
Functions to_rgba32 and to_vec4 now process 4 color values at the same time. Co-authored-by: Jesse Buhagiar <jooster669@gmail.com>
977 lines
40 KiB
C++
977 lines
40 KiB
C++
/*
|
|
* Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@serenityos.org>
|
|
* Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Function.h>
|
|
#include <AK/SIMDExtras.h>
|
|
#include <AK/SIMDMath.h>
|
|
#include <LibCore/ElapsedTimer.h>
|
|
#include <LibGfx/Painter.h>
|
|
#include <LibGfx/Vector2.h>
|
|
#include <LibGfx/Vector3.h>
|
|
#include <LibSoftGPU/Config.h>
|
|
#include <LibSoftGPU/Device.h>
|
|
#include <LibSoftGPU/PixelQuad.h>
|
|
#include <LibSoftGPU/SIMD.h>
|
|
|
|
namespace SoftGPU {
|
|
|
|
static long long g_num_rasterized_triangles;
|
|
static long long g_num_pixels;
|
|
static long long g_num_pixels_shaded;
|
|
static long long g_num_pixels_blended;
|
|
static long long g_num_sampler_calls;
|
|
static long long g_num_quads;
|
|
|
|
using IntVector2 = Gfx::Vector2<int>;
|
|
using IntVector3 = Gfx::Vector3<int>;
|
|
|
|
using AK::SIMD::exp;
|
|
using AK::SIMD::expand4;
|
|
using AK::SIMD::f32x4;
|
|
using AK::SIMD::i32x4;
|
|
using AK::SIMD::load4_masked;
|
|
using AK::SIMD::maskbits;
|
|
using AK::SIMD::maskcount;
|
|
using AK::SIMD::none;
|
|
using AK::SIMD::store4_masked;
|
|
using AK::SIMD::to_f32x4;
|
|
using AK::SIMD::to_u32x4;
|
|
using AK::SIMD::u32x4;
|
|
|
|
constexpr static int edge_function(const IntVector2& a, const IntVector2& b, const IntVector2& c)
|
|
{
|
|
return ((c.x() - a.x()) * (b.y() - a.y()) - (c.y() - a.y()) * (b.x() - a.x()));
|
|
}
|
|
|
|
constexpr static i32x4 edge_function4(const IntVector2& a, const IntVector2& b, const Vector2<i32x4>& c)
|
|
{
|
|
return ((c.x() - a.x()) * (b.y() - a.y()) - (c.y() - a.y()) * (b.x() - a.x()));
|
|
}
|
|
|
|
template<typename T, typename U>
|
|
constexpr static auto interpolate(const T& v0, const T& v1, const T& v2, const Vector3<U>& barycentric_coords)
|
|
{
|
|
return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z();
|
|
}
|
|
|
|
ALWAYS_INLINE static u32x4 to_rgba32(const Vector4<f32x4>& v)
|
|
{
|
|
auto clamped = v.clamped(expand4(0.0f), expand4(1.0f));
|
|
auto r = to_u32x4(clamped.x() * 255);
|
|
auto g = to_u32x4(clamped.y() * 255);
|
|
auto b = to_u32x4(clamped.z() * 255);
|
|
auto a = to_u32x4(clamped.w() * 255);
|
|
|
|
return a << 24 | r << 16 | g << 8 | b;
|
|
}
|
|
|
|
static Vector4<f32x4> to_vec4(u32x4 rgba)
|
|
{
|
|
auto constexpr one_over_255 = expand4(1.0f / 255);
|
|
return {
|
|
to_f32x4((rgba >> 16) & 0xff) * one_over_255,
|
|
to_f32x4((rgba >> 8) & 0xff) * one_over_255,
|
|
to_f32x4(rgba & 0xff) * one_over_255,
|
|
to_f32x4((rgba >> 24) & 0xff) * one_over_255,
|
|
};
|
|
}
|
|
|
|
static Gfx::IntRect scissor_box_to_window_coordinates(Gfx::IntRect const& scissor_box, Gfx::IntRect const& window_rect)
|
|
{
|
|
return scissor_box.translated(0, window_rect.height() - 2 * scissor_box.y() - scissor_box.height());
|
|
}
|
|
|
|
static constexpr void setup_blend_factors(BlendFactor mode, FloatVector4& constant, float& src_alpha, float& dst_alpha, float& src_color, float& dst_color)
|
|
{
|
|
constant = { 0.0f, 0.0f, 0.0f, 0.0f };
|
|
src_alpha = 0;
|
|
dst_alpha = 0;
|
|
src_color = 0;
|
|
dst_color = 0;
|
|
|
|
switch (mode) {
|
|
case BlendFactor::Zero:
|
|
break;
|
|
case BlendFactor::One:
|
|
constant = { 1.0f, 1.0f, 1.0f, 1.0f };
|
|
break;
|
|
case BlendFactor::SrcColor:
|
|
src_color = 1;
|
|
break;
|
|
case BlendFactor::OneMinusSrcColor:
|
|
constant = { 1.0f, 1.0f, 1.0f, 1.0f };
|
|
src_color = -1;
|
|
break;
|
|
case BlendFactor::SrcAlpha:
|
|
src_alpha = 1;
|
|
break;
|
|
case BlendFactor::OneMinusSrcAlpha:
|
|
constant = { 1.0f, 1.0f, 1.0f, 1.0f };
|
|
src_alpha = -1;
|
|
break;
|
|
case BlendFactor::DstAlpha:
|
|
dst_alpha = 1;
|
|
break;
|
|
case BlendFactor::OneMinusDstAlpha:
|
|
constant = { 1.0f, 1.0f, 1.0f, 1.0f };
|
|
dst_alpha = -1;
|
|
break;
|
|
case BlendFactor::DstColor:
|
|
dst_color = 1;
|
|
break;
|
|
case BlendFactor::OneMinusDstColor:
|
|
constant = { 1.0f, 1.0f, 1.0f, 1.0f };
|
|
dst_color = -1;
|
|
break;
|
|
case BlendFactor::SrcAlphaSaturate:
|
|
// FIXME: How do we implement this?
|
|
break;
|
|
default:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
template<typename PS>
|
|
static void rasterize_triangle(const RasterizerOptions& options, Gfx::Bitmap& render_target, DepthBuffer& depth_buffer, const Triangle& triangle, PS pixel_shader)
|
|
{
|
|
INCREASE_STATISTICS_COUNTER(g_num_rasterized_triangles, 1);
|
|
|
|
// Since the algorithm is based on blocks of uniform size, we need
|
|
// to ensure that our render_target size is actually a multiple of the block size
|
|
VERIFY((render_target.width() % 2) == 0);
|
|
VERIFY((render_target.height() % 2) == 0);
|
|
|
|
// Return if alpha testing is a no-op
|
|
if (options.enable_alpha_test && options.alpha_test_func == AlphaTestFunction::Never)
|
|
return;
|
|
|
|
// Vertices
|
|
Vertex const vertex0 = triangle.vertices[0];
|
|
Vertex const vertex1 = triangle.vertices[1];
|
|
Vertex const vertex2 = triangle.vertices[2];
|
|
|
|
constexpr int subpixel_factor = 1 << SUBPIXEL_BITS;
|
|
|
|
// Calculate area of the triangle for later tests
|
|
IntVector2 const v0 { static_cast<int>(vertex0.window_coordinates.x() * subpixel_factor), static_cast<int>(vertex0.window_coordinates.y() * subpixel_factor) };
|
|
IntVector2 const v1 { static_cast<int>(vertex1.window_coordinates.x() * subpixel_factor), static_cast<int>(vertex1.window_coordinates.y() * subpixel_factor) };
|
|
IntVector2 const v2 { static_cast<int>(vertex2.window_coordinates.x() * subpixel_factor), static_cast<int>(vertex2.window_coordinates.y() * subpixel_factor) };
|
|
|
|
int area = edge_function(v0, v1, v2);
|
|
if (area == 0)
|
|
return;
|
|
|
|
auto const one_over_area = 1.0f / area;
|
|
|
|
FloatVector4 src_constant {};
|
|
float src_factor_src_alpha = 0;
|
|
float src_factor_dst_alpha = 0;
|
|
float src_factor_src_color = 0;
|
|
float src_factor_dst_color = 0;
|
|
|
|
FloatVector4 dst_constant {};
|
|
float dst_factor_src_alpha = 0;
|
|
float dst_factor_dst_alpha = 0;
|
|
float dst_factor_src_color = 0;
|
|
float dst_factor_dst_color = 0;
|
|
|
|
if (options.enable_blending) {
|
|
setup_blend_factors(
|
|
options.blend_source_factor,
|
|
src_constant,
|
|
src_factor_src_alpha,
|
|
src_factor_dst_alpha,
|
|
src_factor_src_color,
|
|
src_factor_dst_color);
|
|
|
|
setup_blend_factors(
|
|
options.blend_destination_factor,
|
|
dst_constant,
|
|
dst_factor_src_alpha,
|
|
dst_factor_dst_alpha,
|
|
dst_factor_src_color,
|
|
dst_factor_dst_color);
|
|
}
|
|
|
|
auto render_bounds = render_target.rect();
|
|
auto window_scissor_rect = scissor_box_to_window_coordinates(options.scissor_box, render_target.rect());
|
|
if (options.scissor_enabled)
|
|
render_bounds.intersect(window_scissor_rect);
|
|
|
|
// Obey top-left rule:
|
|
// This sets up "zero" for later pixel coverage tests.
|
|
// Depending on where on the triangle the edge is located
|
|
// it is either tested against 0 or 1, effectively
|
|
// turning "< 0" into "<= 0"
|
|
IntVector3 zero { 1, 1, 1 };
|
|
if (v1.y() > v0.y() || (v1.y() == v0.y() && v1.x() < v0.x()))
|
|
zero.set_z(0);
|
|
if (v2.y() > v1.y() || (v2.y() == v1.y() && v2.x() < v1.x()))
|
|
zero.set_x(0);
|
|
if (v0.y() > v2.y() || (v0.y() == v2.y() && v0.x() < v2.x()))
|
|
zero.set_y(0);
|
|
|
|
// This function calculates the 3 edge values for the pixel relative to the triangle.
|
|
auto calculate_edge_values4 = [v0, v1, v2](const Vector2<i32x4>& p) -> Vector3<i32x4> {
|
|
return {
|
|
edge_function4(v1, v2, p),
|
|
edge_function4(v2, v0, p),
|
|
edge_function4(v0, v1, p),
|
|
};
|
|
};
|
|
|
|
// This function tests whether a point as identified by its 3 edge values lies within the triangle
|
|
auto test_point4 = [zero](const Vector3<i32x4>& edges) -> i32x4 {
|
|
return edges.x() >= zero.x()
|
|
&& edges.y() >= zero.y()
|
|
&& edges.z() >= zero.z();
|
|
};
|
|
|
|
auto test_scissor4 = [window_scissor_rect](const Vector2<i32x4>& screen_coordinates) -> i32x4 {
|
|
return screen_coordinates.x() >= window_scissor_rect.x()
|
|
&& screen_coordinates.x() < window_scissor_rect.x() + window_scissor_rect.width()
|
|
&& screen_coordinates.y() >= window_scissor_rect.y()
|
|
&& screen_coordinates.y() < window_scissor_rect.y() + window_scissor_rect.height();
|
|
};
|
|
|
|
// Calculate block-based bounds
|
|
// clang-format off
|
|
int const bx0 = max(render_bounds.left(), min(min(v0.x(), v1.x()), v2.x()) / subpixel_factor) & ~1;
|
|
int const bx1 = (min(render_bounds.right(), max(max(v0.x(), v1.x()), v2.x()) / subpixel_factor) & ~1) + 2;
|
|
int const by0 = max(render_bounds.top(), min(min(v0.y(), v1.y()), v2.y()) / subpixel_factor) & ~1;
|
|
int const by1 = (min(render_bounds.bottom(), max(max(v0.y(), v1.y()), v2.y()) / subpixel_factor) & ~1) + 2;
|
|
// clang-format on
|
|
|
|
// Fog depths
|
|
float const vertex0_eye_absz = fabs(vertex0.eye_coordinates.z());
|
|
float const vertex1_eye_absz = fabs(vertex1.eye_coordinates.z());
|
|
float const vertex2_eye_absz = fabs(vertex2.eye_coordinates.z());
|
|
|
|
// FIXME: implement stencil testing
|
|
|
|
// Iterate over all blocks within the bounds of the triangle
|
|
for (int by = by0; by < by1; by += 2) {
|
|
for (int bx = bx0; bx < bx1; bx += 2) {
|
|
|
|
PixelQuad quad;
|
|
|
|
quad.screen_coordinates = {
|
|
i32x4 { bx, bx + 1, bx, bx + 1 },
|
|
i32x4 { by, by, by + 1, by + 1 },
|
|
};
|
|
|
|
auto edge_values = calculate_edge_values4(quad.screen_coordinates * subpixel_factor);
|
|
|
|
// Generate triangle coverage mask
|
|
quad.mask = test_point4(edge_values);
|
|
if (options.scissor_enabled) {
|
|
quad.mask &= test_scissor4(quad.screen_coordinates);
|
|
}
|
|
|
|
if (none(quad.mask))
|
|
continue;
|
|
|
|
INCREASE_STATISTICS_COUNTER(g_num_quads, 1);
|
|
INCREASE_STATISTICS_COUNTER(g_num_pixels, maskcount(quad.mask));
|
|
|
|
// Calculate barycentric coordinates from previously calculated edge values
|
|
quad.barycentrics = Vector3<f32x4> {
|
|
to_f32x4(edge_values.x()),
|
|
to_f32x4(edge_values.y()),
|
|
to_f32x4(edge_values.z()),
|
|
} * one_over_area;
|
|
|
|
float* depth_ptrs[4] = {
|
|
&depth_buffer.scanline(by)[bx],
|
|
&depth_buffer.scanline(by)[bx + 1],
|
|
&depth_buffer.scanline(by + 1)[bx],
|
|
&depth_buffer.scanline(by + 1)[bx + 1],
|
|
};
|
|
|
|
// AND the depth mask onto the coverage mask
|
|
if (options.enable_depth_test) {
|
|
auto depth = load4_masked(depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask);
|
|
|
|
quad.depth = interpolate(vertex0.window_coordinates.z(), vertex1.window_coordinates.z(), vertex2.window_coordinates.z(), quad.barycentrics);
|
|
// FIXME: Also apply depth_offset_factor which depends on the depth gradient
|
|
quad.depth += options.depth_offset_constant * NumericLimits<float>::epsilon();
|
|
|
|
switch (options.depth_func) {
|
|
case DepthTestFunction::Always:
|
|
break;
|
|
case DepthTestFunction::Never:
|
|
quad.mask ^= quad.mask;
|
|
break;
|
|
case DepthTestFunction::Greater:
|
|
quad.mask &= quad.depth > depth;
|
|
break;
|
|
case DepthTestFunction::GreaterOrEqual:
|
|
quad.mask &= quad.depth >= depth;
|
|
break;
|
|
case DepthTestFunction::NotEqual:
|
|
#ifdef __SSE__
|
|
quad.mask &= quad.depth != depth;
|
|
#else
|
|
quad.mask[0] = bit_cast<u32>(quad.depth[0]) != bit_cast<u32>(depth[0]) ? -1 : 0;
|
|
quad.mask[1] = bit_cast<u32>(quad.depth[1]) != bit_cast<u32>(depth[1]) ? -1 : 0;
|
|
quad.mask[2] = bit_cast<u32>(quad.depth[2]) != bit_cast<u32>(depth[2]) ? -1 : 0;
|
|
quad.mask[3] = bit_cast<u32>(quad.depth[3]) != bit_cast<u32>(depth[3]) ? -1 : 0;
|
|
#endif
|
|
break;
|
|
case DepthTestFunction::Equal:
|
|
#ifdef __SSE__
|
|
quad.mask &= quad.depth == depth;
|
|
#else
|
|
//
|
|
// This is an interesting quirk that occurs due to us using the x87 FPU when Serenity is
|
|
// compiled for the i386 target. When we calculate our depth value to be stored in the buffer,
|
|
// it is an 80-bit x87 floating point number, however, when stored into the DepthBuffer, this is
|
|
// truncated to 32 bits. This 38 bit loss of precision means that when x87 `FCOMP` is eventually
|
|
// used here the comparison fails.
|
|
// This could be solved by using a `long double` for the depth buffer, however this would take
|
|
// up significantly more space and is completely overkill for a depth buffer. As such, comparing
|
|
// the first 32-bits of this depth value is "good enough" that if we get a hit on it being
|
|
// equal, we can pretty much guarantee that it's actually equal.
|
|
//
|
|
quad.mask[0] = bit_cast<u32>(quad.depth[0]) == bit_cast<u32>(depth[0]) ? -1 : 0;
|
|
quad.mask[1] = bit_cast<u32>(quad.depth[1]) == bit_cast<u32>(depth[1]) ? -1 : 0;
|
|
quad.mask[2] = bit_cast<u32>(quad.depth[2]) == bit_cast<u32>(depth[2]) ? -1 : 0;
|
|
quad.mask[3] = bit_cast<u32>(quad.depth[3]) == bit_cast<u32>(depth[3]) ? -1 : 0;
|
|
#endif
|
|
break;
|
|
case DepthTestFunction::LessOrEqual:
|
|
quad.mask &= quad.depth <= depth;
|
|
break;
|
|
case DepthTestFunction::Less:
|
|
quad.mask &= quad.depth < depth;
|
|
break;
|
|
}
|
|
|
|
// Nice, no pixels passed the depth test -> block rejected by early z
|
|
if (none(quad.mask))
|
|
continue;
|
|
}
|
|
|
|
INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, maskcount(quad.mask));
|
|
|
|
// Draw the pixels according to the previously generated mask
|
|
auto const w_coordinates = Vector3<f32x4> {
|
|
expand4(vertex0.window_coordinates.w()),
|
|
expand4(vertex1.window_coordinates.w()),
|
|
expand4(vertex2.window_coordinates.w()),
|
|
};
|
|
|
|
auto const interpolated_reciprocal_w = interpolate(w_coordinates.x(), w_coordinates.y(), w_coordinates.z(), quad.barycentrics);
|
|
auto const interpolated_w = 1.0f / interpolated_reciprocal_w;
|
|
quad.barycentrics = quad.barycentrics * w_coordinates * interpolated_w;
|
|
|
|
// FIXME: make this more generic. We want to interpolate more than just color and uv
|
|
if (options.shade_smooth) {
|
|
quad.vertex_color = interpolate(expand4(vertex0.color), expand4(vertex1.color), expand4(vertex2.color), quad.barycentrics);
|
|
} else {
|
|
quad.vertex_color = expand4(vertex0.color);
|
|
}
|
|
|
|
quad.uv = interpolate(expand4(vertex0.tex_coord), expand4(vertex1.tex_coord), expand4(vertex2.tex_coord), quad.barycentrics);
|
|
|
|
if (options.fog_enabled) {
|
|
// Calculate depth of fragment for fog
|
|
//
|
|
// OpenGL 1.5 spec chapter 3.10: "An implementation may choose to approximate the
|
|
// eye-coordinate distance from the eye to each fragment center by |Ze|."
|
|
|
|
quad.fog_depth = interpolate(expand4(vertex0_eye_absz), expand4(vertex1_eye_absz), expand4(vertex2_eye_absz), quad.barycentrics);
|
|
}
|
|
|
|
pixel_shader(quad);
|
|
|
|
if (options.enable_alpha_test && options.alpha_test_func != AlphaTestFunction::Always) {
|
|
switch (options.alpha_test_func) {
|
|
case AlphaTestFunction::Less:
|
|
quad.mask &= quad.out_color.w() < options.alpha_test_ref_value;
|
|
break;
|
|
case AlphaTestFunction::Equal:
|
|
quad.mask &= quad.out_color.w() == options.alpha_test_ref_value;
|
|
break;
|
|
case AlphaTestFunction::LessOrEqual:
|
|
quad.mask &= quad.out_color.w() <= options.alpha_test_ref_value;
|
|
break;
|
|
case AlphaTestFunction::Greater:
|
|
quad.mask &= quad.out_color.w() > options.alpha_test_ref_value;
|
|
break;
|
|
case AlphaTestFunction::NotEqual:
|
|
quad.mask &= quad.out_color.w() != options.alpha_test_ref_value;
|
|
break;
|
|
case AlphaTestFunction::GreaterOrEqual:
|
|
quad.mask &= quad.out_color.w() >= options.alpha_test_ref_value;
|
|
break;
|
|
case AlphaTestFunction::Never:
|
|
case AlphaTestFunction::Always:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
// Write to depth buffer
|
|
if (options.enable_depth_test && options.enable_depth_write) {
|
|
store4_masked(quad.depth, depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask);
|
|
}
|
|
|
|
// We will not update the color buffer at all
|
|
if (!options.color_mask || !options.enable_color_write)
|
|
continue;
|
|
|
|
Gfx::RGBA32* color_ptrs[4] = {
|
|
&render_target.scanline(by)[bx],
|
|
&render_target.scanline(by)[bx + 1],
|
|
&render_target.scanline(by + 1)[bx],
|
|
&render_target.scanline(by + 1)[bx + 1],
|
|
};
|
|
|
|
u32x4 dst_u32;
|
|
if (options.enable_blending || options.color_mask != 0xffffffff)
|
|
dst_u32 = load4_masked(color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
|
|
|
|
if (options.enable_blending) {
|
|
INCREASE_STATISTICS_COUNTER(g_num_pixels_blended, maskcount(quad.mask));
|
|
|
|
// Blend color values from pixel_staging into render_target
|
|
Vector4<f32x4> const& src = quad.out_color;
|
|
auto dst = to_vec4(dst_u32);
|
|
|
|
auto src_factor = expand4(src_constant)
|
|
+ src * src_factor_src_color
|
|
+ Vector4<f32x4> { src.w(), src.w(), src.w(), src.w() } * src_factor_src_alpha
|
|
+ dst * src_factor_dst_color
|
|
+ Vector4<f32x4> { dst.w(), dst.w(), dst.w(), dst.w() } * src_factor_dst_alpha;
|
|
|
|
auto dst_factor = expand4(dst_constant)
|
|
+ src * dst_factor_src_color
|
|
+ Vector4<f32x4> { src.w(), src.w(), src.w(), src.w() } * dst_factor_src_alpha
|
|
+ dst * dst_factor_dst_color
|
|
+ Vector4<f32x4> { dst.w(), dst.w(), dst.w(), dst.w() } * dst_factor_dst_alpha;
|
|
|
|
quad.out_color = src * src_factor + dst * dst_factor;
|
|
}
|
|
|
|
if (options.color_mask == 0xffffffff)
|
|
store4_masked(to_rgba32(quad.out_color), color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
|
|
else
|
|
store4_masked((to_rgba32(quad.out_color) & options.color_mask) | (dst_u32 & ~options.color_mask), color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
|
|
}
|
|
}
|
|
}
|
|
|
|
static Gfx::IntSize closest_multiple(const Gfx::IntSize& min_size, size_t step)
|
|
{
|
|
int width = ((min_size.width() + step - 1) / step) * step;
|
|
int height = ((min_size.height() + step - 1) / step) * step;
|
|
return { width, height };
|
|
}
|
|
|
|
Device::Device(const Gfx::IntSize& min_size)
|
|
: m_render_target { Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, 2)).release_value_but_fixme_should_propagate_errors() }
|
|
, m_depth_buffer { adopt_own(*new DepthBuffer(closest_multiple(min_size, 2))) }
|
|
{
|
|
m_options.scissor_box = m_render_target->rect();
|
|
}
|
|
|
|
DeviceInfo Device::info() const
|
|
{
|
|
return {
|
|
.vendor_name = "SerenityOS",
|
|
.device_name = "SoftGPU",
|
|
.num_texture_units = NUM_SAMPLERS
|
|
};
|
|
}
|
|
|
|
static void generate_texture_coordinates(Vertex& vertex, RasterizerOptions const& options)
|
|
{
|
|
auto generate_coordinate = [&](size_t config_index) -> float {
|
|
auto mode = options.texcoord_generation_config[config_index].mode;
|
|
|
|
switch (mode) {
|
|
case TexCoordGenerationMode::ObjectLinear: {
|
|
auto coefficients = options.texcoord_generation_config[config_index].coefficients;
|
|
return coefficients.dot(vertex.position);
|
|
}
|
|
case TexCoordGenerationMode::EyeLinear: {
|
|
auto coefficients = options.texcoord_generation_config[config_index].coefficients;
|
|
return coefficients.dot(vertex.eye_coordinates);
|
|
}
|
|
case TexCoordGenerationMode::SphereMap: {
|
|
auto const eye_unit = vertex.eye_coordinates.normalized();
|
|
FloatVector3 const eye_unit_xyz = { eye_unit.x(), eye_unit.y(), eye_unit.z() };
|
|
auto const normal = vertex.normal;
|
|
auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz);
|
|
reflection.set_z(reflection.z() + 1);
|
|
auto const reflection_value = (config_index == 0) ? reflection.x() : reflection.y();
|
|
return reflection_value / (2 * reflection.length()) + 0.5f;
|
|
}
|
|
case TexCoordGenerationMode::ReflectionMap: {
|
|
auto const eye_unit = vertex.eye_coordinates.normalized();
|
|
FloatVector3 const eye_unit_xyz = { eye_unit.x(), eye_unit.y(), eye_unit.z() };
|
|
auto const normal = vertex.normal;
|
|
auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz);
|
|
switch (config_index) {
|
|
case 0:
|
|
return reflection.x();
|
|
case 1:
|
|
return reflection.y();
|
|
case 2:
|
|
return reflection.z();
|
|
default:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
case TexCoordGenerationMode::NormalMap: {
|
|
auto const normal = vertex.normal;
|
|
switch (config_index) {
|
|
case 0:
|
|
return normal.x();
|
|
case 1:
|
|
return normal.y();
|
|
case 2:
|
|
return normal.z();
|
|
default:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
default:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
};
|
|
|
|
auto const enabled_coords = options.texcoord_generation_enabled_coordinates;
|
|
vertex.tex_coord = {
|
|
((enabled_coords & TexCoordGenerationCoordinate::S) > 0) ? generate_coordinate(0) : vertex.tex_coord.x(),
|
|
((enabled_coords & TexCoordGenerationCoordinate::T) > 0) ? generate_coordinate(1) : vertex.tex_coord.y(),
|
|
((enabled_coords & TexCoordGenerationCoordinate::R) > 0) ? generate_coordinate(2) : vertex.tex_coord.z(),
|
|
((enabled_coords & TexCoordGenerationCoordinate::Q) > 0) ? generate_coordinate(3) : vertex.tex_coord.w(),
|
|
};
|
|
}
|
|
|
|
void Device::draw_primitives(PrimitiveType primitive_type, FloatMatrix4x4 const& model_view_transform, FloatMatrix3x3 const& normal_transform,
|
|
FloatMatrix4x4 const& projection_transform, FloatMatrix4x4 const& texture_transform, Vector<Vertex> const& vertices,
|
|
Vector<size_t> const& enabled_texture_units)
|
|
{
|
|
// At this point, the user has effectively specified that they are done with defining the geometry
|
|
// of what they want to draw. We now need to do a few things (https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview):
|
|
//
|
|
// 1. Transform all of the vertices in the current vertex list into eye space by multiplying the model-view matrix
|
|
// 2. Transform all of the vertices from eye space into clip space by multiplying by the projection matrix
|
|
// 3. If culling is enabled, we cull the desired faces (https://learnopengl.com/Advanced-OpenGL/Face-culling)
|
|
// 4. Each element of the vertex is then divided by w to bring the positions into NDC (Normalized Device Coordinates)
|
|
// 5. The vertices are sorted (for the rasterizer, how are we doing this? 3Dfx did this top to bottom in terms of vertex y coordinates)
|
|
// 6. The vertices are then sent off to the rasterizer and drawn to the screen
|
|
|
|
float scr_width = m_render_target->width();
|
|
float scr_height = m_render_target->height();
|
|
|
|
m_triangle_list.clear_with_capacity();
|
|
m_processed_triangles.clear_with_capacity();
|
|
|
|
// Let's construct some triangles
|
|
if (primitive_type == PrimitiveType::Triangles) {
|
|
Triangle triangle;
|
|
for (size_t i = 0; i < vertices.size(); i += 3) {
|
|
triangle.vertices[0] = vertices.at(i);
|
|
triangle.vertices[1] = vertices.at(i + 1);
|
|
triangle.vertices[2] = vertices.at(i + 2);
|
|
|
|
m_triangle_list.append(triangle);
|
|
}
|
|
} else if (primitive_type == PrimitiveType::Quads) {
|
|
// We need to construct two triangles to form the quad
|
|
Triangle triangle;
|
|
VERIFY(vertices.size() % 4 == 0);
|
|
for (size_t i = 0; i < vertices.size(); i += 4) {
|
|
// Triangle 1
|
|
triangle.vertices[0] = vertices.at(i);
|
|
triangle.vertices[1] = vertices.at(i + 1);
|
|
triangle.vertices[2] = vertices.at(i + 2);
|
|
m_triangle_list.append(triangle);
|
|
|
|
// Triangle 2
|
|
triangle.vertices[0] = vertices.at(i + 2);
|
|
triangle.vertices[1] = vertices.at(i + 3);
|
|
triangle.vertices[2] = vertices.at(i);
|
|
m_triangle_list.append(triangle);
|
|
}
|
|
} else if (primitive_type == PrimitiveType::TriangleFan) {
|
|
Triangle triangle;
|
|
triangle.vertices[0] = vertices.at(0); // Root vertex is always the vertex defined first
|
|
|
|
for (size_t i = 1; i < vertices.size() - 1; i++) // This is technically `n-2` triangles. We start at index 1
|
|
{
|
|
triangle.vertices[1] = vertices.at(i);
|
|
triangle.vertices[2] = vertices.at(i + 1);
|
|
m_triangle_list.append(triangle);
|
|
}
|
|
} else if (primitive_type == PrimitiveType::TriangleStrip) {
|
|
Triangle triangle;
|
|
for (size_t i = 0; i < vertices.size() - 2; i++) {
|
|
if (i % 2 == 0) {
|
|
triangle.vertices[0] = vertices.at(i);
|
|
triangle.vertices[1] = vertices.at(i + 1);
|
|
triangle.vertices[2] = vertices.at(i + 2);
|
|
} else {
|
|
triangle.vertices[0] = vertices.at(i + 1);
|
|
triangle.vertices[1] = vertices.at(i);
|
|
triangle.vertices[2] = vertices.at(i + 2);
|
|
}
|
|
m_triangle_list.append(triangle);
|
|
}
|
|
}
|
|
|
|
// Now let's transform each triangle and send that to the GPU
|
|
auto const depth_half_range = (m_options.depth_max - m_options.depth_min) / 2;
|
|
auto const depth_halfway = (m_options.depth_min + m_options.depth_max) / 2;
|
|
for (auto& triangle : m_triangle_list) {
|
|
// Transform vertices into eye coordinates using the model-view transform
|
|
triangle.vertices[0].eye_coordinates = model_view_transform * triangle.vertices[0].position;
|
|
triangle.vertices[1].eye_coordinates = model_view_transform * triangle.vertices[1].position;
|
|
triangle.vertices[2].eye_coordinates = model_view_transform * triangle.vertices[2].position;
|
|
|
|
// Transform eye coordinates into clip coordinates using the projection transform
|
|
triangle.vertices[0].clip_coordinates = projection_transform * triangle.vertices[0].eye_coordinates;
|
|
triangle.vertices[1].clip_coordinates = projection_transform * triangle.vertices[1].eye_coordinates;
|
|
triangle.vertices[2].clip_coordinates = projection_transform * triangle.vertices[2].eye_coordinates;
|
|
|
|
// At this point, we're in clip space
|
|
// Here's where we do the clipping. This is a really crude implementation of the
|
|
// https://learnopengl.com/Getting-started/Coordinate-Systems
|
|
// "Note that if only a part of a primitive e.g. a triangle is outside the clipping volume OpenGL
|
|
// will reconstruct the triangle as one or more triangles to fit inside the clipping range. "
|
|
//
|
|
// ALL VERTICES ARE DEFINED IN A CLOCKWISE ORDER
|
|
|
|
// Okay, let's do some face culling first
|
|
|
|
m_clipped_vertices.clear_with_capacity();
|
|
m_clipped_vertices.append(triangle.vertices[0]);
|
|
m_clipped_vertices.append(triangle.vertices[1]);
|
|
m_clipped_vertices.append(triangle.vertices[2]);
|
|
m_clipper.clip_triangle_against_frustum(m_clipped_vertices);
|
|
|
|
if (m_clipped_vertices.size() < 3)
|
|
continue;
|
|
|
|
for (auto& vec : m_clipped_vertices) {
|
|
// To normalized device coordinates (NDC)
|
|
auto const one_over_w = 1 / vec.clip_coordinates.w();
|
|
auto const ndc_coordinates = FloatVector4 {
|
|
vec.clip_coordinates.x() * one_over_w,
|
|
vec.clip_coordinates.y() * one_over_w,
|
|
vec.clip_coordinates.z() * one_over_w,
|
|
one_over_w,
|
|
};
|
|
|
|
// To window coordinates
|
|
// FIXME: implement viewport functionality
|
|
vec.window_coordinates = {
|
|
scr_width / 2 + ndc_coordinates.x() * scr_width / 2,
|
|
scr_height / 2 - ndc_coordinates.y() * scr_height / 2,
|
|
depth_half_range * ndc_coordinates.z() + depth_halfway,
|
|
ndc_coordinates.w(),
|
|
};
|
|
}
|
|
|
|
Triangle tri;
|
|
tri.vertices[0] = m_clipped_vertices[0];
|
|
for (size_t i = 1; i < m_clipped_vertices.size() - 1; i++) {
|
|
tri.vertices[1] = m_clipped_vertices[i];
|
|
tri.vertices[2] = m_clipped_vertices[i + 1];
|
|
m_processed_triangles.append(tri);
|
|
}
|
|
}
|
|
|
|
for (auto& triangle : m_processed_triangles) {
|
|
// Let's calculate the (signed) area of the triangle
|
|
// https://cp-algorithms.com/geometry/oriented-triangle-area.html
|
|
float dxAB = triangle.vertices[0].window_coordinates.x() - triangle.vertices[1].window_coordinates.x(); // A.x - B.x
|
|
float dxBC = triangle.vertices[1].window_coordinates.x() - triangle.vertices[2].window_coordinates.x(); // B.X - C.x
|
|
float dyAB = triangle.vertices[0].window_coordinates.y() - triangle.vertices[1].window_coordinates.y();
|
|
float dyBC = triangle.vertices[1].window_coordinates.y() - triangle.vertices[2].window_coordinates.y();
|
|
float area = (dxAB * dyBC) - (dxBC * dyAB);
|
|
|
|
if (area == 0.0f)
|
|
continue;
|
|
|
|
if (m_options.enable_culling) {
|
|
bool is_front = (m_options.front_face == WindingOrder::CounterClockwise ? area < 0 : area > 0);
|
|
|
|
if (!is_front && m_options.cull_back)
|
|
continue;
|
|
|
|
if (is_front && m_options.cull_front)
|
|
continue;
|
|
}
|
|
|
|
if (area > 0)
|
|
swap(triangle.vertices[0], triangle.vertices[1]);
|
|
|
|
// Transform normals
|
|
triangle.vertices[0].normal = normal_transform * triangle.vertices[0].normal;
|
|
triangle.vertices[1].normal = normal_transform * triangle.vertices[1].normal;
|
|
triangle.vertices[2].normal = normal_transform * triangle.vertices[2].normal;
|
|
if (m_options.normalization_enabled) {
|
|
triangle.vertices[0].normal.normalize();
|
|
triangle.vertices[1].normal.normalize();
|
|
triangle.vertices[2].normal.normalize();
|
|
}
|
|
|
|
// Generate texture coordinates if at least one coordinate is enabled
|
|
if (m_options.texcoord_generation_enabled_coordinates != TexCoordGenerationCoordinate::None) {
|
|
generate_texture_coordinates(triangle.vertices[0], m_options);
|
|
generate_texture_coordinates(triangle.vertices[1], m_options);
|
|
generate_texture_coordinates(triangle.vertices[2], m_options);
|
|
}
|
|
|
|
// Apply texture transformation
|
|
// FIXME: implement multi-texturing: texcoords should be stored per texture unit
|
|
triangle.vertices[0].tex_coord = texture_transform * triangle.vertices[0].tex_coord;
|
|
triangle.vertices[1].tex_coord = texture_transform * triangle.vertices[1].tex_coord;
|
|
triangle.vertices[2].tex_coord = texture_transform * triangle.vertices[2].tex_coord;
|
|
|
|
submit_triangle(triangle, enabled_texture_units);
|
|
}
|
|
}
|
|
|
|
void Device::submit_triangle(const Triangle& triangle, Vector<size_t> const& enabled_texture_units)
|
|
{
|
|
rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [this, &enabled_texture_units](PixelQuad& quad) {
|
|
quad.out_color = quad.vertex_color;
|
|
|
|
for (size_t i : enabled_texture_units) {
|
|
// FIXME: implement GL_TEXTURE_1D, GL_TEXTURE_3D and GL_TEXTURE_CUBE_MAP
|
|
auto const& sampler = m_samplers[i];
|
|
|
|
auto texel = sampler.sample_2d({ quad.uv.x(), quad.uv.y() });
|
|
INCREASE_STATISTICS_COUNTER(g_num_sampler_calls, 1);
|
|
|
|
// FIXME: Implement more blend modes
|
|
switch (sampler.config().fixed_function_texture_env_mode) {
|
|
case TextureEnvMode::Modulate:
|
|
quad.out_color = quad.out_color * texel;
|
|
break;
|
|
case TextureEnvMode::Replace:
|
|
quad.out_color = texel;
|
|
break;
|
|
case TextureEnvMode::Decal: {
|
|
auto src_alpha = quad.out_color.w();
|
|
quad.out_color.set_x(mix(quad.out_color.x(), texel.x(), src_alpha));
|
|
quad.out_color.set_y(mix(quad.out_color.y(), texel.y(), src_alpha));
|
|
quad.out_color.set_z(mix(quad.out_color.z(), texel.z(), src_alpha));
|
|
break;
|
|
}
|
|
default:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
// Calculate fog
|
|
// Math from here: https://opengl-notes.readthedocs.io/en/latest/topics/texturing/aliasing.html
|
|
|
|
// FIXME: exponential fog is not vectorized, we should add a SIMD exp function that calculates an approximation.
|
|
if (m_options.fog_enabled) {
|
|
auto factor = expand4(0.0f);
|
|
switch (m_options.fog_mode) {
|
|
case FogMode::Linear:
|
|
factor = (m_options.fog_end - quad.fog_depth) / (m_options.fog_end - m_options.fog_start);
|
|
break;
|
|
case FogMode::Exp: {
|
|
auto argument = -m_options.fog_density * quad.fog_depth;
|
|
factor = exp(argument);
|
|
} break;
|
|
case FogMode::Exp2: {
|
|
auto argument = m_options.fog_density * quad.fog_depth;
|
|
argument *= -argument;
|
|
factor = exp(argument);
|
|
} break;
|
|
default:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
// Mix texel's RGB with fog's RBG - leave alpha alone
|
|
auto fog_color = expand4(m_options.fog_color);
|
|
quad.out_color.set_x(mix(fog_color.x(), quad.out_color.x(), factor));
|
|
quad.out_color.set_y(mix(fog_color.y(), quad.out_color.y(), factor));
|
|
quad.out_color.set_z(mix(fog_color.z(), quad.out_color.z(), factor));
|
|
}
|
|
});
|
|
}
|
|
|
|
void Device::resize(const Gfx::IntSize& min_size)
|
|
{
|
|
wait_for_all_threads();
|
|
|
|
m_render_target = Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, 2)).release_value_but_fixme_should_propagate_errors();
|
|
m_depth_buffer = adopt_own(*new DepthBuffer(m_render_target->size()));
|
|
}
|
|
|
|
void Device::clear_color(const FloatVector4& color)
|
|
{
|
|
wait_for_all_threads();
|
|
|
|
uint8_t r = static_cast<uint8_t>(clamp(color.x(), 0.0f, 1.0f) * 255);
|
|
uint8_t g = static_cast<uint8_t>(clamp(color.y(), 0.0f, 1.0f) * 255);
|
|
uint8_t b = static_cast<uint8_t>(clamp(color.z(), 0.0f, 1.0f) * 255);
|
|
uint8_t a = static_cast<uint8_t>(clamp(color.w(), 0.0f, 1.0f) * 255);
|
|
auto const fill_color = Gfx::Color(r, g, b, a);
|
|
|
|
if (m_options.scissor_enabled) {
|
|
auto fill_rect = m_render_target->rect();
|
|
fill_rect.intersect(scissor_box_to_window_coordinates(m_options.scissor_box, fill_rect));
|
|
Gfx::Painter painter { *m_render_target };
|
|
painter.fill_rect(fill_rect, fill_color);
|
|
return;
|
|
}
|
|
|
|
m_render_target->fill(fill_color);
|
|
}
|
|
|
|
void Device::clear_depth(float depth)
|
|
{
|
|
wait_for_all_threads();
|
|
|
|
if (m_options.scissor_enabled) {
|
|
m_depth_buffer->clear(scissor_box_to_window_coordinates(m_options.scissor_box, m_render_target->rect()), depth);
|
|
return;
|
|
}
|
|
|
|
m_depth_buffer->clear(depth);
|
|
}
|
|
|
|
void Device::blit(Gfx::Bitmap const& source, int x, int y)
|
|
{
|
|
wait_for_all_threads();
|
|
|
|
INCREASE_STATISTICS_COUNTER(g_num_pixels, source.width() * source.height());
|
|
INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, source.width() * source.height());
|
|
|
|
Gfx::Painter painter { *m_render_target };
|
|
painter.blit({ x, y }, source, source.rect(), 1.0f, true);
|
|
}
|
|
|
|
void Device::blit_to(Gfx::Bitmap& target)
|
|
{
|
|
wait_for_all_threads();
|
|
|
|
Gfx::Painter painter { target };
|
|
painter.blit({ 0, 0 }, *m_render_target, m_render_target->rect(), 1.0f, false);
|
|
|
|
if constexpr (ENABLE_STATISTICS_OVERLAY)
|
|
draw_statistics_overlay(target);
|
|
}
|
|
|
|
void Device::draw_statistics_overlay(Gfx::Bitmap& target)
|
|
{
|
|
static Core::ElapsedTimer timer;
|
|
static String debug_string;
|
|
static int frame_counter;
|
|
|
|
frame_counter++;
|
|
int milliseconds = 0;
|
|
if (timer.is_valid())
|
|
milliseconds = timer.elapsed();
|
|
else
|
|
timer.start();
|
|
|
|
Gfx::Painter painter { target };
|
|
|
|
if (milliseconds > 500) {
|
|
|
|
if (g_num_pixels == 0)
|
|
g_num_pixels = 1;
|
|
|
|
int num_rendertarget_pixels = m_render_target->width() * m_render_target->height();
|
|
|
|
StringBuilder builder;
|
|
builder.append(String::formatted("Timings : {:.1}ms {:.1}FPS\n",
|
|
static_cast<double>(milliseconds) / frame_counter,
|
|
(milliseconds > 0) ? 1000.0 * frame_counter / milliseconds : 9999.0));
|
|
builder.append(String::formatted("Triangles : {}\n", g_num_rasterized_triangles));
|
|
builder.append(String::formatted("SIMD usage : {}%\n", g_num_quads > 0 ? g_num_pixels_shaded * 25 / g_num_quads : 0));
|
|
builder.append(String::formatted("Pixels : {}, Shaded: {}%, Blended: {}%, Overdraw: {}%\n",
|
|
g_num_pixels,
|
|
g_num_pixels_shaded * 100 / g_num_pixels,
|
|
g_num_pixels_blended * 100 / g_num_pixels_shaded,
|
|
g_num_pixels_shaded * 100 / num_rendertarget_pixels - 100));
|
|
builder.append(String::formatted("Sampler calls: {}\n", g_num_sampler_calls));
|
|
|
|
debug_string = builder.to_string();
|
|
|
|
frame_counter = 0;
|
|
timer.start();
|
|
}
|
|
|
|
g_num_rasterized_triangles = 0;
|
|
g_num_pixels = 0;
|
|
g_num_pixels_shaded = 0;
|
|
g_num_pixels_blended = 0;
|
|
g_num_sampler_calls = 0;
|
|
g_num_quads = 0;
|
|
|
|
auto& font = Gfx::FontDatabase::default_fixed_width_font();
|
|
|
|
for (int y = -1; y < 2; y++)
|
|
for (int x = -1; x < 2; x++)
|
|
if (x != 0 && y != 0)
|
|
painter.draw_text(target.rect().translated(x + 2, y + 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::Black);
|
|
|
|
painter.draw_text(target.rect().translated(2, 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::White);
|
|
}
|
|
|
|
void Device::wait_for_all_threads() const
|
|
{
|
|
// FIXME: Wait for all render threads to finish when multithreading is being implemented
|
|
}
|
|
|
|
void Device::set_options(const RasterizerOptions& options)
|
|
{
|
|
wait_for_all_threads();
|
|
|
|
m_options = options;
|
|
|
|
// FIXME: Recreate or reinitialize render threads here when multithreading is being implemented
|
|
}
|
|
|
|
Gfx::RGBA32 Device::get_backbuffer_pixel(int x, int y)
|
|
{
|
|
// FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
|
|
if (x < 0 || y < 0 || x >= m_render_target->width() || y >= m_render_target->height())
|
|
return 0;
|
|
|
|
return m_render_target->scanline(y)[x];
|
|
}
|
|
|
|
float Device::get_depthbuffer_value(int x, int y)
|
|
{
|
|
// FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
|
|
if (x < 0 || y < 0 || x >= m_render_target->width() || y >= m_render_target->height())
|
|
return 1.0f;
|
|
|
|
return m_depth_buffer->scanline(y)[x];
|
|
}
|
|
|
|
NonnullRefPtr<Image> Device::create_image(ImageFormat format, unsigned width, unsigned height, unsigned depth, unsigned levels, unsigned layers)
|
|
{
|
|
VERIFY(width > 0);
|
|
VERIFY(height > 0);
|
|
VERIFY(depth > 0);
|
|
VERIFY(levels > 0);
|
|
VERIFY(layers > 0);
|
|
|
|
return adopt_ref(*new Image(format, width, height, depth, levels, layers));
|
|
}
|
|
|
|
void Device::set_sampler_config(unsigned sampler, SamplerConfig const& config)
|
|
{
|
|
m_samplers[sampler].set_config(config);
|
|
}
|
|
|
|
}
|