ladybird/Userland/Libraries/LibJS/Bytecode/Generator.cpp
Andreas Kling c0f985ffcf LibJS/Bytecode: Don't reparse regular expressions on instantiation
The RegExpLiteral AST node already has the parsed regex::Parser::Result
so let's plumb that over to the bytecode executable instead of reparsing
the regex every time NewRegExp is executed.

~12% speed-up on language/literals/regexp/S7.8.5_A2.1_T2.js in test262.
2023-07-13 13:30:49 +02:00

566 lines
22 KiB
C++

/*
* Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibJS/AST.h>
#include <LibJS/Bytecode/BasicBlock.h>
#include <LibJS/Bytecode/Generator.h>
#include <LibJS/Bytecode/Instruction.h>
#include <LibJS/Bytecode/Op.h>
#include <LibJS/Bytecode/Register.h>
namespace JS::Bytecode {
Generator::Generator()
: m_string_table(make<StringTable>())
, m_identifier_table(make<IdentifierTable>())
, m_regex_table(make<RegexTable>())
{
}
CodeGenerationErrorOr<NonnullOwnPtr<Executable>> Generator::generate(ASTNode const& node, FunctionKind enclosing_function_kind)
{
Generator generator;
generator.switch_to_basic_block(generator.make_block());
generator.m_enclosing_function_kind = enclosing_function_kind;
if (generator.is_in_generator_or_async_function()) {
// Immediately yield with no value.
auto& start_block = generator.make_block();
generator.emit<Bytecode::Op::Yield>(Label { start_block });
generator.switch_to_basic_block(start_block);
// NOTE: This doesn't have to handle received throw/return completions, as GeneratorObject::resume_abrupt
// will not enter the generator from the SuspendedStart state and immediately completes the generator.
}
TRY(node.generate_bytecode(generator));
if (generator.is_in_generator_or_async_function()) {
// Terminate all unterminated blocks with yield return
for (auto& block : generator.m_root_basic_blocks) {
if (block->is_terminated())
continue;
generator.switch_to_basic_block(*block);
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
generator.emit<Bytecode::Op::Yield>(nullptr);
}
}
bool is_strict_mode = false;
if (is<Program>(node))
is_strict_mode = static_cast<Program const&>(node).is_strict_mode();
else if (is<FunctionBody>(node))
is_strict_mode = static_cast<FunctionBody const&>(node).in_strict_mode();
else if (is<FunctionDeclaration>(node))
is_strict_mode = static_cast<FunctionDeclaration const&>(node).is_strict_mode();
else if (is<FunctionExpression>(node))
is_strict_mode = static_cast<FunctionExpression const&>(node).is_strict_mode();
Vector<PropertyLookupCache> property_lookup_caches;
property_lookup_caches.resize(generator.m_next_property_lookup_cache);
Vector<GlobalVariableCache> global_variable_caches;
global_variable_caches.resize(generator.m_next_global_variable_cache);
return adopt_own(*new Executable {
.name = {},
.property_lookup_caches = move(property_lookup_caches),
.global_variable_caches = move(global_variable_caches),
.basic_blocks = move(generator.m_root_basic_blocks),
.string_table = move(generator.m_string_table),
.identifier_table = move(generator.m_identifier_table),
.regex_table = move(generator.m_regex_table),
.number_of_registers = generator.m_next_register,
.is_strict_mode = is_strict_mode,
});
}
void Generator::grow(size_t additional_size)
{
VERIFY(m_current_basic_block);
m_current_basic_block->grow(additional_size);
}
void* Generator::next_slot()
{
VERIFY(m_current_basic_block);
return m_current_basic_block->next_slot();
}
Register Generator::allocate_register()
{
VERIFY(m_next_register != NumericLimits<u32>::max());
return Register { m_next_register++ };
}
Label Generator::nearest_continuable_scope() const
{
return m_continuable_scopes.last().bytecode_target;
}
void Generator::block_declaration_instantiation(ScopeNode const& scope_node)
{
start_boundary(BlockBoundaryType::LeaveLexicalEnvironment);
emit<Bytecode::Op::BlockDeclarationInstantiation>(scope_node);
}
void Generator::begin_variable_scope()
{
start_boundary(BlockBoundaryType::LeaveLexicalEnvironment);
emit<Bytecode::Op::CreateLexicalEnvironment>();
}
void Generator::end_variable_scope()
{
end_boundary(BlockBoundaryType::LeaveLexicalEnvironment);
if (!m_current_basic_block->is_terminated()) {
emit<Bytecode::Op::LeaveLexicalEnvironment>();
}
}
void Generator::begin_continuable_scope(Label continue_target, Vector<DeprecatedFlyString> const& language_label_set)
{
m_continuable_scopes.append({ continue_target, language_label_set });
start_boundary(BlockBoundaryType::Continue);
}
void Generator::end_continuable_scope()
{
m_continuable_scopes.take_last();
end_boundary(BlockBoundaryType::Continue);
}
Label Generator::nearest_breakable_scope() const
{
return m_breakable_scopes.last().bytecode_target;
}
void Generator::begin_breakable_scope(Label breakable_target, Vector<DeprecatedFlyString> const& language_label_set)
{
m_breakable_scopes.append({ breakable_target, language_label_set });
start_boundary(BlockBoundaryType::Break);
}
void Generator::end_breakable_scope()
{
m_breakable_scopes.take_last();
end_boundary(BlockBoundaryType::Break);
}
CodeGenerationErrorOr<Generator::ReferenceRegisters> Generator::emit_super_reference(MemberExpression const& expression)
{
VERIFY(is<SuperExpression>(expression.object()));
// https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
// 1. Let env be GetThisEnvironment().
// 2. Let actualThis be ? env.GetThisBinding().
auto actual_this_register = allocate_register();
emit<Bytecode::Op::ResolveThisBinding>();
emit<Bytecode::Op::Store>(actual_this_register);
Optional<Bytecode::Register> computed_property_value_register;
if (expression.is_computed()) {
// SuperProperty : super [ Expression ]
// 3. Let propertyNameReference be ? Evaluation of Expression.
// 4. Let propertyNameValue be ? GetValue(propertyNameReference).
TRY(expression.property().generate_bytecode(*this));
computed_property_value_register = allocate_register();
emit<Bytecode::Op::Store>(*computed_property_value_register);
}
// 5/7. Return ? MakeSuperPropertyReference(actualThis, propertyKey, strict).
// https://tc39.es/ecma262/#sec-makesuperpropertyreference
// 1. Let env be GetThisEnvironment().
// 2. Assert: env.HasSuperBinding() is true.
// 3. Let baseValue be ? env.GetSuperBase().
auto super_base_register = allocate_register();
emit<Bytecode::Op::ResolveSuperBase>();
emit<Bytecode::Op::Store>(super_base_register);
// 4. Return the Reference Record { [[Base]]: baseValue, [[ReferencedName]]: propertyKey, [[Strict]]: strict, [[ThisValue]]: actualThis }.
return ReferenceRegisters {
.base = super_base_register,
.referenced_name = move(computed_property_value_register),
.this_value = actual_this_register,
};
}
CodeGenerationErrorOr<void> Generator::emit_load_from_reference(JS::ASTNode const& node)
{
if (is<Identifier>(node)) {
auto& identifier = static_cast<Identifier const&>(node);
TRY(identifier.generate_bytecode(*this));
return {};
}
if (is<MemberExpression>(node)) {
auto& expression = static_cast<MemberExpression const&>(node);
// https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
if (is<SuperExpression>(expression.object())) {
auto super_reference = TRY(emit_super_reference(expression));
if (super_reference.referenced_name.has_value()) {
// 5. Let propertyKey be ? ToPropertyKey(propertyNameValue).
// FIXME: This does ToPropertyKey out of order, which is observable by Symbol.toPrimitive!
emit<Bytecode::Op::Load>(*super_reference.referenced_name);
emit<Bytecode::Op::GetByValueWithThis>(super_reference.base, super_reference.this_value);
} else {
// 3. Let propertyKey be StringValue of IdentifierName.
auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string());
emit_get_by_id_with_this(identifier_table_ref, super_reference.this_value);
}
} else {
TRY(expression.object().generate_bytecode(*this));
if (expression.is_computed()) {
auto object_reg = allocate_register();
emit<Bytecode::Op::Store>(object_reg);
TRY(expression.property().generate_bytecode(*this));
emit<Bytecode::Op::GetByValue>(object_reg);
} else if (expression.property().is_identifier()) {
auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string());
emit_get_by_id(identifier_table_ref);
} else if (expression.property().is_private_identifier()) {
auto identifier_table_ref = intern_identifier(verify_cast<PrivateIdentifier>(expression.property()).string());
emit<Bytecode::Op::GetPrivateById>(identifier_table_ref);
} else {
return CodeGenerationError {
&expression,
"Unimplemented non-computed member expression"sv
};
}
}
return {};
}
VERIFY_NOT_REACHED();
}
CodeGenerationErrorOr<void> Generator::emit_store_to_reference(JS::ASTNode const& node)
{
if (is<Identifier>(node)) {
auto& identifier = static_cast<Identifier const&>(node);
emit_set_variable(identifier);
return {};
}
if (is<MemberExpression>(node)) {
// NOTE: The value is in the accumulator, so we have to store that away first.
auto value_reg = allocate_register();
emit<Bytecode::Op::Store>(value_reg);
auto& expression = static_cast<MemberExpression const&>(node);
// https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
if (is<SuperExpression>(expression.object())) {
auto super_reference = TRY(emit_super_reference(expression));
emit<Bytecode::Op::Load>(value_reg);
// 4. Return the Reference Record { [[Base]]: baseValue, [[ReferencedName]]: propertyKey, [[Strict]]: strict, [[ThisValue]]: actualThis }.
if (super_reference.referenced_name.has_value()) {
// 5. Let propertyKey be ? ToPropertyKey(propertyNameValue).
// FIXME: This does ToPropertyKey out of order, which is observable by Symbol.toPrimitive!
emit<Bytecode::Op::PutByValueWithThis>(super_reference.base, *super_reference.referenced_name, super_reference.this_value);
} else {
// 3. Let propertyKey be StringValue of IdentifierName.
auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string());
emit<Bytecode::Op::PutByIdWithThis>(super_reference.base, super_reference.this_value, identifier_table_ref);
}
} else {
TRY(expression.object().generate_bytecode(*this));
auto object_reg = allocate_register();
emit<Bytecode::Op::Store>(object_reg);
if (expression.is_computed()) {
TRY(expression.property().generate_bytecode(*this));
auto property_reg = allocate_register();
emit<Bytecode::Op::Store>(property_reg);
emit<Bytecode::Op::Load>(value_reg);
emit<Bytecode::Op::PutByValue>(object_reg, property_reg);
} else if (expression.property().is_identifier()) {
emit<Bytecode::Op::Load>(value_reg);
auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string());
emit<Bytecode::Op::PutById>(object_reg, identifier_table_ref);
} else if (expression.property().is_private_identifier()) {
emit<Bytecode::Op::Load>(value_reg);
auto identifier_table_ref = intern_identifier(verify_cast<PrivateIdentifier>(expression.property()).string());
emit<Bytecode::Op::PutPrivateById>(object_reg, identifier_table_ref);
} else {
return CodeGenerationError {
&expression,
"Unimplemented non-computed member expression"sv
};
}
}
return {};
}
return CodeGenerationError {
&node,
"Unimplemented/invalid node used a reference"sv
};
}
CodeGenerationErrorOr<void> Generator::emit_delete_reference(JS::ASTNode const& node)
{
if (is<Identifier>(node)) {
auto& identifier = static_cast<Identifier const&>(node);
if (identifier.is_local())
emit<Bytecode::Op::LoadImmediate>(Value(false));
else
emit<Bytecode::Op::DeleteVariable>(intern_identifier(identifier.string()));
return {};
}
if (is<MemberExpression>(node)) {
auto& expression = static_cast<MemberExpression const&>(node);
// https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
if (is<SuperExpression>(expression.object())) {
auto super_reference = TRY(emit_super_reference(expression));
if (super_reference.referenced_name.has_value()) {
emit<Bytecode::Op::DeleteByValueWithThis>(super_reference.this_value, *super_reference.referenced_name);
} else {
auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string());
emit<Bytecode::Op::DeleteByIdWithThis>(super_reference.this_value, identifier_table_ref);
}
return {};
}
TRY(expression.object().generate_bytecode(*this));
if (expression.is_computed()) {
auto object_reg = allocate_register();
emit<Bytecode::Op::Store>(object_reg);
TRY(expression.property().generate_bytecode(*this));
emit<Bytecode::Op::DeleteByValue>(object_reg);
} else if (expression.property().is_identifier()) {
auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string());
emit<Bytecode::Op::DeleteById>(identifier_table_ref);
} else {
// NOTE: Trying to delete a private field generates a SyntaxError in the parser.
return CodeGenerationError {
&expression,
"Unimplemented non-computed member expression"sv
};
}
return {};
}
// Though this will have no deletion effect, we still have to evaluate the node as it can have side effects.
// For example: delete a(); delete ++c.b; etc.
// 13.5.1.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-delete-operator-runtime-semantics-evaluation
// 1. Let ref be the result of evaluating UnaryExpression.
// 2. ReturnIfAbrupt(ref).
TRY(node.generate_bytecode(*this));
// 3. If ref is not a Reference Record, return true.
emit<Bytecode::Op::LoadImmediate>(Value(true));
// NOTE: The rest of the steps are handled by Delete{Variable,ByValue,Id}.
return {};
}
void Generator::emit_set_variable(JS::Identifier const& identifier, Bytecode::Op::SetVariable::InitializationMode initialization_mode, Bytecode::Op::EnvironmentMode mode)
{
if (identifier.is_local()) {
emit<Bytecode::Op::SetLocal>(identifier.local_variable_index());
} else {
emit<Bytecode::Op::SetVariable>(intern_identifier(identifier.string()), initialization_mode, mode);
}
}
void Generator::generate_break()
{
bool last_was_finally = false;
// FIXME: Reduce code duplication
for (size_t i = m_boundaries.size(); i > 0; --i) {
auto boundary = m_boundaries[i - 1];
using enum BlockBoundaryType;
switch (boundary) {
case Break:
emit<Op::Jump>().set_targets(nearest_breakable_scope(), {});
return;
case Unwind:
if (!last_was_finally)
emit<Bytecode::Op::LeaveUnwindContext>();
last_was_finally = false;
break;
case LeaveLexicalEnvironment:
emit<Bytecode::Op::LeaveLexicalEnvironment>();
break;
case Continue:
break;
case ReturnToFinally: {
auto& block = make_block(DeprecatedString::formatted("{}.break", current_block().name()));
emit<Op::ScheduleJump>(Label { block });
switch_to_basic_block(block);
last_was_finally = true;
break;
};
}
}
VERIFY_NOT_REACHED();
}
void Generator::generate_break(DeprecatedFlyString const& break_label)
{
size_t current_boundary = m_boundaries.size();
bool last_was_finally = false;
for (auto const& breakable_scope : m_breakable_scopes.in_reverse()) {
for (; current_boundary > 0; --current_boundary) {
auto boundary = m_boundaries[current_boundary - 1];
if (boundary == BlockBoundaryType::Unwind) {
if (!last_was_finally)
emit<Bytecode::Op::LeaveUnwindContext>();
last_was_finally = false;
} else if (boundary == BlockBoundaryType::LeaveLexicalEnvironment) {
emit<Bytecode::Op::LeaveLexicalEnvironment>();
} else if (boundary == BlockBoundaryType::ReturnToFinally) {
auto& block = make_block(DeprecatedString::formatted("{}.break", current_block().name()));
emit<Op::ScheduleJump>(Label { block });
switch_to_basic_block(block);
last_was_finally = true;
} else if (boundary == BlockBoundaryType::Break) {
// Make sure we don't process this boundary twice if the current breakable scope doesn't contain the target label.
--current_boundary;
break;
}
}
if (breakable_scope.language_label_set.contains_slow(break_label)) {
emit<Op::Jump>().set_targets(breakable_scope.bytecode_target, {});
return;
}
}
// We must have a breakable scope available that contains the label, as this should be enforced by the parser.
VERIFY_NOT_REACHED();
}
void Generator::generate_continue()
{
bool last_was_finally = false;
// FIXME: Reduce code duplication
for (size_t i = m_boundaries.size(); i > 0; --i) {
auto boundary = m_boundaries[i - 1];
using enum BlockBoundaryType;
switch (boundary) {
case Continue:
emit<Op::Jump>().set_targets(nearest_continuable_scope(), {});
return;
case Unwind:
if (!last_was_finally)
emit<Bytecode::Op::LeaveUnwindContext>();
last_was_finally = false;
break;
case LeaveLexicalEnvironment:
emit<Bytecode::Op::LeaveLexicalEnvironment>();
break;
case Break:
break;
case ReturnToFinally: {
auto& block = make_block(DeprecatedString::formatted("{}.continue", current_block().name()));
emit<Op::ScheduleJump>(Label { block });
switch_to_basic_block(block);
last_was_finally = true;
break;
};
}
}
VERIFY_NOT_REACHED();
}
void Generator::generate_continue(DeprecatedFlyString const& continue_label)
{
size_t current_boundary = m_boundaries.size();
bool last_was_finally = false;
for (auto const& continuable_scope : m_continuable_scopes.in_reverse()) {
for (; current_boundary > 0; --current_boundary) {
auto boundary = m_boundaries[current_boundary - 1];
if (boundary == BlockBoundaryType::Unwind) {
if (!last_was_finally)
emit<Bytecode::Op::LeaveUnwindContext>();
last_was_finally = false;
} else if (boundary == BlockBoundaryType::LeaveLexicalEnvironment) {
emit<Bytecode::Op::LeaveLexicalEnvironment>();
} else if (boundary == BlockBoundaryType::ReturnToFinally) {
auto& block = make_block(DeprecatedString::formatted("{}.continue", current_block().name()));
emit<Op::ScheduleJump>(Label { block });
switch_to_basic_block(block);
last_was_finally = true;
} else if (boundary == BlockBoundaryType::Continue) {
// Make sure we don't process this boundary twice if the current continuable scope doesn't contain the target label.
--current_boundary;
break;
}
}
if (continuable_scope.language_label_set.contains_slow(continue_label)) {
emit<Op::Jump>().set_targets(continuable_scope.bytecode_target, {});
return;
}
}
// We must have a continuable scope available that contains the label, as this should be enforced by the parser.
VERIFY_NOT_REACHED();
}
void Generator::push_home_object(Register register_)
{
m_home_objects.append(register_);
}
void Generator::pop_home_object()
{
m_home_objects.take_last();
}
void Generator::emit_new_function(FunctionExpression const& function_node, Optional<IdentifierTableIndex> lhs_name)
{
if (m_home_objects.is_empty())
emit<Op::NewFunction>(function_node, lhs_name);
else
emit<Op::NewFunction>(function_node, lhs_name, m_home_objects.last());
}
CodeGenerationErrorOr<void> Generator::emit_named_evaluation_if_anonymous_function(Expression const& expression, Optional<IdentifierTableIndex> lhs_name)
{
if (is<FunctionExpression>(expression)) {
auto const& function_expression = static_cast<FunctionExpression const&>(expression);
if (!function_expression.has_name()) {
TRY(function_expression.generate_bytecode_with_lhs_name(*this, move(lhs_name)));
return {};
}
}
if (is<ClassExpression>(expression)) {
auto const& class_expression = static_cast<ClassExpression const&>(expression);
if (!class_expression.has_name()) {
TRY(class_expression.generate_bytecode_with_lhs_name(*this, move(lhs_name)));
return {};
}
}
TRY(expression.generate_bytecode(*this));
return {};
}
void Generator::emit_get_by_id(IdentifierTableIndex id)
{
emit<Op::GetById>(id, m_next_property_lookup_cache++);
}
void Generator::emit_get_by_id_with_this(IdentifierTableIndex id, Register this_reg)
{
emit<Op::GetByIdWithThis>(id, this_reg, m_next_property_lookup_cache++);
}
}