (write_alpha)
*reinterpret_cast<GLuint*>(alpha_ptr) = float_to_u32(alpha);
break;
case GL_FLOAT:
if (write_red)
*reinterpret_cast<GLfloat*>(red_ptr) = min(max(red, 0.0f), 1.0f);
if (write_green)
*reinterpret_cast<GLfloat*>(green_ptr) = min(max(green, 0.0f), 1.0f);
if (write_blue)
*reinterpret_cast<GLfloat*>(blue_ptr) = min(max(blue, 0.0f), 1.0f);
if (write_alpha)
*reinterpret_cast<GLfloat*>(alpha_ptr) = min(max(alpha, 0.0f), 1.0f);
break;
}
out_ptr += pixel_bytes;
}
out_ptr += row_alignment_bytes;
}
}
void SoftwareGLContext::gl_bind_texture(GLenum target, GLuint texture)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: We only support GL_TEXTURE_2D for now
RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM);
if (texture == 0) {
switch (target) {
case GL_TEXTURE_2D:
m_active_texture_unit->bind_texture_to_target(target, nullptr);
m_sampler_config_is_dirty = true;
return;
default:
VERIFY_NOT_REACHED();
return;
}
}
auto it = m_allocated_textures.find(texture);
RefPtr<Texture> texture_object;
// OpenGL 1.x supports binding texture names that were not previously generated by glGenTextures.
// If there is not an allocated texture, meaning it was not previously generated by glGenTextures,
// we can keep texture_object null to both allocate and bind the texture with the passed in texture name.
// FIXME: Later OpenGL versions such as 4.x enforce that texture names being bound were previously generated
// by glGenTextures.
if (it != m_allocated_textures.end())
texture_object = it->value;
// Binding a texture to a different target than it was first bound is an invalid operation
// FIXME: We only support GL_TEXTURE_2D for now
RETURN_WITH_ERROR_IF(target == GL_TEXTURE_2D && !texture_object.is_null() && !texture_object->is_texture_2d(), GL_INVALID_OPERATION);
if (!texture_object) {
// This is the first time the texture is bound. Allocate an actual texture object
switch (target) {
case GL_TEXTURE_2D:
texture_object = adopt_ref(*new Texture2D());
break;
default:
VERIFY_NOT_REACHED();
}
m_allocated_textures.set(texture, texture_object);
}
switch (target) {
case GL_TEXTURE_2D:
m_active_texture_unit->bind_texture_to_target(target, texture_object);
break;
}
m_sampler_config_is_dirty = true;
}
GLboolean SoftwareGLContext::gl_is_texture(GLuint texture)
{
RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, GL_FALSE);
if (texture == 0)
return GL_FALSE;
auto it = m_allocated_textures.find(texture);
if (it == m_allocated_textures.end())
return GL_FALSE;
return it->value.is_null() ? GL_FALSE : GL_TRUE;
}
void SoftwareGLContext::gl_active_texture(GLenum texture)
{
RETURN_WITH_ERROR_IF(texture < GL_TEXTURE0 || texture >= GL_TEXTURE0 + m_device_info.num_texture_units, GL_INVALID_ENUM);
m_active_texture_unit_index = texture - GL_TEXTURE0;
m_active_texture_unit = &m_texture_units.at(m_active_texture_unit_index);
}
void SoftwareGLContext::gl_get_booleanv(GLenum pname, GLboolean* data)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto optional_parameter = get_context_parameter(pname);
RETURN_WITH_ERROR_IF(!optional_parameter.has_value(), GL_INVALID_ENUM);
auto parameter = optional_parameter.release_value();
switch (parameter.type) {
case GL_BOOL:
*data = parameter.value.boolean_value ? GL_TRUE : GL_FALSE;
break;
case GL_DOUBLE:
*data = (parameter.value.double_value == 0.0) ? GL_FALSE : GL_TRUE;
break;
case GL_INT:
*data = (parameter.value.integer_value == 0) ? GL_FALSE : GL_TRUE;
break;
default:
VERIFY_NOT_REACHED();
}
}
void SoftwareGLContext::gl_get_doublev(GLenum pname, GLdouble* params)
{
get_floating_point(pname, params);
}
void SoftwareGLContext::gl_get_floatv(GLenum pname, GLfloat* params)
{
get_floating_point(pname, params);
}
template<typename T>
void SoftwareGLContext::get_floating_point(GLenum pname, T* params)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// Handle matrix retrieval first
auto flatten_and_assign_matrix = [&params](FloatMatrix4x4 const& matrix) {
auto elements = matrix.elements();
for (size_t i = 0; i < 4; ++i) {
for (size_t j = 0; j < 4; ++j) {
// Return transposed matrix since OpenGL defines them as column-major
params[i * 4 + j] = static_cast<T>(elements[j][i]);
}
}
};
switch (pname) {
case GL_MODELVIEW_MATRIX:
if (m_current_matrix_mode == GL_MODELVIEW)
flatten_and_assign_matrix(m_model_view_matrix);
else if (m_model_view_matrix_stack.is_empty())
flatten_and_assign_matrix(FloatMatrix4x4::identity());
else
flatten_and_assign_matrix(m_model_view_matrix_stack.last());
return;
case GL_PROJECTION_MATRIX:
if (m_current_matrix_mode == GL_PROJECTION)
flatten_and_assign_matrix(m_projection_matrix);
else if (m_projection_matrix_stack.is_empty())
flatten_and_assign_matrix(FloatMatrix4x4::identity());
else
flatten_and_assign_matrix(m_projection_matrix_stack.last());
return;
}
// Regular parameters
auto optional_parameter = get_context_parameter(pname);
RETURN_WITH_ERROR_IF(!optional_parameter.has_value(), GL_INVALID_ENUM);
auto parameter = optional_parameter.release_value();
switch (parameter.type) {
case GL_BOOL:
*params = parameter.value.boolean_value ? GL_TRUE : GL_FALSE;
break;
case GL_DOUBLE:
for (size_t i = 0; i < parameter.count; ++i)
params[i] = parameter.value.double_list[i];
break;
case GL_INT:
for (size_t i = 0; i < parameter.count; ++i)
params[i] = parameter.value.integer_list[i];
break;
default:
VERIFY_NOT_REACHED();
}
}
void SoftwareGLContext::gl_get_integerv(GLenum pname, GLint* data)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto optional_parameter = get_context_parameter(pname);
RETURN_WITH_ERROR_IF(!optional_parameter.has_value(), GL_INVALID_ENUM);
auto parameter = optional_parameter.release_value();
switch (parameter.type) {
case GL_BOOL:
*data = parameter.value.boolean_value ? GL_TRUE : GL_FALSE;
break;
case GL_DOUBLE: {
double const int_range = static_cast<double>(NumericLimits<GLint>::max()) - NumericLimits<GLint>::min();
for (size_t i = 0; i < parameter.count; ++i) {
double const result_factor = (clamp(parameter.value.double_list[i], -1.0, 1.0) + 1.0) / 2.0;
data[i] = static_cast<GLint>(NumericLimits<GLint>::min() + result_factor * int_range);
}
break;
}
case GL_INT:
for (size_t i = 0; i < parameter.count; ++i)
data[i] = parameter.value.integer_list[i];
break;
default:
VERIFY_NOT_REACHED();
}
}
void SoftwareGLContext::gl_depth_mask(GLboolean flag)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_depth_mask, flag);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto options = m_rasterizer.options();
options.enable_depth_write = (flag != GL_FALSE);
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_enable_client_state(GLenum cap)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
switch (cap) {
case GL_VERTEX_ARRAY:
m_client_side_vertex_array_enabled = true;
break;
case GL_COLOR_ARRAY:
m_client_side_color_array_enabled = true;
break;
case GL_TEXTURE_COORD_ARRAY:
m_client_side_texture_coord_array_enabled[m_client_active_texture] = true;
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
}
void SoftwareGLContext::gl_disable_client_state(GLenum cap)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
switch (cap) {
case GL_VERTEX_ARRAY:
m_client_side_vertex_array_enabled = false;
break;
case GL_COLOR_ARRAY:
m_client_side_color_array_enabled = false;
break;
case GL_TEXTURE_COORD_ARRAY:
m_client_side_texture_coord_array_enabled[m_client_active_texture] = false;
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
}
void SoftwareGLContext::gl_client_active_texture(GLenum target)
{
RETURN_WITH_ERROR_IF(target < GL_TEXTURE0 || target >= GL_TEXTURE0 + m_device_info.num_texture_units, GL_INVALID_ENUM);
m_client_active_texture = target - GL_TEXTURE0;
}
void SoftwareGLContext::gl_vertex_pointer(GLint size, GLenum type, GLsizei stride, const void* pointer)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(size == 2 || size == 3 || size == 4), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(!(type == GL_SHORT || type == GL_INT || type == GL_FLOAT || type == GL_DOUBLE), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(stride < 0, GL_INVALID_VALUE);
m_client_vertex_pointer.size = size;
m_client_vertex_pointer.type = type;
m_client_vertex_pointer.stride = stride;
m_client_vertex_pointer.pointer = pointer;
}
void SoftwareGLContext::gl_color_pointer(GLint size, GLenum type, GLsizei stride, const void* pointer)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(size == 3 || size == 4), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(!(type == GL_BYTE
|| type == GL_UNSIGNED_BYTE
|| type == GL_SHORT
|| type == GL_UNSIGNED_SHORT
|| type == GL_INT
|| type == GL_UNSIGNED_INT
|| type == GL_FLOAT
|| type == GL_DOUBLE),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(stride < 0, GL_INVALID_VALUE);
m_client_color_pointer.size = size;
m_client_color_pointer.type = type;
m_client_color_pointer.stride = stride;
m_client_color_pointer.pointer = pointer;
}
void SoftwareGLContext::gl_tex_coord_pointer(GLint size, GLenum type, GLsizei stride, const void* pointer)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(size == 1 || size == 2 || size == 3 || size == 4), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(!(type == GL_SHORT || type == GL_INT || type == GL_FLOAT || type == GL_DOUBLE), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(stride < 0, GL_INVALID_VALUE);
auto& tex_coord_pointer = m_client_tex_coord_pointer[m_client_active_texture];
tex_coord_pointer.size = size;
tex_coord_pointer.type = type;
tex_coord_pointer.stride = stride;
tex_coord_pointer.pointer = pointer;
}
void SoftwareGLContext::gl_tex_env(GLenum target, GLenum pname, GLfloat param)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_env, target, pname, param);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: We currently only support a subset of possible target values. Implement the rest!
RETURN_WITH_ERROR_IF(target != GL_TEXTURE_ENV, GL_INVALID_ENUM);
// FIXME: We currently only support a subset of possible pname values. Implement the rest!
RETURN_WITH_ERROR_IF(pname != GL_TEXTURE_ENV_MODE, GL_INVALID_ENUM);
auto param_enum = static_cast<GLenum>(param);
switch (param_enum) {
case GL_MODULATE:
case GL_REPLACE:
case GL_DECAL:
m_active_texture_unit->set_env_mode(param_enum);
break;
default:
// FIXME: We currently only support a subset of possible param values. Implement the rest!
dbgln_if(GL_DEBUG, "gl_tex_env({:#x}, {:#x}, {}): param unimplemented", target, pname, param);
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
}
void SoftwareGLContext::gl_draw_arrays(GLenum mode, GLint first, GLsizei count)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_draw_arrays, mode, first, count);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: Some modes are still missing (GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES)
RETURN_WITH_ERROR_IF(!(mode == GL_TRIANGLE_STRIP
|| mode == GL_TRIANGLE_FAN
|| mode == GL_TRIANGLES
|| mode == GL_QUADS
|| mode == GL_QUAD_STRIP
|| mode == GL_POLYGON),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(count < 0, GL_INVALID_VALUE);
// At least the vertex array needs to be enabled
if (!m_client_side_vertex_array_enabled)
return;
auto last = first + count;
gl_begin(mode);
for (int i = first; i < last; i++) {
for (size_t t = 0; t < m_client_tex_coord_pointer.size(); ++t) {
if (m_client_side_texture_coord_array_enabled[t]) {
float tex_coords[4] { 0, 0, 0, 0 };
read_from_vertex_attribute_pointer(m_client_tex_coord_pointer[t], i, tex_coords, false);
gl_multi_tex_coord(GL_TEXTURE0 + t, tex_coords[0], tex_coords[1], tex_coords[2], tex_coords[3]);
}
}
if (m_client_side_color_array_enabled) {
float color[4] { 0, 0, 0, 1 };
read_from_vertex_attribute_pointer(m_client_color_pointer, i, color, true);
gl_color(color[0], color[1], color[2], color[3]);
}
float vertex[4] { 0, 0, 0, 1 };
read_from_vertex_attribute_pointer(m_client_vertex_pointer, i, vertex, false);
gl_vertex(vertex[0], vertex[1], vertex[2], vertex[3]);
}
gl_end();
}
void SoftwareGLContext::gl_draw_elements(GLenum mode, GLsizei count, GLenum type, const void* indices)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_draw_elements, mode, count, type, indices);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: Some modes are still missing (GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES)
RETURN_WITH_ERROR_IF(!(mode == GL_TRIANGLE_STRIP
|| mode == GL_TRIANGLE_FAN
|| mode == GL_TRIANGLES
|| mode == GL_QUADS
|| mode == GL_QUAD_STRIP
|| mode == GL_POLYGON),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(type == GL_UNSIGNED_BYTE
|| type == GL_UNSIGNED_SHORT
|| type == GL_UNSIGNED_INT),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(count < 0, GL_INVALID_VALUE);
// At least the vertex array needs to be enabled
if (!m_client_side_vertex_array_enabled)
return;
gl_begin(mode);
for (int index = 0; index < count; index++) {
int i = 0;
switch (type) {
case GL_UNSIGNED_BYTE:
i = reinterpret_cast<const GLubyte*>(indices)[index];
break;
case GL_UNSIGNED_SHORT:
i = reinterpret_cast<const GLushort*>(indices)[index];
break;
case GL_UNSIGNED_INT:
i = reinterpret_cast<const GLuint*>(indices)[index];
break;
}
for (size_t t = 0; t < m_client_tex_coord_pointer.size(); ++t) {
if (m_client_side_texture_coord_array_enabled[t]) {
float tex_coords[4] { 0, 0, 0, 0 };
read_from_vertex_attribute_pointer(m_client_tex_coord_pointer[t], i, tex_coords, false);
gl_multi_tex_coord(GL_TEXTURE0 + t, tex_coords[0], tex_coords[1], tex_coords[2], tex_coords[3]);
}
}
if (m_client_side_color_array_enabled) {
float color[4] { 0, 0, 0, 1 };
read_from_vertex_attribute_pointer(m_client_color_pointer, i, color, true);
gl_color(color[0], color[1], color[2], color[3]);
}
float vertex[4] { 0, 0, 0, 1 };
read_from_vertex_attribute_pointer(m_client_vertex_pointer, i, vertex, false);
gl_vertex(vertex[0], vertex[1], vertex[2], vertex[3]);
}
gl_end();
}
void SoftwareGLContext::gl_draw_pixels(GLsizei width, GLsizei height, GLenum format, GLenum type, const void* data)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_draw_pixels, width, height, format, type, data);
RETURN_WITH_ERROR_IF(format < GL_COLOR_INDEX || format > GL_BGRA, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF((type < GL_BYTE || type > GL_FLOAT)
&& (type < GL_UNSIGNED_BYTE_3_3_2 || type > GL_UNSIGNED_INT_10_10_10_2)
&& (type < GL_UNSIGNED_BYTE_2_3_3_REV || type > GL_UNSIGNED_INT_2_10_10_10_REV),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(type == GL_BITMAP && !(format == GL_COLOR_INDEX || format == GL_STENCIL_INDEX), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(width < 0 || height < 0, GL_INVALID_VALUE);
// FIXME: GL_INVALID_OPERATION is generated if format is GL_STENCIL_INDEX and there is no stencil buffer
// FIXME: GL_INVALID_OPERATION is generated if format is GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA,
// GL_BGR, GL_BGRA, GL_LUMINANCE, or GL_LUMINANCE_ALPHA, and the GL is in color index mode
RETURN_WITH_ERROR_IF(format != GL_RGB
&& (type == GL_UNSIGNED_BYTE_3_3_2
|| type == GL_UNSIGNED_BYTE_2_3_3_REV
|| type == GL_UNSIGNED_SHORT_5_6_5
|| type == GL_UNSIGNED_SHORT_5_6_5_REV),
GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(format == GL_RGBA || format == GL_BGRA)
&& (type == GL_UNSIGNED_SHORT_4_4_4_4
|| type == GL_UNSIGNED_SHORT_4_4_4_4_REV
|| type == GL_UNSIGNED_SHORT_5_5_5_1
|| type == GL_UNSIGNED_SHORT_1_5_5_5_REV
|| type == GL_UNSIGNED_INT_8_8_8_8
|| type == GL_UNSIGNED_INT_8_8_8_8_REV
|| type == GL_UNSIGNED_INT_10_10_10_2
|| type == GL_UNSIGNED_INT_2_10_10_10_REV),
GL_INVALID_OPERATION);
// FIXME: GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the GL_PIXEL_UNPACK_BUFFER
// target and the buffer object's data store is currently mapped.
// FIXME: GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the GL_PIXEL_UNPACK_BUFFER
// target and the data would be unpacked from the buffer object such that the memory reads required would
// exceed the data store size.
// FIXME: GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the GL_PIXEL_UNPACK_BUFFER
// target and data is not evenly divisible into the number of bytes needed to store in memory a datum
// indicated by type.
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: we only support RGBA + UNSIGNED_BYTE and DEPTH_COMPONENT + UNSIGNED_SHORT, implement all combinations!
if (!((format == GL_RGBA && type == GL_UNSIGNED_BYTE) || (format == GL_DEPTH_COMPONENT && type == GL_UNSIGNED_SHORT))) {
dbgln_if(GL_DEBUG, "gl_draw_pixels(): support for format {:#x} and/or type {:#x} not implemented", format, type);
return;
}
// FIXME: implement support for pixel parameters such as GL_UNPACK_ALIGNMENT
if (format == GL_RGBA) {
auto bitmap_or_error = Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, { width, height });
RETURN_WITH_ERROR_IF(bitmap_or_error.is_error(), GL_OUT_OF_MEMORY);
auto bitmap = bitmap_or_error.release_value();
auto pixel_data = static_cast<u32 const*>(data);
for (int y = 0; y < height; ++y)
for (int x = 0; x < width; ++x)
bitmap->set_pixel(x, y, Color::from_rgba(*(pixel_data++)));
m_rasterizer.blit_to_color_buffer_at_raster_position(bitmap);
} else if (format == GL_DEPTH_COMPONENT) {
Vector<float> depth_values;
depth_values.ensure_capacity(width * height);
auto depth_data = static_cast<u16 const*>(data);
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
auto u16_value = *(depth_data++);
auto float_value = static_cast<float>(u16_value) / NumericLimits<u16>::max();
depth_values.append(float_value);
}
}
m_rasterizer.blit_to_depth_buffer_at_raster_position(depth_values, width, height);
} else {
VERIFY_NOT_REACHED();
}
}
void SoftwareGLContext::gl_depth_range(GLdouble min, GLdouble max)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_depth_range, min, max);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto options = m_rasterizer.options();
options.depth_min = clamp(min, 0.f, 1.f);
options.depth_max = clamp(max, 0.f, 1.f);
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_depth_func(GLenum func)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_depth_func, func);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(func == GL_NEVER
|| func == GL_LESS
|| func == GL_EQUAL
|| func == GL_LEQUAL
|| func == GL_GREATER
|| func == GL_NOTEQUAL
|| func == GL_GEQUAL
|| func == GL_ALWAYS),
GL_INVALID_ENUM);
auto options = m_rasterizer.options();
switch (func) {
case GL_NEVER:
options.depth_func = SoftGPU::DepthTestFunction::Never;
break;
case GL_ALWAYS:
options.depth_func = SoftGPU::DepthTestFunction::Always;
break;
case GL_LESS:
options.depth_func = SoftGPU::DepthTestFunction::Less;
break;
case GL_LEQUAL:
options.depth_func = SoftGPU::DepthTestFunction::LessOrEqual;
break;
case GL_EQUAL:
options.depth_func = SoftGPU::DepthTestFunction::Equal;
break;
case GL_NOTEQUAL:
options.depth_func = SoftGPU::DepthTestFunction::NotEqual;
break;
case GL_GEQUAL:
options.depth_func = SoftGPU::DepthTestFunction::GreaterOrEqual;
break;
case GL_GREATER:
options.depth_func = SoftGPU::DepthTestFunction::Greater;
break;
default:
VERIFY_NOT_REACHED();
}
m_rasterizer.set_options(options);
}
// General helper function to read arbitrary vertex attribute data into a float array
void SoftwareGLContext::read_from_vertex_attribute_pointer(VertexAttribPointer const& attrib, int index, float* elements, bool normalize)
{
auto byte_ptr = reinterpret_cast<const char*>(attrib.pointer);
size_t stride = attrib.stride;
switch (attrib.type) {
case GL_BYTE: {
if (stride == 0)
stride = sizeof(GLbyte) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
elements[i] = *(reinterpret_cast<const GLbyte*>(byte_ptr + stride * index) + i);
if (normalize)
elements[i] /= 0x80;
}
break;
}
case GL_UNSIGNED_BYTE: {
if (stride == 0)
stride = sizeof(GLubyte) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
elements[i] = *(reinterpret_cast<const GLubyte*>(byte_ptr + stride * index) + i);
if (normalize)
elements[i] /= 0xff;
}
break;
}
case GL_SHORT: {
if (stride == 0)
stride = sizeof(GLshort) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
elements[i] = *(reinterpret_cast<const GLshort*>(byte_ptr + stride * index) + i);
if (normalize)
elements[i] /= 0x8000;
}
break;
}
case GL_UNSIGNED_SHORT: {
if (stride == 0)
stride = sizeof(GLushort) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
elements[i] = *(reinterpret_cast<const GLushort*>(byte_ptr + stride * index) + i);
if (normalize)
elements[i] /= 0xffff;
}
break;
}
case GL_INT: {
if (stride == 0)
stride = sizeof(GLint) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
elements[i] = *(reinterpret_cast<const GLint*>(byte_ptr + stride * index) + i);
if (normalize)
elements[i] /= 0x80000000;
}
break;
}
case GL_UNSIGNED_INT: {
if (stride == 0)
stride = sizeof(GLuint) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
elements[i] = *(reinterpret_cast<const GLuint*>(byte_ptr + stride * index) + i);
if (normalize)
elements[i] /= 0xffffffff;
}
break;
}
case GL_FLOAT: {
if (stride == 0)
stride = sizeof(GLfloat) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
elements[i] = *(reinterpret_cast<const GLfloat*>(byte_ptr + stride * index) + i);
}
break;
}
case GL_DOUBLE: {
if (stride == 0)
stride = sizeof(GLdouble) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
elements[i] = static_cast<float>(*(reinterpret_cast<const GLdouble*>(byte_ptr + stride * index) + i));
}
break;
}
}
}
void SoftwareGLContext::gl_color_mask(GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha)
{
auto options = m_rasterizer.options();
auto mask = options.color_mask;
if (!red)
mask &= ~0x000000ff;
else
mask |= 0x000000ff;
if (!green)
mask &= ~0x0000ff00;
else
mask |= 0x0000ff00;
if (!blue)
mask &= ~0x00ff0000;
else
mask |= 0x00ff0000;
if (!alpha)
mask &= ~0xff000000;
else
mask |= 0xff000000;
options.color_mask = mask;
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_polygon_mode(GLenum face, GLenum mode)
{
RETURN_WITH_ERROR_IF(!(face == GL_BACK || face == GL_FRONT || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(mode == GL_POINT || mode == GL_LINE || mode == GL_FILL), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto options = m_rasterizer.options();
// FIXME: This must support different polygon modes for front- and backside
if (face == GL_BACK) {
dbgln_if(GL_DEBUG, "gl_polygon_mode(GL_BACK, {:#x}): unimplemented", mode);
return;
}
auto map_mode = [](GLenum mode) -> SoftGPU::PolygonMode {
switch (mode) {
case GL_FILL:
return SoftGPU::PolygonMode::Fill;
case GL_LINE:
return SoftGPU::PolygonMode::Line;
case GL_POINT:
return SoftGPU::PolygonMode::Point;
default:
VERIFY_NOT_REACHED();
}
};
options.polygon_mode = map_mode(mode);
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_polygon_offset(GLfloat factor, GLfloat units)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_polygon_offset, factor, units);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto rasterizer_options = m_rasterizer.options();
rasterizer_options.depth_offset_factor = factor;
rasterizer_options.depth_offset_constant = units;
m_rasterizer.set_options(rasterizer_options);
}
void SoftwareGLContext::gl_fogfv(GLenum pname, GLfloat* params)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_fogfv, pname, params);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto options = m_rasterizer.options();
switch (pname) {
case GL_FOG_COLOR:
options.fog_color = { params[0], params[1], params[2], params[3] };
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_fogf(GLenum pname, GLfloat param)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_fogf, pname, param);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(param < 0.0f, GL_INVALID_VALUE);
auto options = m_rasterizer.options();
switch (pname) {
case GL_FOG_DENSITY:
options.fog_density = param;
break;
case GL_FOG_END:
options.fog_end = param;
break;
case GL_FOG_START:
options.fog_start = param;
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_fogi(GLenum pname, GLint param)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_fogi, pname, param);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(param != GL_LINEAR && param != GL_EXP && param != GL_EXP2, GL_INVALID_ENUM);
auto options = m_rasterizer.options();
switch (pname) {
case GL_FOG_MODE:
switch (param) {
case GL_LINEAR:
options.fog_mode = SoftGPU::FogMode::Linear;
break;
case GL_EXP:
options.fog_mode = SoftGPU::FogMode::Exp;
break;
case GL_EXP2:
options.fog_mode = SoftGPU::FogMode::Exp2;
break;
}
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_pixel_storei(GLenum pname, GLint param)
{
// FIXME: Implement missing parameters
switch (pname) {
case GL_PACK_ALIGNMENT:
RETURN_WITH_ERROR_IF(param != 1 && param != 2 && param != 4 && param != 8, GL_INVALID_VALUE);
m_pack_alignment = param;
break;
case GL_UNPACK_ROW_LENGTH:
RETURN_WITH_ERROR_IF(param < 0, GL_INVALID_VALUE);
m_unpack_row_length = static_cast<size_t>(param);
break;
case GL_UNPACK_ALIGNMENT:
RETURN_WITH_ERROR_IF(param != 1 && param != 2 && param != 4 && param != 8, GL_INVALID_VALUE);
m_unpack_alignment = param;
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
break;
}
}
void SoftwareGLContext::gl_scissor(GLint x, GLint y, GLsizei width, GLsizei height)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_scissor, x, y, width, height);
RETURN_WITH_ERROR_IF(width < 0 || height < 0, GL_INVALID_VALUE);
auto options = m_rasterizer.options();
options.scissor_box = { x, y, width, height };
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_stencil_func_separate(GLenum face, GLenum func, GLint ref, GLuint mask)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_stencil_func_separate, face, func, ref, mask);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(func == GL_NEVER
|| func == GL_LESS
|| func == GL_LEQUAL
|| func == GL_GREATER
|| func == GL_GEQUAL
|| func == GL_EQUAL
|| func == GL_NOTEQUAL
|| func == GL_ALWAYS),
GL_INVALID_ENUM);
ref = clamp(ref, 0, (1 << m_device_info.stencil_bits) - 1);
StencilFunctionOptions new_options = { func, ref, mask };
if (face == GL_FRONT || face == GL_FRONT_AND_BACK)
m_stencil_function[Face::Front] = new_options;
if (face == GL_BACK || face == GL_FRONT_AND_BACK)
m_stencil_function[Face::Back] = new_options;
m_stencil_configuration_dirty = true;
}
void SoftwareGLContext::gl_stencil_mask_separate(GLenum face, GLuint mask)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_stencil_mask_separate, face, mask);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
if (face == GL_FRONT || face == GL_FRONT_AND_BACK)
m_stencil_operation[Face::Front].write_mask = mask;
if (face == GL_BACK || face == GL_FRONT_AND_BACK)
m_stencil_operation[Face::Back].write_mask = mask;
m_stencil_configuration_dirty = true;
}
void SoftwareGLContext::gl_stencil_op_separate(GLenum face, GLenum sfail, GLenum dpfail, GLenum dppass)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_stencil_op_separate, face, sfail, dpfail, dppass);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM);
auto is_valid_op = [](GLenum op) -> bool {
return op == GL_KEEP || op == GL_ZERO || op == GL_REPLACE || op == GL_INCR || op == GL_INCR_WRAP
|| op == GL_DECR || op == GL_DECR_WRAP || op == GL_INVERT;
};
RETURN_WITH_ERROR_IF(!is_valid_op(sfail), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!is_valid_op(dpfail), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!is_valid_op(dppass), GL_INVALID_ENUM);
auto update_stencil_operation = [&](Face face, GLenum sfail, GLenum dpfail, GLenum dppass) {
auto& stencil_operation = m_stencil_operation[face];
stencil_operation.op_fail = sfail;
stencil_operation.op_depth_fail = dpfail;
stencil_operation.op_pass = dppass;
};
if (face == GL_FRONT || face == GL_FRONT_AND_BACK)
update_stencil_operation(Face::Front, sfail, dpfail, dppass);
if (face == GL_BACK || face == GL_FRONT_AND_BACK)
update_stencil_operation(Face::Back, sfail, dpfail, dppass);
m_stencil_configuration_dirty = true;
}
void SoftwareGLContext::gl_normal(GLfloat nx, GLfloat ny, GLfloat nz)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_normal, nx, ny, nz);
m_current_vertex_normal = { nx, ny, nz };
}
void SoftwareGLContext::gl_normal_pointer(GLenum type, GLsizei stride, void const* pointer)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(type != GL_BYTE
&& type != GL_SHORT
&& type != GL_INT
&& type != GL_FLOAT
&& type != GL_DOUBLE,
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(stride < 0, GL_INVALID_VALUE);
dbgln_if(GL_DEBUG, "gl_normal_pointer({:#x}, {}, {:p}): unimplemented", type, stride, pointer);
}
void SoftwareGLContext::gl_raster_pos(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_raster_pos, x, y, z, w);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
m_rasterizer.set_raster_position({ x, y, z, w }, m_model_view_matrix, m_projection_matrix);
}
void SoftwareGLContext::gl_line_width(GLfloat width)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_line_width, width);
RETURN_WITH_ERROR_IF(width <= 0, GL_INVALID_VALUE);
m_line_width = width;
}
void SoftwareGLContext::gl_push_attrib(GLbitfield mask)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_push_attrib, mask);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: implement
dbgln_if(GL_DEBUG, "SoftwareGLContext FIXME: implement gl_push_attrib({})", mask);
}
void SoftwareGLContext::gl_pop_attrib()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_pop_attrib);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: implement
dbgln_if(GL_DEBUG, "SoftwareGLContext FIXME: implement gl_pop_attrib()");
}
void SoftwareGLContext::gl_light_model(GLenum pname, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_light_model, pname, x, y, z, w);
RETURN_WITH_ERROR_IF(!(pname == GL_LIGHT_MODEL_AMBIENT
|| pname == GL_LIGHT_MODEL_TWO_SIDE),
GL_INVALID_ENUM);
auto lighting_params = m_rasterizer.light_model();
bool update_lighting_model = false;
switch (pname) {
case GL_LIGHT_MODEL_AMBIENT:
lighting_params.scene_ambient_color = { x, y, z, w };
update_lighting_model = true;
break;
case GL_LIGHT_MODEL_TWO_SIDE:
VERIFY(y == 0.0f && z == 0.0f && w == 0.0f);
lighting_params.two_sided_lighting = x;
update_lighting_model = true;
break;
case GL_LIGHT_MODEL_LOCAL_VIEWER:
// 0 means the viewer is at infinity
// 1 means they're in local (eye) space
lighting_params.viewer_at_infinity = (x != 1.0f);
update_lighting_model = true;
break;
default:
VERIFY_NOT_REACHED();
}
if (update_lighting_model)
m_rasterizer.set_light_model_params(lighting_params);
}
void SoftwareGLContext::gl_bitmap(GLsizei width, GLsizei height, GLfloat xorig, GLfloat yorig, GLfloat xmove, GLfloat ymove, GLubyte const* bitmap)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_bitmap, width, height, xorig, yorig, xmove, ymove, bitmap);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
if (bitmap != nullptr) {
// FIXME: implement
dbgln_if(GL_DEBUG, "gl_bitmap({}, {}, {}, {}, {}, {}, {}): unimplemented", width, height, xorig, yorig, xmove, ymove, bitmap);
}
auto raster_position = m_rasterizer.raster_position();
raster_position.window_coordinates += { xmove, ymove, 0.f, 0.f };
m_rasterizer.set_raster_position(raster_position);
}
void SoftwareGLContext::gl_copy_tex_image_2d(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height, GLint border)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_copy_tex_image_2d, target, level, internalformat, x, y, width, height, border);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: implement
dbgln_if(GL_DEBUG, "SoftwareGLContext FIXME: implement gl_copy_tex_image_2d({:#x}, {}, {:#x}, {}, {}, {}, {}, {})",
target, level, internalformat, x, y, width, height, border);
}
void SoftwareGLContext::gl_get_tex_parameter_integerv(GLenum target, GLint level, GLenum pname, GLint* params)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: support targets other than GL_TEXTURE_2D
RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM);
// FIXME: support other parameter names
RETURN_WITH_ERROR_IF(pname < GL_TEXTURE_WIDTH || pname > GL_TEXTURE_HEIGHT, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(level < 0 || level > Texture2D::LOG2_MAX_TEXTURE_SIZE, GL_INVALID_VALUE);
// FIXME: GL_INVALID_VALUE is generated if target is GL_TEXTURE_BUFFER and level is not zero
// FIXME: GL_INVALID_OPERATION is generated if GL_TEXTURE_COMPRESSED_IMAGE_SIZE is queried on texture images with an uncompressed internal format or on proxy targets
switch (pname) {
case GL_TEXTURE_HEIGHT:
*params = m_active_texture_unit->bound_texture_2d()->height_at_lod(level);
break;
case GL_TEXTURE_WIDTH:
*params = m_active_texture_unit->bound_texture_2d()->width_at_lod(level);
break;
}
}
void SoftwareGLContext::gl_rect(GLdouble x1, GLdouble y1, GLdouble x2, GLdouble y2)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_rect, x1, y1, x2, y2);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
gl_begin(GL_POLYGON);
gl_vertex(x1, y1, 0.0, 0.0);
gl_vertex(x2, y1, 0.0, 0.0);
gl_vertex(x2, y2, 0.0, 0.0);
gl_vertex(x1, y2, 0.0, 0.0);
gl_end();
}
void SoftwareGLContext::gl_tex_gen(GLenum coord, GLenum pname, GLint param)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_gen, coord, pname, param);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(coord < GL_S || coord > GL_Q, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(pname != GL_TEXTURE_GEN_MODE, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(param != GL_EYE_LINEAR
&& param != GL_OBJECT_LINEAR
&& param != GL_SPHERE_MAP
&& param != GL_NORMAL_MAP
&& param != GL_REFLECTION_MAP,
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF((coord == GL_R || coord == GL_Q) && param == GL_SPHERE_MAP, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(coord == GL_Q && (param == GL_REFLECTION_MAP || param == GL_NORMAL_MAP), GL_INVALID_ENUM);
GLenum const capability = GL_TEXTURE_GEN_S + (coord - GL_S);
texture_coordinate_generation(m_active_texture_unit_index, capability).generation_mode = param;
m_texcoord_generation_dirty = true;
}
void SoftwareGLContext::gl_tex_gen_floatv(GLenum coord, GLenum pname, GLfloat const* params)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_gen_floatv, coord, pname, params);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(coord < GL_S || coord > GL_Q, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(pname != GL_TEXTURE_GEN_MODE
&& pname != GL_OBJECT_PLANE
&& pname != GL_EYE_PLANE,
GL_INVALID_ENUM);
GLenum const capability = GL_TEXTURE_GEN_S + (coord - GL_S);
switch (pname) {
case GL_TEXTURE_GEN_MODE: {
auto param = static_cast<GLenum>(params[0]);
RETURN_WITH_ERROR_IF(param != GL_EYE_LINEAR
&& param != GL_OBJECT_LINEAR
&& param != GL_SPHERE_MAP
&& param != GL_NORMAL_MAP
&& param != GL_REFLECTION_MAP,
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF((coord == GL_R || coord == GL_Q) && param == GL_SPHERE_MAP, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(coord == GL_Q && (param == GL_REFLECTION_MAP || param == GL_NORMAL_MAP), GL_INVALID_ENUM);
texture_coordinate_generation(m_active_texture_unit_index, capability).generation_mode = param;
break;
}
case GL_OBJECT_PLANE:
texture_coordinate_generation(m_active_texture_unit_index, capability).object_plane_coefficients = { params[0], params[1], params[2], params[3] };
break;
case GL_EYE_PLANE: {
auto const& inverse_model_view = m_model_view_matrix.inverse();
auto input_coefficients = FloatVector4 { params[0], params[1], params[2], params[3] };
// Note: we are allowed to store transformed coefficients here, according to the documentation on
// `glGetTexGen`:
//
// "The returned values are those maintained in eye coordinates. They are not equal to the values
// specified using glTexGen, unless the modelview matrix was identity when glTexGen was called."
texture_coordinate_generation(m_active_texture_unit_index, capability).eye_plane_coefficients = inverse_model_view * input_coefficients;
break;
}
default:
VERIFY_NOT_REACHED();
}
m_texcoord_generation_dirty = true;
}
void SoftwareGLContext::present()
{
m_rasterizer.blit_color_buffer_to(*m_frontbuffer);
}
void SoftwareGLContext::sync_device_config()
{
sync_device_sampler_config();
sync_device_texcoord_config();
sync_light_state();
sync_stencil_configuration();
}
void SoftwareGLContext::sync_device_sampler_config()
{
if (!m_sampler_config_is_dirty)
return;
m_sampler_config_is_dirty = false;
for (unsigned i = 0; i < m_texture_units.size(); ++i) {
SoftGPU::SamplerConfig config;
if (!m_texture_units[i].texture_2d_enabled())
continue;
auto texture = m_texture_units[i].bound_texture_2d();
config.bound_image = texture.is_null() ? nullptr : texture->device_image();
auto const& sampler = texture->sampler();
switch (sampler.min_filter()) {
case GL_NEAREST:
config.texture_min_filter = SoftGPU::TextureFilter::Nearest;
config.mipmap_filter = SoftGPU::MipMapFilter::None;
break;
case GL_LINEAR:
config.texture_min_filter = SoftGPU::TextureFilter::Linear;
config.mipmap_filter = SoftGPU::MipMapFilter::None;
break;
case GL_NEAREST_MIPMAP_NEAREST:
config.texture_min_filter = SoftGPU::TextureFilter::Nearest;
config.mipmap_filter = SoftGPU::MipMapFilter::Nearest;
break;
case GL_LINEAR_MIPMAP_NEAREST:
config.texture_min_filter = SoftGPU::TextureFilter::Nearest;
config.mipmap_filter = SoftGPU::MipMapFilter::Linear;
break;
case GL_NEAREST_MIPMAP_LINEAR:
config.texture_min_filter = SoftGPU::TextureFilter::Linear;
config.mipmap_filter = SoftGPU::MipMapFilter::Nearest;
break;
case GL_LINEAR_MIPMAP_LINEAR:
config.texture_min_filter = SoftGPU::TextureFilter::Linear;
config.mipmap_filter = SoftGPU::MipMapFilter::Linear;
break;
default:
VERIFY_NOT_REACHED();
}
switch (sampler.mag_filter()) {
case GL_NEAREST:
config.texture_mag_filter = SoftGPU::TextureFilter::Nearest;
break;
case GL_LINEAR:
config.texture_mag_filter = SoftGPU::TextureFilter::Linear;
break;
default:
VERIFY_NOT_REACHED();
}
switch (sampler.wrap_s_mode()) {
case GL_CLAMP:
config.texture_wrap_u = SoftGPU::TextureWrapMode::Clamp;
break;
case GL_CLAMP_TO_BORDER:
config.texture_wrap_u = SoftGPU::TextureWrapMode::ClampToBorder;
break;
case GL_CLAMP_TO_EDGE:
config.texture_wrap_u = SoftGPU::TextureWrapMode::ClampToEdge;
break;
case GL_REPEAT:
config.texture_wrap_u = SoftGPU::TextureWrapMode::Repeat;
break;
case GL_MIRRORED_REPEAT:
config.texture_wrap_u = SoftGPU::TextureWrapMode::MirroredRepeat;
break;
default:
VERIFY_NOT_REACHED();
}
switch (sampler.wrap_t_mode()) {
case GL_CLAMP:
config.texture_wrap_v = SoftGPU::TextureWrapMode::Clamp;
break;
case GL_CLAMP_TO_BORDER:
config.texture_wrap_v = SoftGPU::TextureWrapMode::ClampToBorder;
break;
case GL_CLAMP_TO_EDGE:
config.texture_wrap_v = SoftGPU::TextureWrapMode::ClampToEdge;
break;
case GL_REPEAT:
config.texture_wrap_v = SoftGPU::TextureWrapMode::Repeat;
break;
case GL_MIRRORED_REPEAT:
config.texture_wrap_v = SoftGPU::TextureWrapMode::MirroredRepeat;
break;
default:
VERIFY_NOT_REACHED();
}
switch (m_texture_units[i].env_mode()) {
case GL_MODULATE:
config.fixed_function_texture_env_mode = SoftGPU::TextureEnvMode::Modulate;
break;
case GL_REPLACE:
config.fixed_function_texture_env_mode = SoftGPU::TextureEnvMode::Replace;
break;
case GL_DECAL:
config.fixed_function_texture_env_mode = SoftGPU::TextureEnvMode::Decal;
break;
default:
VERIFY_NOT_REACHED();
}
m_rasterizer.set_sampler_config(i, config);
}
}
void SoftwareGLContext::sync_light_state()
{
if (!m_light_state_is_dirty)
return;
m_light_state_is_dirty = false;
auto options = m_rasterizer.options();
options.color_material_enabled = m_color_material_enabled;
switch (m_color_material_face) {
case GL_BACK:
options.color_material_face = SoftGPU::ColorMaterialFace::Back;
break;
case GL_FRONT:
options.color_material_face = SoftGPU::ColorMaterialFace::Front;
break;
case GL_FRONT_AND_BACK:
options.color_material_face = SoftGPU::ColorMaterialFace::FrontAndBack;
break;
default:
VERIFY_NOT_REACHED();
}
switch (m_color_material_mode) {
case GL_AMBIENT:
options.color_material_mode = SoftGPU::ColorMaterialMode::Ambient;
break;
case GL_AMBIENT_AND_DIFFUSE:
options.color_material_mode = SoftGPU::ColorMaterialMode::Ambient;
options.color_material_mode = SoftGPU::ColorMaterialMode::Diffuse;
break;
case GL_DIFFUSE:
options.color_material_mode = SoftGPU::ColorMaterialMode::Diffuse;
break;
case GL_EMISSION:
options.color_material_mode = SoftGPU::ColorMaterialMode::Emissive;
break;
case GL_SPECULAR:
options.color_material_mode = SoftGPU::ColorMaterialMode::Specular;
break;
default:
VERIFY_NOT_REACHED();
}
m_rasterizer.set_options(options);
for (auto light_id = 0u; light_id < SoftGPU::NUM_LIGHTS; light_id++) {
auto const& current_light_state = m_light_states.at(light_id);
m_rasterizer.set_light_state(light_id, current_light_state);
}
m_rasterizer.set_material_state(SoftGPU::Face::Front, m_material_states[Face::Front]);
m_rasterizer.set_material_state(SoftGPU::Face::Back, m_material_states[Face::Back]);
}
void SoftwareGLContext::sync_device_texcoord_config()
{
if (!m_texcoord_generation_dirty)
return;
m_texcoord_generation_dirty = false;
auto options = m_rasterizer.options();
for (size_t i = 0; i < m_device_info.num_texture_units; ++i) {
u8 enabled_coordinates = SoftGPU::TexCoordGenerationCoordinate::None;
for (GLenum capability = GL_TEXTURE_GEN_S; capability <= GL_TEXTURE_GEN_Q; ++capability) {
auto const context_coordinate_config = texture_coordinate_generation(i, capability);
if (!context_coordinate_config.enabled)
continue;
SoftGPU::TexCoordGenerationConfig* texcoord_generation_config;
switch (capability) {
case GL_TEXTURE_GEN_S:
enabled_coordinates |= SoftGPU::TexCoordGenerationCoordinate::S;
texcoord_generation_config = &options.texcoord_generation_config[i][0];
break;
case GL_TEXTURE_GEN_T:
enabled_coordinates |= SoftGPU::TexCoordGenerationCoordinate::T;
texcoord_generation_config = &options.texcoord_generation_config[i][1];
break;
case GL_TEXTURE_GEN_R:
enabled_coordinates |= SoftGPU::TexCoordGenerationCoordinate::R;
texcoord_generation_config = &options.texcoord_generation_config[i][2];
break;
case GL_TEXTURE_GEN_Q:
enabled_coordinates |= SoftGPU::TexCoordGenerationCoordinate::Q;
texcoord_generation_config = &options.texcoord_generation_config[i][3];
break;
default:
VERIFY_NOT_REACHED();
}
switch (context_coordinate_config.generation_mode) {
case GL_OBJECT_LINEAR:
texcoord_generation_config->mode = SoftGPU::TexCoordGenerationMode::ObjectLinear;
texcoord_generation_config->coefficients = context_coordinate_config.object_plane_coefficients;
break;
case GL_EYE_LINEAR:
texcoord_generation_config->mode = SoftGPU::TexCoordGenerationMode::EyeLinear;
texcoord_generation_config->coefficients = context_coordinate_config.eye_plane_coefficients;
break;
case GL_SPHERE_MAP:
texcoord_generation_config->mode = SoftGPU::TexCoordGenerationMode::SphereMap;
break;
case GL_REFLECTION_MAP:
texcoord_generation_config->mode = SoftGPU::TexCoordGenerationMode::ReflectionMap;
break;
case GL_NORMAL_MAP:
texcoord_generation_config->mode = SoftGPU::TexCoordGenerationMode::NormalMap;
break;
}
}
options.texcoord_generation_enabled_coordinates[i] = enabled_coordinates;
}
m_rasterizer.set_options(options);
}
void SoftwareGLContext::sync_stencil_configuration()
{
if (!m_stencil_configuration_dirty)
return;
m_stencil_configuration_dirty = false;
auto set_device_stencil = [&](SoftGPU::Face face, StencilFunctionOptions func, StencilOperationOptions op) {
SoftGPU::StencilConfiguration device_configuration;
// Stencil test function
auto map_func = [](GLenum func) -> SoftGPU::StencilTestFunction {
switch (func) {
case GL_ALWAYS:
return SoftGPU::StencilTestFunction::Always;
case GL_EQUAL:
return SoftGPU::StencilTestFunction::Equal;
case GL_GEQUAL:
return SoftGPU::StencilTestFunction::GreaterOrEqual;
case GL_GREATER:
return SoftGPU::StencilTestFunction::Greater;
case GL_LESS:
return SoftGPU::StencilTestFunction::Less;
case GL_LEQUAL:
return SoftGPU::StencilTestFunction::LessOrEqual;
case GL_NEVER:
return SoftGPU::StencilTestFunction::Never;
case GL_NOTEQUAL:
return SoftGPU::StencilTestFunction::NotEqual;
}
VERIFY_NOT_REACHED();
};
device_configuration.test_function = map_func(func.func);
device_configuration.reference_value = func.reference_value;
device_configuration.test_mask = func.mask;
// Stencil operation
auto map_operation = [](GLenum operation) -> SoftGPU::StencilOperation {
switch (operation) {
case GL_DECR:
return SoftGPU::StencilOperation::Decrement;
case GL_DECR_WRAP:
return SoftGPU::StencilOperation::DecrementWrap;
case GL_INCR:
return SoftGPU::StencilOperation::Increment;
case GL_INCR_WRAP:
return SoftGPU::StencilOperation::IncrementWrap;
case GL_INVERT:
return SoftGPU::StencilOperation::Invert;
case GL_KEEP:
return SoftGPU::StencilOperation::Keep;
case GL_REPLACE:
return SoftGPU::StencilOperation::Replace;
case GL_ZERO:
return SoftGPU::StencilOperation::Zero;
}
VERIFY_NOT_REACHED();
};
device_configuration.on_stencil_test_fail = map_operation(op.op_fail);
device_configuration.on_depth_test_fail = map_operation(op.op_depth_fail);
device_configuration.on_pass = map_operation(op.op_pass);
device_configuration.write_mask = op.write_mask;
m_rasterizer.set_stencil_configuration(face, device_configuration);
};
set_device_stencil(SoftGPU::Face::Front, m_stencil_function[Face::Front], m_stencil_operation[Face::Front]);
set_device_stencil(SoftGPU::Face::Back, m_stencil_function[Face::Back], m_stencil_operation[Face::Back]);
}
void SoftwareGLContext::build_extension_string()
{
Vector<StringView> extensions;
// FIXME: npot texture support became a required core feature starting with OpenGL 2.0 (https://www.khronos.org/opengl/wiki/NPOT_Texture)
// Ideally we would verify if the selected device adheres to the requested OpenGL context version before context creation
// and refuse to create a context if it doesn't.
if (m_device_info.supports_npot_textures)
extensions.append("GL_ARB_texture_non_power_of_two");
if (m_device_info.num_texture_units > 1)
extensions.append("GL_ARB_multitexture");
m_extensions = String::join(" ", extensions);
}
void SoftwareGLContext::gl_lightf(GLenum light, GLenum pname, GLfloat param)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_lightf, light, pname, param);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(light < GL_LIGHT0 || light >= (GL_LIGHT0 + m_device_info.num_lights), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(pname == GL_CONSTANT_ATTENUATION || pname == GL_LINEAR_ATTENUATION || pname == GL_QUADRATIC_ATTENUATION || pname != GL_SPOT_EXPONENT || pname != GL_SPOT_CUTOFF), GL_INVALID_ENUM);
auto& light_state = m_light_states.at(light - GL_LIGHT0);
switch (pname) {
case GL_CONSTANT_ATTENUATION:
light_state.constant_attenuation = param;
break;
case GL_LINEAR_ATTENUATION:
light_state.linear_attenuation = param;
break;
case GL_QUADRATIC_ATTENUATION:
light_state.quadratic_attenuation = param;
break;
case GL_SPOT_EXPONENT:
light_state.spotlight_exponent = param;
break;
case GL_SPOT_CUTOFF:
light_state.spotlight_cutoff_angle = param;
break;
default:
VERIFY_NOT_REACHED();
}
m_light_state_is_dirty = true;
}
void SoftwareGLContext::gl_lightfv(GLenum light, GLenum pname, GLfloat const* params)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_lightfv, light, pname, params);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(light < GL_LIGHT0 || light >= (GL_LIGHT0 + m_device_info.num_lights), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT || pname == GL_DIFFUSE || pname == GL_SPECULAR || pname == GL_POSITION || pname == GL_CONSTANT_ATTENUATION || pname == GL_LINEAR_ATTENUATION || pname == GL_QUADRATIC_ATTENUATION || pname == GL_SPOT_CUTOFF || pname == GL_SPOT_EXPONENT || pname == GL_SPOT_DIRECTION), GL_INVALID_ENUM);
auto& light_state = m_light_states.at(light - GL_LIGHT0);
switch (pname) {
case GL_AMBIENT:
light_state.ambient_intensity = { params[0], params[1], params[2], params[3] };
break;
case GL_DIFFUSE:
light_state.diffuse_intensity = { params[0], params[1], params[2], params[3] };
break;
case GL_SPECULAR:
light_state.specular_intensity = { params[0], params[1], params[2], params[3] };
break;
case GL_POSITION:
light_state.position = { params[0], params[1], params[2], params[3] };
light_state.position = m_model_view_matrix * light_state.position;
break;
case GL_CONSTANT_ATTENUATION:
light_state.constant_attenuation = *params;
break;
case GL_LINEAR_ATTENUATION:
light_state.linear_attenuation = *params;
break;
case GL_QUADRATIC_ATTENUATION:
light_state.quadratic_attenuation = *params;
break;
case GL_SPOT_EXPONENT:
light_state.spotlight_exponent = *params;
break;
case GL_SPOT_CUTOFF:
light_state.spotlight_cutoff_angle = *params;
break;
case GL_SPOT_DIRECTION: {
FloatVector4 direction_vector = { params[0], params[1], params[2], 0.0f };
direction_vector = m_model_view_matrix * direction_vector;
light_state.spotlight_direction = { direction_vector.x(), direction_vector.y(), direction_vector.z() };
break;
}
default:
VERIFY_NOT_REACHED();
}
m_light_state_is_dirty = true;
}
void SoftwareGLContext::gl_lightiv(GLenum light, GLenum pname, GLint const* params)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_lightiv, light, pname, params);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(light < GL_LIGHT0 || light >= (GL_LIGHT0 + m_device_info.num_lights), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT || pname == GL_DIFFUSE || pname == GL_SPECULAR || pname == GL_POSITION || pname == GL_CONSTANT_ATTENUATION || pname == GL_LINEAR_ATTENUATION || pname == GL_QUADRATIC_ATTENUATION || pname == GL_SPOT_CUTOFF || pname == GL_SPOT_EXPONENT || pname == GL_SPOT_DIRECTION), GL_INVALID_ENUM);
auto& light_state = m_light_states[light - GL_LIGHT0];
auto const to_float_vector = [](GLfloat x, GLfloat y, GLfloat z, GLfloat w) {
return FloatVector4(x, y, z, w);
};
switch (pname) {
case GL_AMBIENT:
light_state.ambient_intensity = to_float_vector(params[0], params[1], params[2], params[3]);
break;
case GL_DIFFUSE:
light_state.diffuse_intensity = to_float_vector(params[0], params[1], params[2], params[3]);
break;
case GL_SPECULAR:
light_state.specular_intensity = to_float_vector(params[0], params[1], params[2], params[3]);
break;
case GL_POSITION:
light_state.position = to_float_vector(params[0], params[1], params[2], params[3]);
light_state.position = m_model_view_matrix * light_state.position;
break;
case GL_CONSTANT_ATTENUATION:
light_state.constant_attenuation = static_cast<float>(params[0]);
break;
case GL_LINEAR_ATTENUATION:
light_state.linear_attenuation = static_cast<float>(params[0]);
break;
case GL_QUADRATIC_ATTENUATION:
light_state.quadratic_attenuation = static_cast<float>(params[0]);
break;
case GL_SPOT_EXPONENT:
light_state.spotlight_exponent = static_cast<float>(params[0]);
break;
case GL_SPOT_CUTOFF:
light_state.spotlight_cutoff_angle = static_cast<float>(params[0]);
break;
case GL_SPOT_DIRECTION: {
FloatVector4 direction_vector = to_float_vector(params[0], params[1], params[2], 0.0f);
direction_vector = m_model_view_matrix * direction_vector;
light_state.spotlight_direction = direction_vector.xyz();
break;
}
default:
VERIFY_NOT_REACHED();
}
m_light_state_is_dirty = true;
}
void SoftwareGLContext::gl_materialf(GLenum face, GLenum pname, GLfloat param)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_materialf, face, pname, param);
RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(pname != GL_SHININESS, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(param > 128.0f, GL_INVALID_VALUE);
switch (face) {
case GL_FRONT:
m_material_states[Face::Front].shininess = param;
break;
case GL_BACK:
m_material_states[Face::Back].shininess = param;
break;
case GL_FRONT_AND_BACK:
m_material_states[Face::Front].shininess = param;
m_material_states[Face::Back].shininess = param;
break;
default:
VERIFY_NOT_REACHED();
}
m_light_state_is_dirty = true;
}
void SoftwareGLContext::gl_materialfv(GLenum face, GLenum pname, GLfloat const* params)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_materialfv, face, pname, params);
RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT || pname == GL_DIFFUSE || pname == GL_SPECULAR || pname == GL_EMISSION || pname == GL_SHININESS || pname == GL_AMBIENT_AND_DIFFUSE), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF((pname == GL_SHININESS && *params > 128.0f), GL_INVALID_VALUE);
auto update_material = [](SoftGPU::Material& material, GLenum pname, GLfloat const* params) {
switch (pname) {
case GL_AMBIENT:
material.ambient = { params[0], params[1], params[2], params[3] };
break;
case GL_DIFFUSE:
material.diffuse = { params[0], params[1], params[2], params[3] };
break;
case GL_SPECULAR:
material.specular = { params[0], params[1], params[2], params[3] };
break;
case GL_EMISSION:
material.emissive = { params[0], params[1], params[2], params[3] };
break;
case GL_SHININESS:
material.shininess = *params;
break;
case GL_AMBIENT_AND_DIFFUSE:
material.ambient = { params[0], params[1], params[2], params[3] };
material.diffuse = { params[0], params[1], params[2], params[3] };
break;
}
};
switch (face) {
case GL_FRONT:
update_material(m_material_states[Face::Front], pname, params);
break;
case GL_BACK:
update_material(m_material_states[Face::Back], pname, params);
break;
case GL_FRONT_AND_BACK:
update_material(m_material_states[Face::Front], pname, params);
update_material(m_material_states[Face::Back], pname, params);
break;
}
m_light_state_is_dirty = true;
}
void SoftwareGLContext::gl_materialiv(GLenum face, GLenum pname, GLint const* params)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_materialiv, face, pname, params);
RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT || pname == GL_DIFFUSE || pname == GL_SPECULAR || pname == GL_EMISSION || pname == GL_SHININESS || pname == GL_AMBIENT_AND_DIFFUSE), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF((pname == GL_SHININESS && *params > 128), GL_INVALID_VALUE);
auto update_material = [](SoftGPU::Material& material, GLenum pname, GLint const* params) {
switch (pname) {
case GL_AMBIENT:
material.ambient = { static_cast<float>(params[0]), static_cast<float>(params[1]), static_cast<float>(params[2]), static_cast<float>(params[3]) };
break;
case GL_DIFFUSE:
material.diffuse = { static_cast<float>(params[0]), static_cast<float>(params[1]), static_cast<float>(params[2]), static_cast<float>(params[3]) };
break;
case GL_SPECULAR:
material.specular = { static_cast<float>(params[0]), static_cast<float>(params[1]), static_cast<float>(params[2]), static_cast<float>(params[3]) };
break;
case GL_EMISSION:
material.emissive = { static_cast<float>(params[0]), static_cast<float>(params[1]), static_cast<float>(params[2]), static_cast<float>(params[3]) };
break;
case GL_SHININESS:
material.shininess = static_cast<float>(params[0]);
break;
case GL_AMBIENT_AND_DIFFUSE:
material.ambient = { static_cast<float>(params[0]), static_cast<float>(params[1]), static_cast<float>(params[2]), static_cast<float>(params[3]) };
material.diffuse = { static_cast<float>(params[0]), static_cast<float>(params[1]), static_cast<float>(params[2]), static_cast<float>(params[3]) };
break;
}
};
switch (face) {
case GL_FRONT:
update_material(m_material_states[Face::Front], pname, params);
break;
case GL_BACK:
update_material(m_material_states[Face::Back], pname, params);
break;
case GL_FRONT_AND_BACK:
update_material(m_material_states[Face::Front], pname, params);
update_material(m_material_states[Face::Back], pname, params);
break;
}
m_light_state_is_dirty = true;
}
void SoftwareGLContext::gl_color_material(GLenum face, GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_color_material, face, mode);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(face != GL_FRONT
&& face != GL_BACK
&& face != GL_FRONT_AND_BACK,
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(mode != GL_EMISSION
&& mode != GL_AMBIENT
&& mode != GL_DIFFUSE
&& mode != GL_SPECULAR
&& mode != GL_AMBIENT_AND_DIFFUSE,
GL_INVALID_ENUM);
m_color_material_face = face;
m_color_material_mode = mode;
m_light_state_is_dirty = true;
}
void SoftwareGLContext::gl_get_light(GLenum light, GLenum pname, void* params, GLenum type)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_get_light, light, pname, params, type);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(light < GL_LIGHT0 || light > GL_LIGHT0 + m_device_info.num_lights, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT || pname == GL_DIFFUSE || pname == GL_SPECULAR || pname == GL_SPOT_DIRECTION || pname == GL_SPOT_EXPONENT || pname == GL_SPOT_CUTOFF || pname == GL_CONSTANT_ATTENUATION || pname == GL_LINEAR_ATTENUATION || pname == GL_QUADRATIC_ATTENUATION), GL_INVALID_ENUM);
if (type == GL_FLOAT)
get_light_param<GLfloat>(light, pname, static_cast<GLfloat*>(params));
else if (type == GL_INT)
get_light_param<GLint>(light, pname, static_cast<GLint*>(params));
else
VERIFY_NOT_REACHED();
}
template<typename T>
void SoftwareGLContext::get_light_param(GLenum light, GLenum pname, T* params)
{
auto const& light_state = m_light_states[light - GL_LIGHT0];
switch (pname) {
case GL_AMBIENT:
params[0] = light_state.ambient_intensity.x();
params[1] = light_state.ambient_intensity.y();
params[2] = light_state.ambient_intensity.z();
params[3] = light_state.ambient_intensity.w();
break;
case GL_DIFFUSE:
params[0] = light_state.diffuse_intensity.x();
params[1] = light_state.diffuse_intensity.y();
params[2] = light_state.diffuse_intensity.z();
params[3] = light_state.diffuse_intensity.w();
break;
case GL_SPECULAR:
params[0] = light_state.specular_intensity.x();
params[1] = light_state.specular_intensity.y();
params[2] = light_state.specular_intensity.z();
params[3] = light_state.specular_intensity.w();
break;
case GL_SPOT_DIRECTION:
params[0] = light_state.spotlight_direction.x();
params[1] = light_state.spotlight_direction.y();
params[2] = light_state.spotlight_direction.z();
break;
case GL_SPOT_EXPONENT:
*params = light_state.spotlight_exponent;
break;
case GL_SPOT_CUTOFF:
*params = light_state.spotlight_cutoff_angle;
break;
case GL_CONSTANT_ATTENUATION:
*params = light_state.constant_attenuation;
break;
case GL_LINEAR_ATTENUATION:
*params = light_state.linear_attenuation;
break;
case GL_QUADRATIC_ATTENUATION:
*params = light_state.quadratic_attenuation;
break;
}
}
void SoftwareGLContext::gl_get_material(GLenum face, GLenum pname, void* params, GLenum type)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_get_material, face, pname, params, type);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT || pname == GL_DIFFUSE || pname == GL_SPECULAR || pname == GL_EMISSION), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK), GL_INVALID_ENUM);
Face material_face = Front;
switch (face) {
case GL_FRONT:
material_face = Front;
break;
case GL_BACK:
material_face = Back;
break;
}
if (type == GL_FLOAT)
get_material_param<GLfloat>(material_face, pname, static_cast<GLfloat*>(params));
else if (type == GL_INT)
get_material_param<GLint>(material_face, pname, static_cast<GLint*>(params));
else
VERIFY_NOT_REACHED();
}
template<typename T>
void SoftwareGLContext::get_material_param(Face face, GLenum pname, T* params)
{
auto const& material = m_material_states[face];
switch (pname) {
case GL_AMBIENT:
params[0] = static_cast<T>(material.ambient.x());
params[1] = static_cast<T>(material.ambient.y());
params[2] = static_cast<T>(material.ambient.z());
params[3] = static_cast<T>(material.ambient.w());
break;
case GL_DIFFUSE:
params[0] = static_cast<T>(material.diffuse.x());
params[1] = static_cast<T>(material.diffuse.y());
params[2] = static_cast<T>(material.diffuse.z());
params[3] = static_cast<T>(material.diffuse.w());
break;
case GL_SPECULAR:
params[0] = static_cast<T>(material.specular.x());
params[1] = static_cast<T>(material.specular.y());
params[2] = static_cast<T>(material.specular.z());
params[3] = static_cast<T>(material.specular.w());
break;
case GL_EMISSION:
params[0] = static_cast<T>(material.emissive.x());
params[1] = static_cast<T>(material.emissive.y());
params[2] = static_cast<T>(material.emissive.z());
params[3] = static_cast<T>(material.emissive.w());
break;
case GL_SHININESS:
*params = material.shininess;
break;
}
}
}