ladybird/Userland/Libraries/LibJS/Bytecode/ASTCodegen.cpp
2023-07-14 06:06:04 +02:00

3036 lines
136 KiB
C++

/*
* Copyright (c) 2021-2023, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2021, Gunnar Beutner <gbeutner@serenityos.org>
* Copyright (c) 2021, Marcin Gasperowicz <xnooga@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Find.h>
#include <LibJS/AST.h>
#include <LibJS/Bytecode/Generator.h>
#include <LibJS/Bytecode/Instruction.h>
#include <LibJS/Bytecode/Op.h>
#include <LibJS/Bytecode/Register.h>
#include <LibJS/Bytecode/StringTable.h>
#include <LibJS/Runtime/Environment.h>
#include <LibJS/Runtime/ErrorTypes.h>
namespace JS {
Bytecode::CodeGenerationErrorOr<void> ASTNode::generate_bytecode(Bytecode::Generator&) const
{
return Bytecode::CodeGenerationError {
this,
"Missing generate_bytecode()"sv,
};
}
Bytecode::CodeGenerationErrorOr<void> ScopeNode::generate_bytecode(Bytecode::Generator& generator) const
{
bool did_create_lexical_environment = false;
if (is<BlockStatement>(*this)) {
if (has_lexical_declarations()) {
generator.block_declaration_instantiation(*this);
did_create_lexical_environment = true;
}
} else if (is<Program>(*this)) {
// GlobalDeclarationInstantiation is handled by the C++ AO.
} else {
// FunctionDeclarationInstantiation is handled by the C++ AO.
}
for (auto& child : children()) {
TRY(child->generate_bytecode(generator));
if (generator.is_current_block_terminated())
break;
}
if (did_create_lexical_environment)
generator.end_variable_scope();
return {};
}
Bytecode::CodeGenerationErrorOr<void> EmptyStatement::generate_bytecode(Bytecode::Generator&) const
{
return {};
}
Bytecode::CodeGenerationErrorOr<void> ExpressionStatement::generate_bytecode(Bytecode::Generator& generator) const
{
return m_expression->generate_bytecode(generator);
}
Bytecode::CodeGenerationErrorOr<void> BinaryExpression::generate_bytecode(Bytecode::Generator& generator) const
{
if (m_op == BinaryOp::In && is<PrivateIdentifier>(*m_lhs)) {
auto const& private_identifier = static_cast<PrivateIdentifier const&>(*m_lhs).string();
TRY(m_rhs->generate_bytecode(generator));
generator.emit<Bytecode::Op::HasPrivateId>(generator.intern_identifier(private_identifier));
return {};
}
TRY(m_lhs->generate_bytecode(generator));
auto lhs_reg = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(lhs_reg);
TRY(m_rhs->generate_bytecode(generator));
switch (m_op) {
case BinaryOp::Addition:
generator.emit<Bytecode::Op::Add>(lhs_reg);
break;
case BinaryOp::Subtraction:
generator.emit<Bytecode::Op::Sub>(lhs_reg);
break;
case BinaryOp::Multiplication:
generator.emit<Bytecode::Op::Mul>(lhs_reg);
break;
case BinaryOp::Division:
generator.emit<Bytecode::Op::Div>(lhs_reg);
break;
case BinaryOp::Modulo:
generator.emit<Bytecode::Op::Mod>(lhs_reg);
break;
case BinaryOp::Exponentiation:
generator.emit<Bytecode::Op::Exp>(lhs_reg);
break;
case BinaryOp::GreaterThan:
generator.emit<Bytecode::Op::GreaterThan>(lhs_reg);
break;
case BinaryOp::GreaterThanEquals:
generator.emit<Bytecode::Op::GreaterThanEquals>(lhs_reg);
break;
case BinaryOp::LessThan:
generator.emit<Bytecode::Op::LessThan>(lhs_reg);
break;
case BinaryOp::LessThanEquals:
generator.emit<Bytecode::Op::LessThanEquals>(lhs_reg);
break;
case BinaryOp::LooselyInequals:
generator.emit<Bytecode::Op::LooselyInequals>(lhs_reg);
break;
case BinaryOp::LooselyEquals:
generator.emit<Bytecode::Op::LooselyEquals>(lhs_reg);
break;
case BinaryOp::StrictlyInequals:
generator.emit<Bytecode::Op::StrictlyInequals>(lhs_reg);
break;
case BinaryOp::StrictlyEquals:
generator.emit<Bytecode::Op::StrictlyEquals>(lhs_reg);
break;
case BinaryOp::BitwiseAnd:
generator.emit<Bytecode::Op::BitwiseAnd>(lhs_reg);
break;
case BinaryOp::BitwiseOr:
generator.emit<Bytecode::Op::BitwiseOr>(lhs_reg);
break;
case BinaryOp::BitwiseXor:
generator.emit<Bytecode::Op::BitwiseXor>(lhs_reg);
break;
case BinaryOp::LeftShift:
generator.emit<Bytecode::Op::LeftShift>(lhs_reg);
break;
case BinaryOp::RightShift:
generator.emit<Bytecode::Op::RightShift>(lhs_reg);
break;
case BinaryOp::UnsignedRightShift:
generator.emit<Bytecode::Op::UnsignedRightShift>(lhs_reg);
break;
case BinaryOp::In:
generator.emit<Bytecode::Op::In>(lhs_reg);
break;
case BinaryOp::InstanceOf:
generator.emit<Bytecode::Op::InstanceOf>(lhs_reg);
break;
default:
VERIFY_NOT_REACHED();
}
return {};
}
Bytecode::CodeGenerationErrorOr<void> LogicalExpression::generate_bytecode(Bytecode::Generator& generator) const
{
TRY(m_lhs->generate_bytecode(generator));
// lhs
// jump op (true) end (false) rhs
// rhs
// jump always (true) end
// end
auto& rhs_block = generator.make_block();
auto& end_block = generator.make_block();
switch (m_op) {
case LogicalOp::And:
generator.emit<Bytecode::Op::JumpConditional>().set_targets(
Bytecode::Label { rhs_block },
Bytecode::Label { end_block });
break;
case LogicalOp::Or:
generator.emit<Bytecode::Op::JumpConditional>().set_targets(
Bytecode::Label { end_block },
Bytecode::Label { rhs_block });
break;
case LogicalOp::NullishCoalescing:
generator.emit<Bytecode::Op::JumpNullish>().set_targets(
Bytecode::Label { rhs_block },
Bytecode::Label { end_block });
break;
default:
VERIFY_NOT_REACHED();
}
generator.switch_to_basic_block(rhs_block);
TRY(m_rhs->generate_bytecode(generator));
generator.emit<Bytecode::Op::Jump>().set_targets(
Bytecode::Label { end_block },
{});
generator.switch_to_basic_block(end_block);
return {};
}
Bytecode::CodeGenerationErrorOr<void> UnaryExpression::generate_bytecode(Bytecode::Generator& generator) const
{
if (m_op == UnaryOp::Delete)
return generator.emit_delete_reference(m_lhs);
// Typeof needs some special handling for when the LHS is an Identifier. Namely, it shouldn't throw on unresolvable references, but instead return "undefined".
if (m_op != UnaryOp::Typeof)
TRY(m_lhs->generate_bytecode(generator));
switch (m_op) {
case UnaryOp::BitwiseNot:
generator.emit<Bytecode::Op::BitwiseNot>();
break;
case UnaryOp::Not:
generator.emit<Bytecode::Op::Not>();
break;
case UnaryOp::Plus:
generator.emit<Bytecode::Op::UnaryPlus>();
break;
case UnaryOp::Minus:
generator.emit<Bytecode::Op::UnaryMinus>();
break;
case UnaryOp::Typeof:
if (is<Identifier>(*m_lhs)) {
auto& identifier = static_cast<Identifier const&>(*m_lhs);
if (identifier.is_local()) {
generator.emit<Bytecode::Op::TypeofLocal>(identifier.local_variable_index());
} else {
generator.emit<Bytecode::Op::TypeofVariable>(generator.intern_identifier(identifier.string()));
}
break;
}
TRY(m_lhs->generate_bytecode(generator));
generator.emit<Bytecode::Op::Typeof>();
break;
case UnaryOp::Void:
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
break;
case UnaryOp::Delete: // Delete is implemented above.
default:
VERIFY_NOT_REACHED();
}
return {};
}
Bytecode::CodeGenerationErrorOr<void> NumericLiteral::generate_bytecode(Bytecode::Generator& generator) const
{
generator.emit<Bytecode::Op::LoadImmediate>(m_value);
return {};
}
Bytecode::CodeGenerationErrorOr<void> BooleanLiteral::generate_bytecode(Bytecode::Generator& generator) const
{
generator.emit<Bytecode::Op::LoadImmediate>(Value(m_value));
return {};
}
Bytecode::CodeGenerationErrorOr<void> NullLiteral::generate_bytecode(Bytecode::Generator& generator) const
{
generator.emit<Bytecode::Op::LoadImmediate>(js_null());
return {};
}
Bytecode::CodeGenerationErrorOr<void> BigIntLiteral::generate_bytecode(Bytecode::Generator& generator) const
{
// 1. Return the NumericValue of NumericLiteral as defined in 12.8.3.
auto integer = [&] {
if (m_value[0] == '0' && m_value.length() >= 3)
if (m_value[1] == 'x' || m_value[1] == 'X')
return Crypto::SignedBigInteger::from_base(16, m_value.substring(2, m_value.length() - 3));
if (m_value[1] == 'o' || m_value[1] == 'O')
return Crypto::SignedBigInteger::from_base(8, m_value.substring(2, m_value.length() - 3));
if (m_value[1] == 'b' || m_value[1] == 'B')
return Crypto::SignedBigInteger::from_base(2, m_value.substring(2, m_value.length() - 3));
return Crypto::SignedBigInteger::from_base(10, m_value.substring(0, m_value.length() - 1));
}();
generator.emit<Bytecode::Op::NewBigInt>(integer);
return {};
}
Bytecode::CodeGenerationErrorOr<void> StringLiteral::generate_bytecode(Bytecode::Generator& generator) const
{
generator.emit<Bytecode::Op::NewString>(generator.intern_string(m_value));
return {};
}
Bytecode::CodeGenerationErrorOr<void> RegExpLiteral::generate_bytecode(Bytecode::Generator& generator) const
{
auto source_index = generator.intern_string(m_pattern);
auto flags_index = generator.intern_string(m_flags);
auto regex_index = generator.intern_regex(Bytecode::ParsedRegex {
.regex = m_parsed_regex,
.pattern = m_parsed_pattern,
.flags = m_parsed_flags,
});
generator.emit<Bytecode::Op::NewRegExp>(source_index, flags_index, regex_index);
return {};
}
Bytecode::CodeGenerationErrorOr<void> Identifier::generate_bytecode(Bytecode::Generator& generator) const
{
if (is_global()) {
generator.emit<Bytecode::Op::GetGlobal>(generator.intern_identifier(m_string), generator.next_global_variable_cache());
} else if (is_local()) {
generator.emit<Bytecode::Op::GetLocal>(local_variable_index());
} else {
generator.emit<Bytecode::Op::GetVariable>(generator.intern_identifier(m_string));
}
return {};
}
static Bytecode::CodeGenerationErrorOr<void> arguments_to_array_for_call(Bytecode::Generator& generator, ReadonlySpan<CallExpression::Argument> arguments)
{
if (arguments.is_empty()) {
generator.emit<Bytecode::Op::NewArray>();
return {};
}
auto first_spread = find_if(arguments.begin(), arguments.end(), [](auto el) { return el.is_spread; });
Bytecode::Register args_start_reg { 0 };
for (auto it = arguments.begin(); it != first_spread; ++it) {
auto reg = generator.allocate_register();
if (args_start_reg.index() == 0)
args_start_reg = reg;
}
u32 i = 0;
for (auto it = arguments.begin(); it != first_spread; ++it, ++i) {
VERIFY(it->is_spread == false);
Bytecode::Register reg { args_start_reg.index() + i };
TRY(it->value->generate_bytecode(generator));
generator.emit<Bytecode::Op::Store>(reg);
}
if (first_spread.index() != 0)
generator.emit_with_extra_register_slots<Bytecode::Op::NewArray>(2u, AK::Array { args_start_reg, Bytecode::Register { args_start_reg.index() + static_cast<u32>(first_spread.index() - 1) } });
else
generator.emit<Bytecode::Op::NewArray>();
if (first_spread != arguments.end()) {
auto array_reg = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(array_reg);
for (auto it = first_spread; it != arguments.end(); ++it) {
TRY(it->value->generate_bytecode(generator));
generator.emit<Bytecode::Op::Append>(array_reg, it->is_spread);
}
generator.emit<Bytecode::Op::Load>(array_reg);
}
return {};
}
Bytecode::CodeGenerationErrorOr<void> SuperCall::generate_bytecode(Bytecode::Generator& generator) const
{
if (m_is_synthetic == IsPartOfSyntheticConstructor::Yes) {
// NOTE: This is the case where we have a fake constructor(...args) { super(...args); } which
// shouldn't call @@iterator of %Array.prototype%.
VERIFY(m_arguments.size() == 1);
VERIFY(m_arguments[0].is_spread);
auto const& argument = m_arguments[0];
// This generates a single argument, which will be implicitly passed in accumulator
MUST(argument.value->generate_bytecode(generator));
} else {
TRY(arguments_to_array_for_call(generator, m_arguments));
}
generator.emit<Bytecode::Op::SuperCallWithArgumentArray>(m_is_synthetic == IsPartOfSyntheticConstructor::Yes);
return {};
}
static Bytecode::CodeGenerationErrorOr<void> generate_binding_pattern_bytecode(Bytecode::Generator& generator, BindingPattern const& pattern, Bytecode::Op::SetVariable::InitializationMode, Bytecode::Register const& value_reg, bool create_variables);
Bytecode::CodeGenerationErrorOr<void> AssignmentExpression::generate_bytecode(Bytecode::Generator& generator) const
{
if (m_op == AssignmentOp::Assignment) {
// AssignmentExpression : LeftHandSideExpression = AssignmentExpression
return m_lhs.visit(
// 1. If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral, then
[&](NonnullRefPtr<Expression const> const& lhs) -> Bytecode::CodeGenerationErrorOr<void> {
// a. Let lref be the result of evaluating LeftHandSideExpression.
// b. ReturnIfAbrupt(lref).
Optional<Bytecode::Register> base_object_register;
Optional<Bytecode::Register> computed_property_register;
Optional<Bytecode::Register> this_value_register;
bool lhs_is_super_expression = false;
if (is<MemberExpression>(*lhs)) {
auto& expression = static_cast<MemberExpression const&>(*lhs);
lhs_is_super_expression = is<SuperExpression>(expression.object());
base_object_register = generator.allocate_register();
if (!lhs_is_super_expression) {
TRY(expression.object().generate_bytecode(generator));
generator.emit<Bytecode::Op::Store>(*base_object_register);
} else {
// https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
// 1. Let env be GetThisEnvironment().
// 2. Let actualThis be ? env.GetThisBinding().
this_value_register = generator.allocate_register();
generator.emit<Bytecode::Op::ResolveThisBinding>();
generator.emit<Bytecode::Op::Store>(*this_value_register);
// SuperProperty : super [ Expression ]
// 3. Let propertyNameReference be ? Evaluation of Expression.
// 4. Let propertyNameValue be ? GetValue(propertyNameReference).
}
if (expression.is_computed()) {
TRY(expression.property().generate_bytecode(generator));
computed_property_register = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(*computed_property_register);
// To be continued later with PutByValue.
} else if (expression.property().is_identifier()) {
// Do nothing, this will be handled by PutById later.
} else if (expression.property().is_private_identifier()) {
// Do nothing, this will be handled by PutPrivateById later.
} else {
return Bytecode::CodeGenerationError {
&expression,
"Unimplemented non-computed member expression"sv
};
}
if (lhs_is_super_expression) {
// 5/7. Return ? MakeSuperPropertyReference(actualThis, propertyKey, strict).
// https://tc39.es/ecma262/#sec-makesuperpropertyreference
// 1. Let env be GetThisEnvironment().
// 2. Assert: env.HasSuperBinding() is true.
// 3. Let baseValue be ? env.GetSuperBase().
// 4. Return the Reference Record { [[Base]]: baseValue, [[ReferencedName]]: propertyKey, [[Strict]]: strict, [[ThisValue]]: actualThis }.
generator.emit<Bytecode::Op::ResolveSuperBase>();
generator.emit<Bytecode::Op::Store>(*base_object_register);
}
} else if (is<Identifier>(*lhs)) {
// NOTE: For Identifiers, we cannot perform GetVariable and then write into the reference it retrieves, only SetVariable can do this.
// FIXME: However, this breaks spec as we are doing variable lookup after evaluating the RHS. This is observable in an object environment, where we visibly perform HasOwnProperty and Get(@@unscopables) on the binded object.
} else {
TRY(lhs->generate_bytecode(generator));
}
// FIXME: c. If IsAnonymousFunctionDefinition(AssignmentExpression) and IsIdentifierRef of LeftHandSideExpression are both true, then
// i. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].
// d. Else,
// i. Let rref be the result of evaluating AssignmentExpression.
// ii. Let rval be ? GetValue(rref).
if (lhs->is_identifier()) {
TRY(generator.emit_named_evaluation_if_anonymous_function(*m_rhs, generator.intern_identifier(static_cast<Identifier const&>(*lhs).string())));
} else {
TRY(m_rhs->generate_bytecode(generator));
}
// e. Perform ? PutValue(lref, rval).
if (is<Identifier>(*lhs)) {
auto& identifier = static_cast<Identifier const&>(*lhs);
generator.emit_set_variable(identifier);
} else if (is<MemberExpression>(*lhs)) {
auto& expression = static_cast<MemberExpression const&>(*lhs);
if (expression.is_computed()) {
if (!lhs_is_super_expression)
generator.emit<Bytecode::Op::PutByValue>(*base_object_register, *computed_property_register);
else
generator.emit<Bytecode::Op::PutByValueWithThis>(*base_object_register, *computed_property_register, *this_value_register);
} else if (expression.property().is_identifier()) {
auto identifier_table_ref = generator.intern_identifier(verify_cast<Identifier>(expression.property()).string());
if (!lhs_is_super_expression)
generator.emit<Bytecode::Op::PutById>(*base_object_register, identifier_table_ref);
else
generator.emit<Bytecode::Op::PutByIdWithThis>(*base_object_register, *this_value_register, identifier_table_ref);
} else if (expression.property().is_private_identifier()) {
auto identifier_table_ref = generator.intern_identifier(verify_cast<PrivateIdentifier>(expression.property()).string());
generator.emit<Bytecode::Op::PutPrivateById>(*base_object_register, identifier_table_ref);
} else {
return Bytecode::CodeGenerationError {
&expression,
"Unimplemented non-computed member expression"sv
};
}
} else {
return Bytecode::CodeGenerationError {
lhs,
"Unimplemented/invalid node used a reference"sv
};
}
// f. Return rval.
// NOTE: This is already in the accumulator.
return {};
},
// 2. Let assignmentPattern be the AssignmentPattern that is covered by LeftHandSideExpression.
[&](NonnullRefPtr<BindingPattern const> const& pattern) -> Bytecode::CodeGenerationErrorOr<void> {
// 3. Let rref be the result of evaluating AssignmentExpression.
// 4. Let rval be ? GetValue(rref).
TRY(m_rhs->generate_bytecode(generator));
auto value_register = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(value_register);
// 5. Perform ? DestructuringAssignmentEvaluation of assignmentPattern with argument rval.
TRY(generate_binding_pattern_bytecode(generator, pattern, Bytecode::Op::SetVariable::InitializationMode::Set, value_register, false));
// 6. Return rval.
generator.emit<Bytecode::Op::Load>(value_register);
return {};
});
}
VERIFY(m_lhs.has<NonnullRefPtr<Expression const>>());
auto& lhs = m_lhs.get<NonnullRefPtr<Expression const>>();
TRY(generator.emit_load_from_reference(lhs));
Bytecode::BasicBlock* rhs_block_ptr { nullptr };
Bytecode::BasicBlock* end_block_ptr { nullptr };
// Logical assignments short circuit.
if (m_op == AssignmentOp::AndAssignment) { // &&=
rhs_block_ptr = &generator.make_block();
end_block_ptr = &generator.make_block();
generator.emit<Bytecode::Op::JumpConditional>().set_targets(
Bytecode::Label { *rhs_block_ptr },
Bytecode::Label { *end_block_ptr });
} else if (m_op == AssignmentOp::OrAssignment) { // ||=
rhs_block_ptr = &generator.make_block();
end_block_ptr = &generator.make_block();
generator.emit<Bytecode::Op::JumpConditional>().set_targets(
Bytecode::Label { *end_block_ptr },
Bytecode::Label { *rhs_block_ptr });
} else if (m_op == AssignmentOp::NullishAssignment) { // ??=
rhs_block_ptr = &generator.make_block();
end_block_ptr = &generator.make_block();
generator.emit<Bytecode::Op::JumpNullish>().set_targets(
Bytecode::Label { *rhs_block_ptr },
Bytecode::Label { *end_block_ptr });
}
if (rhs_block_ptr)
generator.switch_to_basic_block(*rhs_block_ptr);
// lhs_reg is a part of the rhs_block because the store isn't necessary
// if the logical assignment condition fails.
auto lhs_reg = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(lhs_reg);
if (lhs->is_identifier())
TRY(generator.emit_named_evaluation_if_anonymous_function(*m_rhs, generator.intern_identifier(static_cast<Identifier const&>(*lhs).string())));
else
TRY(m_rhs->generate_bytecode(generator));
switch (m_op) {
case AssignmentOp::AdditionAssignment:
generator.emit<Bytecode::Op::Add>(lhs_reg);
break;
case AssignmentOp::SubtractionAssignment:
generator.emit<Bytecode::Op::Sub>(lhs_reg);
break;
case AssignmentOp::MultiplicationAssignment:
generator.emit<Bytecode::Op::Mul>(lhs_reg);
break;
case AssignmentOp::DivisionAssignment:
generator.emit<Bytecode::Op::Div>(lhs_reg);
break;
case AssignmentOp::ModuloAssignment:
generator.emit<Bytecode::Op::Mod>(lhs_reg);
break;
case AssignmentOp::ExponentiationAssignment:
generator.emit<Bytecode::Op::Exp>(lhs_reg);
break;
case AssignmentOp::BitwiseAndAssignment:
generator.emit<Bytecode::Op::BitwiseAnd>(lhs_reg);
break;
case AssignmentOp::BitwiseOrAssignment:
generator.emit<Bytecode::Op::BitwiseOr>(lhs_reg);
break;
case AssignmentOp::BitwiseXorAssignment:
generator.emit<Bytecode::Op::BitwiseXor>(lhs_reg);
break;
case AssignmentOp::LeftShiftAssignment:
generator.emit<Bytecode::Op::LeftShift>(lhs_reg);
break;
case AssignmentOp::RightShiftAssignment:
generator.emit<Bytecode::Op::RightShift>(lhs_reg);
break;
case AssignmentOp::UnsignedRightShiftAssignment:
generator.emit<Bytecode::Op::UnsignedRightShift>(lhs_reg);
break;
case AssignmentOp::AndAssignment:
case AssignmentOp::OrAssignment:
case AssignmentOp::NullishAssignment:
break; // These are handled above.
default:
return Bytecode::CodeGenerationError {
this,
"Unimplemented operation"sv,
};
}
TRY(generator.emit_store_to_reference(lhs));
if (end_block_ptr) {
generator.emit<Bytecode::Op::Jump>().set_targets(
Bytecode::Label { *end_block_ptr },
{});
generator.switch_to_basic_block(*end_block_ptr);
}
return {};
}
// 14.13.3 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-labelled-statements-runtime-semantics-evaluation
// LabelledStatement : LabelIdentifier : LabelledItem
Bytecode::CodeGenerationErrorOr<void> LabelledStatement::generate_bytecode(Bytecode::Generator& generator) const
{
// Return ? LabelledEvaluation of this LabelledStatement with argument « ».
return generate_labelled_evaluation(generator, {});
}
// 14.13.4 Runtime Semantics: LabelledEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-labelledevaluation
// LabelledStatement : LabelIdentifier : LabelledItem
Bytecode::CodeGenerationErrorOr<void> LabelledStatement::generate_labelled_evaluation(Bytecode::Generator& generator, Vector<DeprecatedFlyString> const& label_set) const
{
// Convert the m_labelled_item NNRP to a reference early so we don't have to do it every single time we want to use it.
auto const& labelled_item = *m_labelled_item;
// 1. Let label be the StringValue of LabelIdentifier.
// NOTE: Not necessary, this is m_label.
// 2. Let newLabelSet be the list-concatenation of labelSet and « label ».
// FIXME: Avoid copy here.
auto new_label_set = label_set;
new_label_set.append(m_label);
// 3. Let stmtResult be LabelledEvaluation of LabelledItem with argument newLabelSet.
// NOTE: stmtResult will be in the accumulator after running the generated bytecode.
if (is<IterationStatement>(labelled_item)) {
auto const& iteration_statement = static_cast<IterationStatement const&>(labelled_item);
TRY(iteration_statement.generate_labelled_evaluation(generator, new_label_set));
} else if (is<SwitchStatement>(labelled_item)) {
auto const& switch_statement = static_cast<SwitchStatement const&>(labelled_item);
TRY(switch_statement.generate_labelled_evaluation(generator, new_label_set));
} else if (is<LabelledStatement>(labelled_item)) {
auto const& labelled_statement = static_cast<LabelledStatement const&>(labelled_item);
TRY(labelled_statement.generate_labelled_evaluation(generator, new_label_set));
} else {
auto& labelled_break_block = generator.make_block();
// NOTE: We do not need a continuable scope as `continue;` is not allowed outside of iteration statements, throwing a SyntaxError in the parser.
generator.begin_breakable_scope(Bytecode::Label { labelled_break_block }, new_label_set);
TRY(labelled_item.generate_bytecode(generator));
generator.end_breakable_scope();
if (!generator.is_current_block_terminated()) {
generator.emit<Bytecode::Op::Jump>().set_targets(
Bytecode::Label { labelled_break_block },
{});
}
generator.switch_to_basic_block(labelled_break_block);
}
// 4. If stmtResult.[[Type]] is break and SameValue(stmtResult.[[Target]], label) is true, then
// a. Set stmtResult to NormalCompletion(stmtResult.[[Value]]).
// NOTE: These steps are performed by making labelled break jump straight to the appropriate break block, which preserves the statement result's value in the accumulator.
// 5. Return Completion(stmtResult).
// NOTE: This is in the accumulator.
return {};
}
Bytecode::CodeGenerationErrorOr<void> IterationStatement::generate_labelled_evaluation(Bytecode::Generator&, Vector<DeprecatedFlyString> const&) const
{
return Bytecode::CodeGenerationError {
this,
"Missing generate_labelled_evaluation()"sv,
};
}
Bytecode::CodeGenerationErrorOr<void> WhileStatement::generate_bytecode(Bytecode::Generator& generator) const
{
return generate_labelled_evaluation(generator, {});
}
Bytecode::CodeGenerationErrorOr<void> WhileStatement::generate_labelled_evaluation(Bytecode::Generator& generator, Vector<DeprecatedFlyString> const& label_set) const
{
// test
// jump if_false (true) end (false) body
// body
// jump always (true) test
// end
auto& test_block = generator.make_block();
auto& body_block = generator.make_block();
auto& load_result_and_jump_to_end_block = generator.make_block();
auto& end_block = generator.make_block();
// Init result register
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
auto result_reg = generator.allocate_register();
// jump to the test block
generator.emit<Bytecode::Op::Jump>().set_targets(
Bytecode::Label { test_block },
{});
generator.switch_to_basic_block(test_block);
generator.emit<Bytecode::Op::Store>(result_reg);
TRY(m_test->generate_bytecode(generator));
generator.emit<Bytecode::Op::JumpConditional>().set_targets(
Bytecode::Label { body_block },
Bytecode::Label { load_result_and_jump_to_end_block });
generator.switch_to_basic_block(body_block);
generator.begin_continuable_scope(Bytecode::Label { test_block }, label_set);
generator.begin_breakable_scope(Bytecode::Label { end_block }, label_set);
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
TRY(m_body->generate_bytecode(generator));
generator.end_breakable_scope();
generator.end_continuable_scope();
if (!generator.is_current_block_terminated()) {
generator.emit<Bytecode::Op::Jump>().set_targets(
Bytecode::Label { test_block },
{});
}
generator.switch_to_basic_block(load_result_and_jump_to_end_block);
generator.emit<Bytecode::Op::Load>(result_reg);
generator.emit<Bytecode::Op::Jump>(Bytecode::Label { end_block });
generator.switch_to_basic_block(end_block);
return {};
}
Bytecode::CodeGenerationErrorOr<void> DoWhileStatement::generate_bytecode(Bytecode::Generator& generator) const
{
return generate_labelled_evaluation(generator, {});
}
Bytecode::CodeGenerationErrorOr<void> DoWhileStatement::generate_labelled_evaluation(Bytecode::Generator& generator, Vector<DeprecatedFlyString> const& label_set) const
{
// jump always (true) body
// test
// jump if_false (true) end (false) body
// body
// jump always (true) test
// end
auto& test_block = generator.make_block();
auto& body_block = generator.make_block();
auto& load_result_and_jump_to_end_block = generator.make_block();
auto& end_block = generator.make_block();
// Init result register
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
auto result_reg = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(result_reg);
// jump to the body block
generator.emit<Bytecode::Op::Jump>().set_targets(
Bytecode::Label { body_block },
{});
generator.switch_to_basic_block(test_block);
generator.emit<Bytecode::Op::Store>(result_reg);
TRY(m_test->generate_bytecode(generator));
generator.emit<Bytecode::Op::JumpConditional>().set_targets(
Bytecode::Label { body_block },
Bytecode::Label { load_result_and_jump_to_end_block });
generator.switch_to_basic_block(body_block);
generator.begin_continuable_scope(Bytecode::Label { test_block }, label_set);
generator.begin_breakable_scope(Bytecode::Label { end_block }, label_set);
TRY(m_body->generate_bytecode(generator));
generator.end_breakable_scope();
generator.end_continuable_scope();
if (!generator.is_current_block_terminated()) {
generator.emit<Bytecode::Op::Jump>().set_targets(
Bytecode::Label { test_block },
{});
}
generator.switch_to_basic_block(load_result_and_jump_to_end_block);
generator.emit<Bytecode::Op::Load>(result_reg);
generator.emit<Bytecode::Op::Jump>(Bytecode::Label { end_block });
generator.switch_to_basic_block(end_block);
return {};
}
Bytecode::CodeGenerationErrorOr<void> ForStatement::generate_bytecode(Bytecode::Generator& generator) const
{
return generate_labelled_evaluation(generator, {});
}
Bytecode::CodeGenerationErrorOr<void> ForStatement::generate_labelled_evaluation(Bytecode::Generator& generator, Vector<DeprecatedFlyString> const& label_set) const
{
// init
// jump always (true) test
// test
// jump if_true (true) body (false) end
// body
// jump always (true) update
// update
// jump always (true) test
// end
// If 'test' is missing, fuse the 'test' and 'body' basic blocks
// If 'update' is missing, fuse the 'body' and 'update' basic blocks
Bytecode::BasicBlock* test_block_ptr { nullptr };
Bytecode::BasicBlock* body_block_ptr { nullptr };
Bytecode::BasicBlock* update_block_ptr { nullptr };
Bytecode::BasicBlock* load_result_and_jump_to_end_block_ptr { nullptr };
auto& end_block = generator.make_block();
bool has_lexical_environment = false;
if (m_init) {
if (m_init->is_variable_declaration()) {
auto& variable_declaration = verify_cast<VariableDeclaration>(*m_init);
auto has_non_local_variables = false;
MUST(variable_declaration.for_each_bound_identifier([&](auto const& identifier) {
if (!identifier.is_local())
has_non_local_variables = true;
}));
if (variable_declaration.is_lexical_declaration() && has_non_local_variables) {
has_lexical_environment = true;
// FIXME: Is Block correct?
generator.begin_variable_scope();
bool is_const = variable_declaration.is_constant_declaration();
// NOTE: Nothing in the callback throws an exception.
MUST(variable_declaration.for_each_bound_identifier([&](auto const& identifier) {
if (identifier.is_local())
return;
auto index = generator.intern_identifier(identifier.string());
generator.emit<Bytecode::Op::CreateVariable>(index, Bytecode::Op::EnvironmentMode::Lexical, is_const);
}));
}
}
TRY(m_init->generate_bytecode(generator));
}
body_block_ptr = &generator.make_block();
if (m_test)
test_block_ptr = &generator.make_block();
else
test_block_ptr = body_block_ptr;
if (m_update)
update_block_ptr = &generator.make_block();
else
update_block_ptr = body_block_ptr;
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
auto result_reg = generator.allocate_register();
if (m_test && m_update)
generator.emit<Bytecode::Op::Store>(result_reg);
generator.emit<Bytecode::Op::Jump>().set_targets(
Bytecode::Label { *test_block_ptr },
{});
if (m_test) {
load_result_and_jump_to_end_block_ptr = &generator.make_block();
generator.switch_to_basic_block(*test_block_ptr);
if (!m_update)
generator.emit<Bytecode::Op::Store>(result_reg);
TRY(m_test->generate_bytecode(generator));
generator.emit<Bytecode::Op::JumpConditional>().set_targets(
Bytecode::Label { *body_block_ptr },
Bytecode::Label { *load_result_and_jump_to_end_block_ptr });
}
if (m_update) {
generator.switch_to_basic_block(*update_block_ptr);
if (m_test)
generator.emit<Bytecode::Op::Store>(result_reg);
TRY(m_update->generate_bytecode(generator));
generator.emit<Bytecode::Op::Jump>().set_targets(
Bytecode::Label { *test_block_ptr },
{});
}
generator.switch_to_basic_block(*body_block_ptr);
generator.begin_continuable_scope(Bytecode::Label { m_update ? *update_block_ptr : *test_block_ptr }, label_set);
generator.begin_breakable_scope(Bytecode::Label { end_block }, label_set);
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
TRY(m_body->generate_bytecode(generator));
generator.end_breakable_scope();
generator.end_continuable_scope();
if (!generator.is_current_block_terminated()) {
if (m_update) {
generator.emit<Bytecode::Op::Jump>().set_targets(
Bytecode::Label { *update_block_ptr },
{});
} else {
generator.emit<Bytecode::Op::Jump>().set_targets(
Bytecode::Label { *test_block_ptr },
{});
}
}
if (load_result_and_jump_to_end_block_ptr) {
generator.switch_to_basic_block(*load_result_and_jump_to_end_block_ptr);
generator.emit<Bytecode::Op::Load>(result_reg);
generator.emit<Bytecode::Op::Jump>(Bytecode::Label { end_block });
}
generator.switch_to_basic_block(end_block);
if (has_lexical_environment)
generator.end_variable_scope();
return {};
}
Bytecode::CodeGenerationErrorOr<void> ObjectExpression::generate_bytecode(Bytecode::Generator& generator) const
{
generator.emit<Bytecode::Op::NewObject>();
if (m_properties.is_empty())
return {};
auto object_reg = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(object_reg);
generator.push_home_object(object_reg);
for (auto& property : m_properties) {
Bytecode::Op::PropertyKind property_kind;
switch (property->type()) {
case ObjectProperty::Type::KeyValue:
property_kind = Bytecode::Op::PropertyKind::DirectKeyValue;
break;
case ObjectProperty::Type::Getter:
property_kind = Bytecode::Op::PropertyKind::Getter;
break;
case ObjectProperty::Type::Setter:
property_kind = Bytecode::Op::PropertyKind::Setter;
break;
case ObjectProperty::Type::Spread:
property_kind = Bytecode::Op::PropertyKind::Spread;
break;
case ObjectProperty::Type::ProtoSetter:
property_kind = Bytecode::Op::PropertyKind::ProtoSetter;
break;
}
if (is<StringLiteral>(property->key())) {
auto& string_literal = static_cast<StringLiteral const&>(property->key());
Bytecode::IdentifierTableIndex key_name = generator.intern_identifier(string_literal.value());
if (property_kind == Bytecode::Op::PropertyKind::ProtoSetter) {
TRY(property->value().generate_bytecode(generator));
} else if (property_kind != Bytecode::Op::PropertyKind::Spread) {
auto name = generator.intern_identifier(string_literal.value());
TRY(generator.emit_named_evaluation_if_anonymous_function(property->value(), name));
}
generator.emit<Bytecode::Op::PutById>(object_reg, key_name, property_kind);
} else {
TRY(property->key().generate_bytecode(generator));
auto property_reg = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(property_reg);
if (property_kind != Bytecode::Op::PropertyKind::Spread)
TRY(property->value().generate_bytecode(generator));
generator.emit<Bytecode::Op::PutByValue>(object_reg, property_reg, property_kind);
}
}
generator.emit<Bytecode::Op::Load>(object_reg);
generator.pop_home_object();
return {};
}
Bytecode::CodeGenerationErrorOr<void> ArrayExpression::generate_bytecode(Bytecode::Generator& generator) const
{
if (m_elements.is_empty()) {
generator.emit<Bytecode::Op::NewArray>();
return {};
}
auto first_spread = find_if(m_elements.begin(), m_elements.end(), [](auto el) { return el && is<SpreadExpression>(*el); });
Bytecode::Register args_start_reg { 0 };
for (auto it = m_elements.begin(); it != first_spread; ++it) {
auto reg = generator.allocate_register();
if (args_start_reg.index() == 0)
args_start_reg = reg;
}
u32 i = 0;
for (auto it = m_elements.begin(); it != first_spread; ++it, ++i) {
Bytecode::Register reg { args_start_reg.index() + i };
if (!*it)
generator.emit<Bytecode::Op::LoadImmediate>(Value {});
else {
TRY((*it)->generate_bytecode(generator));
}
generator.emit<Bytecode::Op::Store>(reg);
}
if (first_spread.index() != 0)
generator.emit_with_extra_register_slots<Bytecode::Op::NewArray>(2u, AK::Array { args_start_reg, Bytecode::Register { args_start_reg.index() + static_cast<u32>(first_spread.index() - 1) } });
else
generator.emit<Bytecode::Op::NewArray>();
if (first_spread != m_elements.end()) {
auto array_reg = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(array_reg);
for (auto it = first_spread; it != m_elements.end(); ++it) {
if (!*it) {
generator.emit<Bytecode::Op::LoadImmediate>(Value {});
generator.emit<Bytecode::Op::Append>(array_reg, false);
} else {
TRY((*it)->generate_bytecode(generator));
generator.emit<Bytecode::Op::Append>(array_reg, *it && is<SpreadExpression>(**it));
}
}
generator.emit<Bytecode::Op::Load>(array_reg);
}
return {};
}
Bytecode::CodeGenerationErrorOr<void> MemberExpression::generate_bytecode(Bytecode::Generator& generator) const
{
return generator.emit_load_from_reference(*this);
}
Bytecode::CodeGenerationErrorOr<void> FunctionDeclaration::generate_bytecode(Bytecode::Generator& generator) const
{
if (m_is_hoisted) {
auto index = generator.intern_identifier(name());
generator.emit<Bytecode::Op::GetVariable>(index);
generator.emit<Bytecode::Op::SetVariable>(index, Bytecode::Op::SetVariable::InitializationMode::Set, Bytecode::Op::EnvironmentMode::Var);
}
return {};
}
Bytecode::CodeGenerationErrorOr<void> FunctionExpression::generate_bytecode_with_lhs_name(Bytecode::Generator& generator, Optional<Bytecode::IdentifierTableIndex> lhs_name) const
{
bool has_name = !name().is_empty();
Optional<Bytecode::IdentifierTableIndex> name_identifier;
if (has_name) {
generator.begin_variable_scope();
name_identifier = generator.intern_identifier(name());
generator.emit<Bytecode::Op::CreateVariable>(*name_identifier, Bytecode::Op::EnvironmentMode::Lexical, true);
}
generator.emit_new_function(*this, lhs_name);
if (has_name) {
generator.emit<Bytecode::Op::SetVariable>(*name_identifier, Bytecode::Op::SetVariable::InitializationMode::Initialize, Bytecode::Op::EnvironmentMode::Lexical);
generator.end_variable_scope();
}
return {};
}
Bytecode::CodeGenerationErrorOr<void> FunctionExpression::generate_bytecode(Bytecode::Generator& generator) const
{
return generate_bytecode_with_lhs_name(generator, {});
}
static Bytecode::CodeGenerationErrorOr<void> generate_object_binding_pattern_bytecode(Bytecode::Generator& generator, BindingPattern const& pattern, Bytecode::Op::SetVariable::InitializationMode initialization_mode, Bytecode::Register const& value_reg, bool create_variables)
{
generator.emit<Bytecode::Op::ThrowIfNullish>();
Vector<Bytecode::Register> excluded_property_names;
auto has_rest = false;
if (pattern.entries.size() > 0)
has_rest = pattern.entries[pattern.entries.size() - 1].is_rest;
for (auto& [name, alias, initializer, is_rest] : pattern.entries) {
if (is_rest) {
VERIFY(!initializer);
if (name.has<NonnullRefPtr<Identifier const>>()) {
auto identifier = name.get<NonnullRefPtr<Identifier const>>();
auto interned_identifier = generator.intern_identifier(identifier->string());
generator.emit_with_extra_register_slots<Bytecode::Op::CopyObjectExcludingProperties>(excluded_property_names.size(), value_reg, excluded_property_names);
if (create_variables) {
VERIFY(!identifier->is_local());
generator.emit<Bytecode::Op::CreateVariable>(interned_identifier, Bytecode::Op::EnvironmentMode::Lexical, false);
}
generator.emit_set_variable(*identifier, initialization_mode);
return {};
}
if (alias.has<NonnullRefPtr<MemberExpression const>>()) {
generator.emit_with_extra_register_slots<Bytecode::Op::CopyObjectExcludingProperties>(excluded_property_names.size(), value_reg, excluded_property_names);
TRY(generator.emit_store_to_reference(alias.get<NonnullRefPtr<MemberExpression const>>()));
return {};
}
VERIFY_NOT_REACHED();
}
Bytecode::StringTableIndex name_index;
if (name.has<NonnullRefPtr<Identifier const>>()) {
auto identifier = name.get<NonnullRefPtr<Identifier const>>()->string();
name_index = generator.intern_string(identifier);
if (has_rest) {
auto excluded_name_reg = generator.allocate_register();
excluded_property_names.append(excluded_name_reg);
generator.emit<Bytecode::Op::NewString>(name_index);
generator.emit<Bytecode::Op::Store>(excluded_name_reg);
}
generator.emit<Bytecode::Op::Load>(value_reg);
generator.emit_get_by_id(generator.intern_identifier(identifier));
} else {
auto expression = name.get<NonnullRefPtr<Expression const>>();
TRY(expression->generate_bytecode(generator));
if (has_rest) {
auto excluded_name_reg = generator.allocate_register();
excluded_property_names.append(excluded_name_reg);
generator.emit<Bytecode::Op::Store>(excluded_name_reg);
}
generator.emit<Bytecode::Op::GetByValue>(value_reg);
}
if (initializer) {
auto& if_undefined_block = generator.make_block();
auto& if_not_undefined_block = generator.make_block();
generator.emit<Bytecode::Op::JumpUndefined>().set_targets(
Bytecode::Label { if_undefined_block },
Bytecode::Label { if_not_undefined_block });
generator.switch_to_basic_block(if_undefined_block);
if (auto const* alias_identifier = alias.get_pointer<NonnullRefPtr<Identifier const>>()) {
TRY(generator.emit_named_evaluation_if_anonymous_function(*initializer, generator.intern_identifier((*alias_identifier)->string())));
} else if (auto const* lhs = name.get_pointer<NonnullRefPtr<Identifier const>>()) {
TRY(generator.emit_named_evaluation_if_anonymous_function(*initializer, generator.intern_identifier((*lhs)->string())));
} else {
TRY(initializer->generate_bytecode(generator));
}
generator.emit<Bytecode::Op::Jump>().set_targets(
Bytecode::Label { if_not_undefined_block },
{});
generator.switch_to_basic_block(if_not_undefined_block);
}
if (alias.has<NonnullRefPtr<BindingPattern const>>()) {
auto& binding_pattern = *alias.get<NonnullRefPtr<BindingPattern const>>();
auto nested_value_reg = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(nested_value_reg);
TRY(generate_binding_pattern_bytecode(generator, binding_pattern, initialization_mode, nested_value_reg, create_variables));
} else if (alias.has<Empty>()) {
if (name.has<NonnullRefPtr<Expression const>>()) {
// This needs some sort of SetVariableByValue opcode, as it's a runtime binding
return Bytecode::CodeGenerationError {
name.get<NonnullRefPtr<Expression const>>().ptr(),
"Unimplemented name/alias pair: Empty/Expression"sv,
};
}
auto const& identifier = *name.get<NonnullRefPtr<Identifier const>>();
auto identifier_ref = generator.intern_identifier(identifier.string());
if (create_variables)
generator.emit<Bytecode::Op::CreateVariable>(identifier_ref, Bytecode::Op::EnvironmentMode::Lexical, false);
generator.emit_set_variable(identifier, initialization_mode);
} else if (alias.has<NonnullRefPtr<MemberExpression const>>()) {
TRY(generator.emit_store_to_reference(alias.get<NonnullRefPtr<MemberExpression const>>()));
} else {
auto const& identifier = *alias.get<NonnullRefPtr<Identifier const>>();
auto identifier_ref = generator.intern_identifier(identifier.string());
if (create_variables)
generator.emit<Bytecode::Op::CreateVariable>(identifier_ref, Bytecode::Op::EnvironmentMode::Lexical, false);
generator.emit_set_variable(identifier, initialization_mode);
}
}
return {};
}
static Bytecode::CodeGenerationErrorOr<void> generate_array_binding_pattern_bytecode(Bytecode::Generator& generator, BindingPattern const& pattern, Bytecode::Op::SetVariable::InitializationMode initialization_mode, Bytecode::Register const& value_reg, bool create_variables)
{
/*
* Consider the following destructuring assignment:
*
* let [a, b, c, d, e] = o;
*
* It would be fairly trivial to just loop through this iterator, getting the value
* at each step and assigning them to the binding sequentially. However, this is not
* correct: once an iterator is exhausted, it must not be called again. This complicates
* the bytecode. In order to accomplish this, we do the following:
*
* - Reserve a special boolean register which holds 'true' if the iterator is exhausted,
* and false otherwise
* - When we are retrieving the value which should be bound, we first check this register.
* If it is 'true', we load undefined into the accumulator. Otherwise, we grab the next
* value from the iterator and store it into the accumulator.
*
* Note that the is_exhausted register does not need to be loaded with false because the
* first IteratorNext bytecode is _not_ proceeded by an exhausted check, as it is
* unnecessary.
*/
auto is_iterator_exhausted_register = generator.allocate_register();
generator.emit<Bytecode::Op::LoadImmediate>(Value(false));
generator.emit<Bytecode::Op::Store>(is_iterator_exhausted_register);
auto iterator_reg = generator.allocate_register();
generator.emit<Bytecode::Op::Load>(value_reg);
generator.emit<Bytecode::Op::GetIterator>();
generator.emit<Bytecode::Op::Store>(iterator_reg);
bool first = true;
auto temp_iterator_result_reg = generator.allocate_register();
auto assign_accumulator_to_alias = [&](auto& alias) {
return alias.visit(
[&](Empty) -> Bytecode::CodeGenerationErrorOr<void> {
// This element is an elision
return {};
},
[&](NonnullRefPtr<Identifier const> const& identifier) -> Bytecode::CodeGenerationErrorOr<void> {
auto interned_index = generator.intern_identifier(identifier->string());
if (create_variables)
generator.emit<Bytecode::Op::CreateVariable>(interned_index, Bytecode::Op::EnvironmentMode::Lexical, false);
generator.emit_set_variable(*identifier, initialization_mode);
return {};
},
[&](NonnullRefPtr<BindingPattern const> const& pattern) -> Bytecode::CodeGenerationErrorOr<void> {
// Store the accumulator value in a permanent register
auto target_reg = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(target_reg);
return generate_binding_pattern_bytecode(generator, pattern, initialization_mode, target_reg, create_variables);
},
[&](NonnullRefPtr<MemberExpression const> const& expr) -> Bytecode::CodeGenerationErrorOr<void> {
return generator.emit_store_to_reference(*expr);
});
};
for (auto& [name, alias, initializer, is_rest] : pattern.entries) {
VERIFY(name.has<Empty>());
if (is_rest) {
VERIFY(!initializer);
if (first) {
// The iterator has not been called, and is thus known to be not exhausted
generator.emit<Bytecode::Op::Load>(iterator_reg);
generator.emit<Bytecode::Op::IteratorToArray>();
} else {
auto& if_exhausted_block = generator.make_block();
auto& if_not_exhausted_block = generator.make_block();
auto& continuation_block = generator.make_block();
generator.emit<Bytecode::Op::Load>(is_iterator_exhausted_register);
generator.emit<Bytecode::Op::JumpConditional>().set_targets(
Bytecode::Label { if_exhausted_block },
Bytecode::Label { if_not_exhausted_block });
generator.switch_to_basic_block(if_exhausted_block);
generator.emit<Bytecode::Op::NewArray>();
generator.emit<Bytecode::Op::Jump>().set_targets(
Bytecode::Label { continuation_block },
{});
generator.switch_to_basic_block(if_not_exhausted_block);
generator.emit<Bytecode::Op::Load>(iterator_reg);
generator.emit<Bytecode::Op::IteratorToArray>();
generator.emit<Bytecode::Op::Jump>().set_targets(
Bytecode::Label { continuation_block },
{});
generator.switch_to_basic_block(continuation_block);
}
return assign_accumulator_to_alias(alias);
}
// In the first iteration of the loop, a few things are true which can save
// us some bytecode:
// - the iterator result is still in the accumulator, so we can avoid a load
// - the iterator is not yet exhausted, which can save us a jump and some
// creation
auto& iterator_is_exhausted_block = generator.make_block();
if (!first) {
auto& iterator_is_not_exhausted_block = generator.make_block();
generator.emit<Bytecode::Op::Load>(is_iterator_exhausted_register);
generator.emit<Bytecode::Op::JumpConditional>().set_targets(
Bytecode::Label { iterator_is_exhausted_block },
Bytecode::Label { iterator_is_not_exhausted_block });
generator.switch_to_basic_block(iterator_is_not_exhausted_block);
generator.emit<Bytecode::Op::Load>(iterator_reg);
}
generator.emit<Bytecode::Op::IteratorNext>();
generator.emit<Bytecode::Op::Store>(temp_iterator_result_reg);
generator.emit<Bytecode::Op::IteratorResultDone>();
generator.emit<Bytecode::Op::Store>(is_iterator_exhausted_register);
// We still have to check for exhaustion here. If the iterator is exhausted,
// we need to bail before trying to get the value
auto& no_bail_block = generator.make_block();
generator.emit<Bytecode::Op::JumpConditional>().set_targets(
Bytecode::Label { iterator_is_exhausted_block },
Bytecode::Label { no_bail_block });
generator.switch_to_basic_block(no_bail_block);
// Get the next value in the iterator
generator.emit<Bytecode::Op::Load>(temp_iterator_result_reg);
generator.emit<Bytecode::Op::IteratorResultValue>();
auto& create_binding_block = generator.make_block();
generator.emit<Bytecode::Op::Jump>().set_targets(
Bytecode::Label { create_binding_block },
{});
// The iterator is exhausted, so we just load undefined and continue binding
generator.switch_to_basic_block(iterator_is_exhausted_block);
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
generator.emit<Bytecode::Op::Jump>().set_targets(
Bytecode::Label { create_binding_block },
{});
// Create the actual binding. The value which this entry must bind is now in the
// accumulator. We can proceed, processing the alias as a nested destructuring
// pattern if necessary.
generator.switch_to_basic_block(create_binding_block);
if (initializer) {
auto& value_is_undefined_block = generator.make_block();
auto& value_is_not_undefined_block = generator.make_block();
generator.emit<Bytecode::Op::JumpUndefined>().set_targets(
Bytecode::Label { value_is_undefined_block },
Bytecode::Label { value_is_not_undefined_block });
generator.switch_to_basic_block(value_is_undefined_block);
if (auto const* alias_identifier = alias.get_pointer<NonnullRefPtr<Identifier const>>()) {
TRY(generator.emit_named_evaluation_if_anonymous_function(*initializer, generator.intern_identifier((*alias_identifier)->string())));
} else if (auto const* name_identifier = name.get_pointer<NonnullRefPtr<Identifier const>>()) {
TRY(generator.emit_named_evaluation_if_anonymous_function(*initializer, generator.intern_identifier((*name_identifier)->string())));
} else {
TRY(initializer->generate_bytecode(generator));
}
generator.emit<Bytecode::Op::Jump>(Bytecode::Label { value_is_not_undefined_block });
generator.switch_to_basic_block(value_is_not_undefined_block);
}
TRY(assign_accumulator_to_alias(alias));
first = false;
}
auto& done_block = generator.make_block();
auto& not_done_block = generator.make_block();
generator.emit<Bytecode::Op::Load>(is_iterator_exhausted_register);
generator.emit<Bytecode::Op::JumpConditional>().set_targets(
Bytecode::Label { done_block },
Bytecode::Label { not_done_block });
generator.switch_to_basic_block(not_done_block);
generator.emit<Bytecode::Op::Load>(iterator_reg);
generator.emit<Bytecode::Op::IteratorClose>(Completion::Type::Normal, Optional<Value> {});
generator.emit<Bytecode::Op::Jump>(Bytecode::Label { done_block });
generator.switch_to_basic_block(done_block);
return {};
}
static Bytecode::CodeGenerationErrorOr<void> generate_binding_pattern_bytecode(Bytecode::Generator& generator, BindingPattern const& pattern, Bytecode::Op::SetVariable::InitializationMode initialization_mode, Bytecode::Register const& value_reg, bool create_variables)
{
if (pattern.kind == BindingPattern::Kind::Object)
return generate_object_binding_pattern_bytecode(generator, pattern, initialization_mode, value_reg, create_variables);
return generate_array_binding_pattern_bytecode(generator, pattern, initialization_mode, value_reg, create_variables);
}
static Bytecode::CodeGenerationErrorOr<void> assign_accumulator_to_variable_declarator(Bytecode::Generator& generator, VariableDeclarator const& declarator, VariableDeclaration const& declaration)
{
auto initialization_mode = declaration.is_lexical_declaration() ? Bytecode::Op::SetVariable::InitializationMode::Initialize : Bytecode::Op::SetVariable::InitializationMode::Set;
return declarator.target().visit(
[&](NonnullRefPtr<Identifier const> const& id) -> Bytecode::CodeGenerationErrorOr<void> {
generator.emit_set_variable(*id, initialization_mode);
return {};
},
[&](NonnullRefPtr<BindingPattern const> const& pattern) -> Bytecode::CodeGenerationErrorOr<void> {
auto value_register = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(value_register);
return generate_binding_pattern_bytecode(generator, pattern, initialization_mode, value_register, false);
});
}
Bytecode::CodeGenerationErrorOr<void> VariableDeclaration::generate_bytecode(Bytecode::Generator& generator) const
{
// The completion value of a VariableDeclaration is empty, but there might already be a non-empty
// completion value in the accumulator. We need to save it and restore it after the declaration executed.
auto saved_accumulator = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(saved_accumulator);
for (auto& declarator : m_declarations) {
if (declarator->init()) {
if (auto const* lhs = declarator->target().get_pointer<NonnullRefPtr<Identifier const>>()) {
TRY(generator.emit_named_evaluation_if_anonymous_function(*declarator->init(), generator.intern_identifier((*lhs)->string())));
} else {
TRY(declarator->init()->generate_bytecode(generator));
}
TRY(assign_accumulator_to_variable_declarator(generator, declarator, *this));
} else if (m_declaration_kind != DeclarationKind::Var) {
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
TRY(assign_accumulator_to_variable_declarator(generator, declarator, *this));
}
}
generator.emit<Bytecode::Op::Load>(saved_accumulator);
return {};
}
static Bytecode::CodeGenerationErrorOr<void> get_base_and_value_from_member_expression(Bytecode::Generator& generator, MemberExpression const& member_expression, Bytecode::Register this_reg)
{
// https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
if (is<SuperExpression>(member_expression.object())) {
// 1. Let env be GetThisEnvironment().
// 2. Let actualThis be ? env.GetThisBinding().
generator.emit<Bytecode::Op::ResolveThisBinding>();
generator.emit<Bytecode::Op::Store>(this_reg);
Optional<Bytecode::Register> computed_property_value_register;
if (member_expression.is_computed()) {
// SuperProperty : super [ Expression ]
// 3. Let propertyNameReference be ? Evaluation of Expression.
// 4. Let propertyNameValue be ? GetValue(propertyNameReference).
TRY(member_expression.property().generate_bytecode(generator));
computed_property_value_register = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(*computed_property_value_register);
}
// 5/7. Return ? MakeSuperPropertyReference(actualThis, propertyKey, strict).
// https://tc39.es/ecma262/#sec-makesuperpropertyreference
// 1. Let env be GetThisEnvironment().
// 2. Assert: env.HasSuperBinding() is true.
// 3. Let baseValue be ? env.GetSuperBase().
generator.emit<Bytecode::Op::ResolveSuperBase>();
// 4. Return the Reference Record { [[Base]]: baseValue, [[ReferencedName]]: propertyKey, [[Strict]]: strict, [[ThisValue]]: actualThis }.
if (computed_property_value_register.has_value()) {
// 5. Let propertyKey be ? ToPropertyKey(propertyNameValue).
// FIXME: This does ToPropertyKey out of order, which is observable by Symbol.toPrimitive!
auto super_base_register = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(super_base_register);
generator.emit<Bytecode::Op::Load>(*computed_property_value_register);
generator.emit<Bytecode::Op::GetByValueWithThis>(super_base_register, this_reg);
} else {
// 3. Let propertyKey be StringValue of IdentifierName.
auto identifier_table_ref = generator.intern_identifier(verify_cast<Identifier>(member_expression.property()).string());
generator.emit_get_by_id_with_this(identifier_table_ref, this_reg);
}
} else {
TRY(member_expression.object().generate_bytecode(generator));
generator.emit<Bytecode::Op::Store>(this_reg);
if (member_expression.is_computed()) {
TRY(member_expression.property().generate_bytecode(generator));
generator.emit<Bytecode::Op::GetByValue>(this_reg);
} else if (is<PrivateIdentifier>(member_expression.property())) {
generator.emit<Bytecode::Op::GetPrivateById>(generator.intern_identifier(verify_cast<PrivateIdentifier>(member_expression.property()).string()));
} else {
generator.emit_get_by_id(generator.intern_identifier(verify_cast<Identifier>(member_expression.property()).string()));
}
}
return {};
}
static Bytecode::CodeGenerationErrorOr<void> generate_optional_chain(Bytecode::Generator& generator, OptionalChain const& optional_chain, Bytecode::Register current_value_register, Bytecode::Register current_base_register);
Bytecode::CodeGenerationErrorOr<void> CallExpression::generate_bytecode(Bytecode::Generator& generator) const
{
auto callee_reg = generator.allocate_register();
auto this_reg = generator.allocate_register();
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
generator.emit<Bytecode::Op::Store>(this_reg);
if (is<NewExpression>(this)) {
TRY(m_callee->generate_bytecode(generator));
generator.emit<Bytecode::Op::Store>(callee_reg);
} else if (is<MemberExpression>(*m_callee)) {
auto& member_expression = static_cast<MemberExpression const&>(*m_callee);
TRY(get_base_and_value_from_member_expression(generator, member_expression, this_reg));
generator.emit<Bytecode::Op::Store>(callee_reg);
} else if (is<OptionalChain>(*m_callee)) {
auto& optional_chain = static_cast<OptionalChain const&>(*m_callee);
TRY(generate_optional_chain(generator, optional_chain, callee_reg, this_reg));
} else {
// FIXME: this = global object in sloppy mode.
TRY(m_callee->generate_bytecode(generator));
generator.emit<Bytecode::Op::Store>(callee_reg);
}
Bytecode::Op::CallType call_type;
if (is<NewExpression>(*this)) {
call_type = Bytecode::Op::CallType::Construct;
} else if (m_callee->is_identifier() && static_cast<Identifier const&>(*m_callee).string() == "eval"sv) {
call_type = Bytecode::Op::CallType::DirectEval;
} else {
call_type = Bytecode::Op::CallType::Call;
}
Optional<Bytecode::StringTableIndex> expression_string_index;
if (auto expression_string = this->expression_string(); expression_string.has_value())
expression_string_index = generator.intern_string(expression_string.release_value());
bool has_spread = any_of(arguments(), [](auto& argument) { return argument.is_spread; });
if (has_spread) {
TRY(arguments_to_array_for_call(generator, arguments()));
generator.emit<Bytecode::Op::CallWithArgumentArray>(call_type, callee_reg, this_reg, expression_string_index);
} else {
Optional<Bytecode::Register> first_argument_reg {};
for (size_t i = 0; i < arguments().size(); ++i) {
auto reg = generator.allocate_register();
if (!first_argument_reg.has_value())
first_argument_reg = reg;
}
u32 register_offset = 0;
for (auto const& argument : arguments()) {
TRY(argument.value->generate_bytecode(generator));
generator.emit<Bytecode::Op::Store>(Bytecode::Register { first_argument_reg.value().index() + register_offset });
register_offset += 1;
}
generator.emit<Bytecode::Op::Call>(call_type, callee_reg, this_reg, first_argument_reg.value_or(Bytecode::Register { 0 }), arguments().size(), expression_string_index);
}
return {};
}
Bytecode::CodeGenerationErrorOr<void> ReturnStatement::generate_bytecode(Bytecode::Generator& generator) const
{
if (m_argument)
TRY(m_argument->generate_bytecode(generator));
else
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
if (generator.is_in_generator_or_async_function()) {
generator.perform_needed_unwinds<Bytecode::Op::Yield>();
generator.emit<Bytecode::Op::Yield>(nullptr);
} else {
generator.perform_needed_unwinds<Bytecode::Op::Return>();
generator.emit<Bytecode::Op::Return>();
}
return {};
}
Bytecode::CodeGenerationErrorOr<void> YieldExpression::generate_bytecode(Bytecode::Generator& generator) const
{
VERIFY(generator.is_in_generator_function());
auto received_completion_register = generator.allocate_register();
auto received_completion_type_register = generator.allocate_register();
auto received_completion_value_register = generator.allocate_register();
auto type_identifier = generator.intern_identifier("type");
auto value_identifier = generator.intern_identifier("value");
auto get_received_completion_type_and_value = [&]() {
// The accumulator is set to an object, for example: { "type": 1 (normal), value: 1337 }
generator.emit<Bytecode::Op::Store>(received_completion_register);
generator.emit_get_by_id(type_identifier);
generator.emit<Bytecode::Op::Store>(received_completion_type_register);
generator.emit<Bytecode::Op::Load>(received_completion_register);
generator.emit_get_by_id(value_identifier);
generator.emit<Bytecode::Op::Store>(received_completion_value_register);
};
if (m_is_yield_from) {
// 15.5.5 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-generator-function-definitions-runtime-semantics-evaluation
// FIXME: 1. Let generatorKind be GetGeneratorKind().
// 2. Let exprRef be ? Evaluation of AssignmentExpression.
// 3. Let value be ? GetValue(exprRef).
VERIFY(m_argument);
TRY(m_argument->generate_bytecode(generator));
// 4. Let iteratorRecord be ? GetIterator(value, generatorKind).
// FIXME: Consider generatorKind.
auto iterator_record_register = generator.allocate_register();
generator.emit<Bytecode::Op::GetIterator>();
generator.emit<Bytecode::Op::Store>(iterator_record_register);
// 5. Let iterator be iteratorRecord.[[Iterator]].
auto iterator_register = generator.allocate_register();
auto iterator_identifier = generator.intern_identifier("iterator");
generator.emit_get_by_id(iterator_identifier);
generator.emit<Bytecode::Op::Store>(iterator_register);
// Cache iteratorRecord.[[NextMethod]] for use in step 7.a.i.
auto next_method_register = generator.allocate_register();
auto next_method_identifier = generator.intern_identifier("next");
generator.emit<Bytecode::Op::Load>(iterator_record_register);
generator.emit_get_by_id(next_method_identifier);
generator.emit<Bytecode::Op::Store>(next_method_register);
// 6. Let received be NormalCompletion(undefined).
// See get_received_completion_type_and_value above.
generator.emit<Bytecode::Op::LoadImmediate>(Value(to_underlying(Completion::Type::Normal)));
generator.emit<Bytecode::Op::Store>(received_completion_type_register);
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
generator.emit<Bytecode::Op::Store>(received_completion_value_register);
// 7. Repeat,
auto& loop_block = generator.make_block();
auto& continuation_block = generator.make_block();
auto& loop_end_block = generator.make_block();
generator.emit<Bytecode::Op::Jump>(Bytecode::Label { loop_block });
generator.switch_to_basic_block(loop_block);
// a. If received.[[Type]] is normal, then
auto& type_is_normal_block = generator.make_block();
auto& is_type_throw_block = generator.make_block();
generator.emit<Bytecode::Op::LoadImmediate>(Value(to_underlying(Completion::Type::Normal)));
generator.emit<Bytecode::Op::StrictlyEquals>(received_completion_type_register);
generator.emit<Bytecode::Op::JumpConditional>(
Bytecode::Label { type_is_normal_block },
Bytecode::Label { is_type_throw_block });
generator.switch_to_basic_block(type_is_normal_block);
// i. Let innerResult be ? Call(iteratorRecord.[[NextMethod]], iteratorRecord.[[Iterator]], « received.[[Value]] »).
generator.emit_with_extra_register_slots<Bytecode::Op::NewArray>(2, AK::Array { received_completion_value_register, received_completion_value_register });
generator.emit<Bytecode::Op::CallWithArgumentArray>(Bytecode::Op::CallType::Call, next_method_register, iterator_register);
// FIXME: ii. If generatorKind is async, set innerResult to ? Await(innerResult).
// iii. If innerResult is not an Object, throw a TypeError exception.
generator.emit<Bytecode::Op::ThrowIfNotObject>();
auto inner_result_register = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(inner_result_register);
// iv. Let done be ? IteratorComplete(innerResult).
generator.emit<Bytecode::Op::IteratorResultDone>();
// v. If done is true, then
auto& type_is_normal_done_block = generator.make_block();
auto& type_is_normal_not_done_block = generator.make_block();
generator.emit<Bytecode::Op::JumpConditional>(
Bytecode::Label { type_is_normal_done_block },
Bytecode::Label { type_is_normal_not_done_block });
generator.switch_to_basic_block(type_is_normal_done_block);
// 1. Return ? IteratorValue(innerResult).
generator.emit<Bytecode::Op::Load>(inner_result_register);
generator.emit<Bytecode::Op::IteratorResultValue>();
generator.emit<Bytecode::Op::Jump>(Bytecode::Label { loop_end_block });
generator.switch_to_basic_block(type_is_normal_not_done_block);
// FIXME: vi. If generatorKind is async, set received to Completion(AsyncGeneratorYield(? IteratorValue(innerResult))).
// vii. Else, set received to Completion(GeneratorYield(innerResult)).
// FIXME: Else,
generator.emit<Bytecode::Op::Load>(inner_result_register);
// FIXME: Yield currently only accepts a Value, not an object conforming to the IteratorResult interface, so we have to do an observable lookup of `value` here.
generator.emit<Bytecode::Op::IteratorResultValue>();
generator.emit<Bytecode::Op::Yield>(Bytecode::Label { continuation_block });
// b. Else if received.[[Type]] is throw, then
generator.switch_to_basic_block(is_type_throw_block);
auto& type_is_throw_block = generator.make_block();
auto& type_is_return_block = generator.make_block();
generator.emit<Bytecode::Op::LoadImmediate>(Value(to_underlying(Completion::Type::Throw)));
generator.emit<Bytecode::Op::StrictlyEquals>(received_completion_type_register);
generator.emit<Bytecode::Op::JumpConditional>(
Bytecode::Label { type_is_throw_block },
Bytecode::Label { type_is_return_block });
generator.switch_to_basic_block(type_is_throw_block);
// i. Let throw be ? GetMethod(iterator, "throw").
auto throw_method_register = generator.allocate_register();
auto throw_identifier = generator.intern_identifier("throw");
generator.emit<Bytecode::Op::Load>(iterator_register);
generator.emit<Bytecode::Op::GetMethod>(throw_identifier);
generator.emit<Bytecode::Op::Store>(throw_method_register);
// ii. If throw is not undefined, then
auto& throw_method_is_defined_block = generator.make_block();
auto& throw_method_is_undefined_block = generator.make_block();
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
generator.emit<Bytecode::Op::StrictlyInequals>(throw_method_register);
generator.emit<Bytecode::Op::JumpConditional>(
Bytecode::Label { throw_method_is_defined_block },
Bytecode::Label { throw_method_is_undefined_block });
generator.switch_to_basic_block(throw_method_is_defined_block);
// 1. Let innerResult be ? Call(throw, iterator, « received.[[Value]] »).
generator.emit_with_extra_register_slots<Bytecode::Op::NewArray>(2, AK::Array { received_completion_value_register, received_completion_value_register });
generator.emit<Bytecode::Op::CallWithArgumentArray>(Bytecode::Op::CallType::Call, throw_method_register, iterator_register);
// FIXME: 2. If generatorKind is async, set innerResult to ? Await(innerResult).
// 3. NOTE: Exceptions from the inner iterator throw method are propagated. Normal completions from an inner throw method are processed similarly to an inner next.
// 4. If innerResult is not an Object, throw a TypeError exception.
generator.emit<Bytecode::Op::ThrowIfNotObject>();
generator.emit<Bytecode::Op::Store>(inner_result_register);
// 5. Let done be ? IteratorComplete(innerResult).
generator.emit<Bytecode::Op::IteratorResultDone>();
// 6. If done is true, then
auto& type_is_throw_done_block = generator.make_block();
auto& type_is_throw_not_done_block = generator.make_block();
generator.emit<Bytecode::Op::JumpConditional>(
Bytecode::Label { type_is_throw_done_block },
Bytecode::Label { type_is_throw_not_done_block });
generator.switch_to_basic_block(type_is_throw_done_block);
// a. Return ? IteratorValue(innerResult).
generator.emit<Bytecode::Op::Load>(inner_result_register);
generator.emit<Bytecode::Op::IteratorResultValue>();
generator.emit<Bytecode::Op::Jump>(Bytecode::Label { loop_end_block });
generator.switch_to_basic_block(type_is_throw_not_done_block);
// FIXME: 7. If generatorKind is async, set received to Completion(AsyncGeneratorYield(? IteratorValue(innerResult))).
// 8. Else, set received to Completion(GeneratorYield(innerResult)).
// FIXME: Else,
generator.emit<Bytecode::Op::Load>(inner_result_register);
// FIXME: Yield currently only accepts a Value, not an object conforming to the IteratorResult interface, so we have to do an observable lookup of `value` here.
generator.emit<Bytecode::Op::IteratorResultValue>();
generator.emit<Bytecode::Op::Yield>(Bytecode::Label { continuation_block });
generator.switch_to_basic_block(throw_method_is_undefined_block);
// 1. NOTE: If iterator does not have a throw method, this throw is going to terminate the yield* loop. But first we need to give iterator a chance to clean up.
// 2. Let closeCompletion be Completion Record { [[Type]]: normal, [[Value]]: empty, [[Target]]: empty }.
// FIXME: 3. If generatorKind is async, perform ? AsyncIteratorClose(iteratorRecord, closeCompletion).
// 4. Else, perform ? IteratorClose(iteratorRecord, closeCompletion).
// FIXME: Else,
generator.emit<Bytecode::Op::Load>(iterator_record_register);
generator.emit<Bytecode::Op::IteratorClose>(Completion::Type::Normal, Optional<Value> {});
// 5. NOTE: The next step throws a TypeError to indicate that there was a yield* protocol violation: iterator does not have a throw method.
// 6. Throw a TypeError exception.
generator.emit<Bytecode::Op::NewTypeError>(generator.intern_string(ErrorType::YieldFromIteratorMissingThrowMethod.message()));
generator.perform_needed_unwinds<Bytecode::Op::Throw>();
generator.emit<Bytecode::Op::Throw>();
// c. Else,
// i. Assert: received.[[Type]] is return.
generator.switch_to_basic_block(type_is_return_block);
// ii. Let return be ? GetMethod(iterator, "return").
auto return_method_register = generator.allocate_register();
auto return_identifier = generator.intern_identifier("return");
generator.emit<Bytecode::Op::Load>(iterator_register);
generator.emit<Bytecode::Op::GetMethod>(return_identifier);
generator.emit<Bytecode::Op::Store>(return_method_register);
// iii. If return is undefined, then
auto& return_is_undefined_block = generator.make_block();
auto& return_is_defined_block = generator.make_block();
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
generator.emit<Bytecode::Op::StrictlyEquals>(return_method_register);
generator.emit<Bytecode::Op::JumpConditional>(
Bytecode::Label { return_is_undefined_block },
Bytecode::Label { return_is_defined_block });
generator.switch_to_basic_block(return_is_undefined_block);
// FIXME: 1. If generatorKind is async, set received.[[Value]] to ? Await(received.[[Value]]).
// 2. Return ? received.
// NOTE: This will always be a return completion.
generator.emit<Bytecode::Op::Load>(received_completion_value_register);
generator.perform_needed_unwinds<Bytecode::Op::Yield>();
generator.emit<Bytecode::Op::Yield>(nullptr);
generator.switch_to_basic_block(return_is_defined_block);
// iv. Let innerReturnResult be ? Call(return, iterator, « received.[[Value]] »).
generator.emit_with_extra_register_slots<Bytecode::Op::NewArray>(2, AK::Array { received_completion_value_register, received_completion_value_register });
generator.emit<Bytecode::Op::CallWithArgumentArray>(Bytecode::Op::CallType::Call, return_method_register, iterator_register);
// FIXME: v. If generatorKind is async, set innerReturnResult to ? Await(innerReturnResult).
// vi. If innerReturnResult is not an Object, throw a TypeError exception.
generator.emit<Bytecode::Op::ThrowIfNotObject>();
auto inner_return_result_register = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(inner_return_result_register);
// vii. Let done be ? IteratorComplete(innerReturnResult).
generator.emit<Bytecode::Op::IteratorResultDone>();
// viii. If done is true, then
auto& type_is_return_done_block = generator.make_block();
auto& type_is_return_not_done_block = generator.make_block();
generator.emit<Bytecode::Op::JumpConditional>(
Bytecode::Label { type_is_return_done_block },
Bytecode::Label { type_is_return_not_done_block });
generator.switch_to_basic_block(type_is_return_done_block);
// 1. Let value be ? IteratorValue(innerReturnResult).
generator.emit<Bytecode::Op::Load>(inner_result_register);
generator.emit<Bytecode::Op::IteratorResultValue>();
// 2. Return Completion Record { [[Type]]: return, [[Value]]: value, [[Target]]: empty }.
generator.perform_needed_unwinds<Bytecode::Op::Yield>();
generator.emit<Bytecode::Op::Yield>(nullptr);
generator.switch_to_basic_block(type_is_return_not_done_block);
// FIXME: ix. If generatorKind is async, set received to Completion(AsyncGeneratorYield(? IteratorValue(innerReturnResult))).
// x. Else, set received to Completion(GeneratorYield(innerReturnResult)).
// FIXME: Else,
generator.emit<Bytecode::Op::Load>(inner_return_result_register);
// FIXME: Yield currently only accepts a Value, not an object conforming to the IteratorResult interface, so we have to do an observable lookup of `value` here.
generator.emit<Bytecode::Op::IteratorResultValue>();
generator.emit<Bytecode::Op::Yield>(Bytecode::Label { continuation_block });
generator.switch_to_basic_block(continuation_block);
get_received_completion_type_and_value();
generator.emit<Bytecode::Op::Jump>(Bytecode::Label { loop_block });
generator.switch_to_basic_block(loop_end_block);
return {};
}
if (m_argument)
TRY(m_argument->generate_bytecode(generator));
else
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
auto& continuation_block = generator.make_block();
generator.emit<Bytecode::Op::Yield>(Bytecode::Label { continuation_block });
generator.switch_to_basic_block(continuation_block);
get_received_completion_type_and_value();
auto& normal_completion_continuation_block = generator.make_block();
auto& throw_completion_continuation_block = generator.make_block();
generator.emit<Bytecode::Op::LoadImmediate>(Value(to_underlying(Completion::Type::Normal)));
generator.emit<Bytecode::Op::StrictlyEquals>(received_completion_type_register);
generator.emit<Bytecode::Op::JumpConditional>(
Bytecode::Label { normal_completion_continuation_block },
Bytecode::Label { throw_completion_continuation_block });
auto& throw_value_block = generator.make_block();
auto& return_value_block = generator.make_block();
generator.switch_to_basic_block(throw_completion_continuation_block);
generator.emit<Bytecode::Op::LoadImmediate>(Value(to_underlying(Completion::Type::Throw)));
generator.emit<Bytecode::Op::StrictlyEquals>(received_completion_type_register);
// If type is not equal to "throw" or "normal", assume it's "return".
generator.emit<Bytecode::Op::JumpConditional>(
Bytecode::Label { throw_value_block },
Bytecode::Label { return_value_block });
generator.switch_to_basic_block(throw_value_block);
generator.emit<Bytecode::Op::Load>(received_completion_value_register);
generator.perform_needed_unwinds<Bytecode::Op::Throw>();
generator.emit<Bytecode::Op::Throw>();
generator.switch_to_basic_block(return_value_block);
generator.emit<Bytecode::Op::Load>(received_completion_value_register);
generator.perform_needed_unwinds<Bytecode::Op::Yield>();
generator.emit<Bytecode::Op::Yield>(nullptr);
generator.switch_to_basic_block(normal_completion_continuation_block);
generator.emit<Bytecode::Op::Load>(received_completion_value_register);
return {};
}
Bytecode::CodeGenerationErrorOr<void> IfStatement::generate_bytecode(Bytecode::Generator& generator) const
{
// test
// jump if_true (true) true (false) false
// true
// jump always (true) end
// false
// jump always (true) end
// end
auto& true_block = generator.make_block();
auto& false_block = generator.make_block();
TRY(m_predicate->generate_bytecode(generator));
generator.emit<Bytecode::Op::JumpConditional>().set_targets(
Bytecode::Label { true_block },
Bytecode::Label { false_block });
Bytecode::Op::Jump* true_block_jump { nullptr };
generator.switch_to_basic_block(true_block);
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
TRY(m_consequent->generate_bytecode(generator));
if (!generator.is_current_block_terminated())
true_block_jump = &generator.emit<Bytecode::Op::Jump>();
generator.switch_to_basic_block(false_block);
auto& end_block = generator.make_block();
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
if (m_alternate)
TRY(m_alternate->generate_bytecode(generator));
if (!generator.is_current_block_terminated())
generator.emit<Bytecode::Op::Jump>().set_targets(Bytecode::Label { end_block }, {});
if (true_block_jump)
true_block_jump->set_targets(Bytecode::Label { end_block }, {});
generator.switch_to_basic_block(end_block);
return {};
}
Bytecode::CodeGenerationErrorOr<void> ContinueStatement::generate_bytecode(Bytecode::Generator& generator) const
{
// FIXME: Handle finally blocks in a graceful manner
// We need to execute the finally block, but tell it to resume
// execution at the designated block
if (m_target_label.is_null()) {
generator.generate_continue();
return {};
}
generator.generate_continue(m_target_label);
return {};
}
Bytecode::CodeGenerationErrorOr<void> DebuggerStatement::generate_bytecode(Bytecode::Generator&) const
{
return {};
}
Bytecode::CodeGenerationErrorOr<void> ConditionalExpression::generate_bytecode(Bytecode::Generator& generator) const
{
// test
// jump if_true (true) true (false) false
// true
// jump always (true) end
// false
// jump always (true) end
// end
auto& true_block = generator.make_block();
auto& false_block = generator.make_block();
auto& end_block = generator.make_block();
TRY(m_test->generate_bytecode(generator));
generator.emit<Bytecode::Op::JumpConditional>().set_targets(
Bytecode::Label { true_block },
Bytecode::Label { false_block });
generator.switch_to_basic_block(true_block);
TRY(m_consequent->generate_bytecode(generator));
generator.emit<Bytecode::Op::Jump>().set_targets(
Bytecode::Label { end_block },
{});
generator.switch_to_basic_block(false_block);
TRY(m_alternate->generate_bytecode(generator));
generator.emit<Bytecode::Op::Jump>().set_targets(
Bytecode::Label { end_block },
{});
generator.switch_to_basic_block(end_block);
return {};
}
Bytecode::CodeGenerationErrorOr<void> SequenceExpression::generate_bytecode(Bytecode::Generator& generator) const
{
for (auto& expression : m_expressions)
TRY(expression->generate_bytecode(generator));
return {};
}
Bytecode::CodeGenerationErrorOr<void> TemplateLiteral::generate_bytecode(Bytecode::Generator& generator) const
{
auto string_reg = generator.allocate_register();
for (size_t i = 0; i < m_expressions.size(); i++) {
TRY(m_expressions[i]->generate_bytecode(generator));
if (i == 0) {
generator.emit<Bytecode::Op::Store>(string_reg);
} else {
generator.emit<Bytecode::Op::ConcatString>(string_reg);
}
}
generator.emit<Bytecode::Op::Load>(string_reg);
return {};
}
Bytecode::CodeGenerationErrorOr<void> TaggedTemplateLiteral::generate_bytecode(Bytecode::Generator& generator) const
{
TRY(m_tag->generate_bytecode(generator));
auto tag_reg = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(tag_reg);
// FIXME: We only need to record the first and last register,
// due to packing everything in an array, same goes for argument_regs
// FIXME: Follow
// 13.2.8.3 GetTemplateObject ( templateLiteral ), https://tc39.es/ecma262/#sec-gettemplateobject
// more closely, namely:
// * cache this somehow
// * add a raw object accessor
// * freeze array and raw member
Vector<Bytecode::Register> string_regs;
auto& expressions = m_template_literal->expressions();
for (size_t i = 0; i < expressions.size(); ++i) {
if (i % 2 != 0)
continue;
string_regs.append(generator.allocate_register());
}
size_t reg_index = 0;
for (size_t i = 0; i < expressions.size(); ++i) {
if (i % 2 != 0)
continue;
// NOTE: If the string contains invalid escapes we get a null expression here,
// which we then convert to the expected `undefined` TV. See
// 12.9.6.1 Static Semantics: TV, https://tc39.es/ecma262/#sec-static-semantics-tv
if (is<NullLiteral>(expressions[i]))
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
else
TRY(expressions[i]->generate_bytecode(generator));
auto string_reg = string_regs[reg_index++];
generator.emit<Bytecode::Op::Store>(string_reg);
}
if (string_regs.is_empty()) {
generator.emit<Bytecode::Op::NewArray>();
} else {
generator.emit_with_extra_register_slots<Bytecode::Op::NewArray>(2u, AK::Array { string_regs.first(), string_regs.last() });
}
auto strings_reg = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(strings_reg);
Vector<Bytecode::Register> argument_regs;
argument_regs.append(strings_reg);
for (size_t i = 1; i < expressions.size(); i += 2)
argument_regs.append(generator.allocate_register());
for (size_t i = 1; i < expressions.size(); i += 2) {
auto string_reg = argument_regs[1 + i / 2];
TRY(expressions[i]->generate_bytecode(generator));
generator.emit<Bytecode::Op::Store>(string_reg);
}
Vector<Bytecode::Register> raw_string_regs;
for ([[maybe_unused]] auto& raw_string : m_template_literal->raw_strings())
string_regs.append(generator.allocate_register());
reg_index = 0;
for (auto& raw_string : m_template_literal->raw_strings()) {
TRY(raw_string->generate_bytecode(generator));
auto raw_string_reg = string_regs[reg_index++];
generator.emit<Bytecode::Op::Store>(raw_string_reg);
raw_string_regs.append(raw_string_reg);
}
if (raw_string_regs.is_empty()) {
generator.emit<Bytecode::Op::NewArray>();
} else {
generator.emit_with_extra_register_slots<Bytecode::Op::NewArray>(2u, AK::Array { raw_string_regs.first(), raw_string_regs.last() });
}
auto raw_strings_reg = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(raw_strings_reg);
generator.emit<Bytecode::Op::PutById>(strings_reg, generator.intern_identifier("raw"));
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
auto this_reg = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(this_reg);
if (!argument_regs.is_empty())
generator.emit_with_extra_register_slots<Bytecode::Op::NewArray>(2, AK::Array { argument_regs.first(), argument_regs.last() });
else
generator.emit<Bytecode::Op::NewArray>();
generator.emit<Bytecode::Op::CallWithArgumentArray>(Bytecode::Op::CallType::Call, tag_reg, this_reg);
return {};
}
Bytecode::CodeGenerationErrorOr<void> UpdateExpression::generate_bytecode(Bytecode::Generator& generator) const
{
TRY(generator.emit_load_from_reference(*m_argument));
Optional<Bytecode::Register> previous_value_for_postfix_reg;
if (!m_prefixed) {
previous_value_for_postfix_reg = generator.allocate_register();
generator.emit<Bytecode::Op::ToNumeric>();
generator.emit<Bytecode::Op::Store>(*previous_value_for_postfix_reg);
}
if (m_op == UpdateOp::Increment)
generator.emit<Bytecode::Op::Increment>();
else
generator.emit<Bytecode::Op::Decrement>();
TRY(generator.emit_store_to_reference(*m_argument));
if (!m_prefixed)
generator.emit<Bytecode::Op::Load>(*previous_value_for_postfix_reg);
return {};
}
Bytecode::CodeGenerationErrorOr<void> ThrowStatement::generate_bytecode(Bytecode::Generator& generator) const
{
TRY(m_argument->generate_bytecode(generator));
generator.perform_needed_unwinds<Bytecode::Op::Throw>();
generator.emit<Bytecode::Op::Throw>();
return {};
}
Bytecode::CodeGenerationErrorOr<void> BreakStatement::generate_bytecode(Bytecode::Generator& generator) const
{
// FIXME: Handle finally blocks in a graceful manner
// We need to execute the finally block, but tell it to resume
// execution at the designated block
if (m_target_label.is_null()) {
generator.generate_break();
return {};
}
generator.generate_break(m_target_label);
return {};
}
Bytecode::CodeGenerationErrorOr<void> TryStatement::generate_bytecode(Bytecode::Generator& generator) const
{
auto& saved_block = generator.current_block();
Optional<Bytecode::Label> handler_target;
Optional<Bytecode::Label> finalizer_target;
Bytecode::BasicBlock* next_block { nullptr };
if (m_finalizer) {
// FIXME: See notes in Op.h->ScheduleJump
auto& finalizer_block = generator.make_block();
generator.switch_to_basic_block(finalizer_block);
generator.emit<Bytecode::Op::LeaveUnwindContext>();
TRY(m_finalizer->generate_bytecode(generator));
if (!generator.is_current_block_terminated()) {
next_block = &generator.make_block();
auto next_target = Bytecode::Label { *next_block };
generator.emit<Bytecode::Op::ContinuePendingUnwind>(next_target);
}
finalizer_target = Bytecode::Label { finalizer_block };
}
if (m_finalizer)
generator.start_boundary(Bytecode::Generator::BlockBoundaryType::ReturnToFinally);
if (m_handler) {
auto& handler_block = generator.make_block();
generator.switch_to_basic_block(handler_block);
if (!m_finalizer)
generator.emit<Bytecode::Op::LeaveUnwindContext>();
generator.begin_variable_scope();
TRY(m_handler->parameter().visit(
[&](DeprecatedFlyString const& parameter) -> Bytecode::CodeGenerationErrorOr<void> {
if (!parameter.is_empty()) {
auto parameter_identifier = generator.intern_identifier(parameter);
generator.emit<Bytecode::Op::CreateVariable>(parameter_identifier, Bytecode::Op::EnvironmentMode::Lexical, false);
generator.emit<Bytecode::Op::SetVariable>(parameter_identifier, Bytecode::Op::SetVariable::InitializationMode::Initialize);
}
return {};
},
[&](NonnullRefPtr<BindingPattern const> const& binding_pattern) -> Bytecode::CodeGenerationErrorOr<void> {
auto value_register = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(value_register);
TRY(generate_binding_pattern_bytecode(generator, *binding_pattern, Bytecode::Op::SetVariable::InitializationMode::Initialize, value_register, true));
return {};
}));
// Set accumulator to undefined, otherwise we leak the error object through the accumulator.
// For example: `try { BigInt.call() } catch {}` would result in the error object. Note that
// the exception _is_ caught here, it just leaks the error object through to the result.
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
TRY(m_handler->body().generate_bytecode(generator));
handler_target = Bytecode::Label { handler_block };
generator.end_variable_scope();
if (!generator.is_current_block_terminated()) {
if (m_finalizer) {
generator.emit<Bytecode::Op::Jump>(finalizer_target);
} else {
VERIFY(!next_block);
next_block = &generator.make_block();
auto next_target = Bytecode::Label { *next_block };
generator.emit<Bytecode::Op::Jump>(next_target);
}
}
}
if (m_finalizer)
generator.end_boundary(Bytecode::Generator::BlockBoundaryType::ReturnToFinally);
auto& target_block = generator.make_block();
generator.switch_to_basic_block(saved_block);
generator.emit<Bytecode::Op::EnterUnwindContext>(Bytecode::Label { target_block }, handler_target, finalizer_target);
generator.start_boundary(Bytecode::Generator::BlockBoundaryType::Unwind);
if (m_finalizer)
generator.start_boundary(Bytecode::Generator::BlockBoundaryType::ReturnToFinally);
generator.switch_to_basic_block(target_block);
TRY(m_block->generate_bytecode(generator));
if (!generator.is_current_block_terminated()) {
if (m_finalizer) {
generator.emit<Bytecode::Op::Jump>(finalizer_target);
} else {
if (!next_block)
next_block = &generator.make_block();
generator.emit<Bytecode::Op::LeaveUnwindContext>();
generator.emit<Bytecode::Op::Jump>(Bytecode::Label { *next_block });
}
}
if (m_finalizer)
generator.end_boundary(Bytecode::Generator::BlockBoundaryType::ReturnToFinally);
generator.end_boundary(Bytecode::Generator::BlockBoundaryType::Unwind);
generator.switch_to_basic_block(next_block ? *next_block : saved_block);
return {};
}
Bytecode::CodeGenerationErrorOr<void> SwitchStatement::generate_bytecode(Bytecode::Generator& generator) const
{
return generate_labelled_evaluation(generator, {});
}
Bytecode::CodeGenerationErrorOr<void> SwitchStatement::generate_labelled_evaluation(Bytecode::Generator& generator, Vector<DeprecatedFlyString> const& label_set) const
{
auto discriminant_reg = generator.allocate_register();
TRY(m_discriminant->generate_bytecode(generator));
generator.emit<Bytecode::Op::Store>(discriminant_reg);
Vector<Bytecode::BasicBlock&> case_blocks;
Bytecode::BasicBlock* entry_block_for_default { nullptr };
Bytecode::BasicBlock* next_test_block = &generator.make_block();
auto has_lexical_declarations = this->has_lexical_declarations();
if (has_lexical_declarations)
generator.block_declaration_instantiation(*this);
generator.emit<Bytecode::Op::Jump>().set_targets(Bytecode::Label { *next_test_block }, {});
for (auto& switch_case : m_cases) {
auto& case_block = generator.make_block();
auto& case_entry_block = generator.make_block();
if (switch_case->test()) {
generator.switch_to_basic_block(*next_test_block);
TRY(switch_case->test()->generate_bytecode(generator));
generator.emit<Bytecode::Op::StrictlyEquals>(discriminant_reg);
next_test_block = &generator.make_block();
generator.emit<Bytecode::Op::JumpConditional>().set_targets(Bytecode::Label { case_entry_block }, Bytecode::Label { *next_test_block });
} else {
entry_block_for_default = &case_entry_block;
}
// Initialize the completion value of the switch statement to empty. We can't do this in the case's basic block directly,
// as we must not clobber the possible non-empty completion value of the previous case when falling through.
generator.switch_to_basic_block(case_entry_block);
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
generator.emit<Bytecode::Op::Jump>().set_targets(Bytecode::Label { case_block }, {});
case_blocks.append(case_block);
}
generator.switch_to_basic_block(*next_test_block);
auto& end_block = generator.make_block();
if (entry_block_for_default != nullptr) {
generator.emit<Bytecode::Op::Jump>().set_targets(Bytecode::Label { *entry_block_for_default }, {});
} else {
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
generator.emit<Bytecode::Op::Jump>().set_targets(Bytecode::Label { end_block }, {});
}
auto current_block = case_blocks.begin();
generator.begin_breakable_scope(Bytecode::Label { end_block }, label_set);
for (auto& switch_case : m_cases) {
generator.switch_to_basic_block(*current_block);
for (auto& statement : switch_case->children()) {
TRY(statement->generate_bytecode(generator));
if (generator.is_current_block_terminated())
break;
}
if (!generator.is_current_block_terminated()) {
auto next_block = current_block;
next_block++;
if (next_block.is_end()) {
generator.emit<Bytecode::Op::Jump>().set_targets(Bytecode::Label { end_block }, {});
} else {
generator.emit<Bytecode::Op::Jump>().set_targets(Bytecode::Label { *next_block }, {});
}
}
current_block++;
}
generator.end_breakable_scope();
generator.switch_to_basic_block(end_block);
if (has_lexical_declarations)
generator.end_variable_scope();
return {};
}
Bytecode::CodeGenerationErrorOr<void> SuperExpression::generate_bytecode(Bytecode::Generator&) const
{
// The semantics for SuperExpression are handled in CallExpression and SuperCall.
VERIFY_NOT_REACHED();
}
Bytecode::CodeGenerationErrorOr<void> ClassDeclaration::generate_bytecode(Bytecode::Generator& generator) const
{
auto accumulator_backup_reg = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(accumulator_backup_reg);
TRY(m_class_expression->generate_bytecode(generator));
generator.emit_set_variable(*m_class_expression.ptr()->m_name, Bytecode::Op::SetVariable::InitializationMode::Initialize);
generator.emit<Bytecode::Op::Load>(accumulator_backup_reg);
return {};
}
// 15.7.14 Runtime Semantics: ClassDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-classdefinitionevaluation
Bytecode::CodeGenerationErrorOr<void> ClassExpression::generate_bytecode_with_lhs_name(Bytecode::Generator& generator, Optional<Bytecode::IdentifierTableIndex> lhs_name) const
{
// NOTE: Step 2 is not a part of NewClass instruction because it is assumed to be done before super class expression evaluation
generator.emit<Bytecode::Op::CreateLexicalEnvironment>();
if (has_name() || !lhs_name.has_value()) {
// NOTE: Step 3.a is not a part of NewClass instruction because it is assumed to be done before super class expression evaluation
auto interned_index = generator.intern_identifier(name());
generator.emit<Bytecode::Op::CreateVariable>(interned_index, Bytecode::Op::EnvironmentMode::Lexical, true);
}
if (m_super_class)
TRY(m_super_class->generate_bytecode(generator));
generator.emit<Bytecode::Op::NewClass>(*this, lhs_name);
return {};
}
Bytecode::CodeGenerationErrorOr<void> ClassExpression::generate_bytecode(Bytecode::Generator& generator) const
{
return generate_bytecode_with_lhs_name(generator, {});
}
Bytecode::CodeGenerationErrorOr<void> SpreadExpression::generate_bytecode(Bytecode::Generator& generator) const
{
// NOTE: All users of this should handle the behaviour of this on their own,
// assuming it returns an Array-like object
return m_target->generate_bytecode(generator);
}
Bytecode::CodeGenerationErrorOr<void> ThisExpression::generate_bytecode(Bytecode::Generator& generator) const
{
generator.emit<Bytecode::Op::ResolveThisBinding>();
return {};
}
static void generate_await(Bytecode::Generator& generator)
{
VERIFY(generator.is_in_async_function());
// Transform `await expr` to `yield expr`, see AsyncFunctionDriverWrapper
// For that we just need to copy most of the code from YieldExpression
auto received_completion_register = generator.allocate_register();
auto received_completion_type_register = generator.allocate_register();
auto received_completion_value_register = generator.allocate_register();
auto type_identifier = generator.intern_identifier("type");
auto value_identifier = generator.intern_identifier("value");
auto& continuation_block = generator.make_block();
generator.emit<Bytecode::Op::Yield>(Bytecode::Label { continuation_block });
generator.switch_to_basic_block(continuation_block);
// The accumulator is set to an object, for example: { "type": 1 (normal), value: 1337 }
generator.emit<Bytecode::Op::Store>(received_completion_register);
generator.emit_get_by_id(type_identifier);
generator.emit<Bytecode::Op::Store>(received_completion_type_register);
generator.emit<Bytecode::Op::Load>(received_completion_register);
generator.emit_get_by_id(value_identifier);
generator.emit<Bytecode::Op::Store>(received_completion_value_register);
auto& normal_completion_continuation_block = generator.make_block();
auto& throw_value_block = generator.make_block();
generator.emit<Bytecode::Op::LoadImmediate>(Value(to_underlying(Completion::Type::Normal)));
generator.emit<Bytecode::Op::StrictlyEquals>(received_completion_type_register);
generator.emit<Bytecode::Op::JumpConditional>(
Bytecode::Label { normal_completion_continuation_block },
Bytecode::Label { throw_value_block });
// Simplification: The only abrupt completion we receive from AsyncFunctionDriverWrapper is Type::Throw
// So we do not need to account for the Type::Return path
generator.switch_to_basic_block(throw_value_block);
generator.emit<Bytecode::Op::Load>(received_completion_value_register);
generator.perform_needed_unwinds<Bytecode::Op::Throw>();
generator.emit<Bytecode::Op::Throw>();
generator.switch_to_basic_block(normal_completion_continuation_block);
generator.emit<Bytecode::Op::Load>(received_completion_value_register);
}
Bytecode::CodeGenerationErrorOr<void> AwaitExpression::generate_bytecode(Bytecode::Generator& generator) const
{
TRY(m_argument->generate_bytecode(generator));
generate_await(generator);
return {};
}
Bytecode::CodeGenerationErrorOr<void> WithStatement::generate_bytecode(Bytecode::Generator& generator) const
{
TRY(m_object->generate_bytecode(generator));
generator.emit<Bytecode::Op::EnterObjectEnvironment>();
// EnterObjectEnvironment sets the running execution context's lexical_environment to a new Object Environment.
generator.start_boundary(Bytecode::Generator::BlockBoundaryType::LeaveLexicalEnvironment);
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
TRY(m_body->generate_bytecode(generator));
generator.end_boundary(Bytecode::Generator::BlockBoundaryType::LeaveLexicalEnvironment);
if (!generator.is_current_block_terminated())
generator.emit<Bytecode::Op::LeaveLexicalEnvironment>();
return {};
}
enum class LHSKind {
Assignment,
VarBinding,
LexicalBinding,
};
enum class IterationKind {
Enumerate,
Iterate,
AsyncIterate,
};
// 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
struct ForInOfHeadEvaluationResult {
bool is_destructuring { false };
LHSKind lhs_kind { LHSKind::Assignment };
};
static Bytecode::CodeGenerationErrorOr<ForInOfHeadEvaluationResult> for_in_of_head_evaluation(Bytecode::Generator& generator, IterationKind iteration_kind, Variant<NonnullRefPtr<ASTNode const>, NonnullRefPtr<BindingPattern const>> const& lhs, NonnullRefPtr<ASTNode const> const& rhs)
{
ForInOfHeadEvaluationResult result {};
bool entered_lexical_scope = false;
if (auto* ast_ptr = lhs.get_pointer<NonnullRefPtr<ASTNode const>>(); ast_ptr && is<VariableDeclaration>(**ast_ptr)) {
// Runtime Semantics: ForInOfLoopEvaluation, for any of:
// ForInOfStatement : for ( var ForBinding in Expression ) Statement
// ForInOfStatement : for ( ForDeclaration in Expression ) Statement
// ForInOfStatement : for ( var ForBinding of AssignmentExpression ) Statement
// ForInOfStatement : for ( ForDeclaration of AssignmentExpression ) Statement
auto& variable_declaration = static_cast<VariableDeclaration const&>(**ast_ptr);
result.is_destructuring = variable_declaration.declarations().first()->target().has<NonnullRefPtr<BindingPattern const>>();
result.lhs_kind = variable_declaration.is_lexical_declaration() ? LHSKind::LexicalBinding : LHSKind::VarBinding;
if (variable_declaration.declaration_kind() == DeclarationKind::Var) {
// B.3.5 Initializers in ForIn Statement Heads, https://tc39.es/ecma262/#sec-initializers-in-forin-statement-heads
auto& variable = variable_declaration.declarations().first();
if (variable->init()) {
VERIFY(variable->target().has<NonnullRefPtr<Identifier const>>());
auto identifier = variable->target().get<NonnullRefPtr<Identifier const>>();
auto identifier_table_ref = generator.intern_identifier(identifier->string());
TRY(generator.emit_named_evaluation_if_anonymous_function(*variable->init(), identifier_table_ref));
generator.emit_set_variable(*identifier);
}
} else {
auto has_non_local_variables = false;
MUST(variable_declaration.for_each_bound_identifier([&](auto const& identifier) {
if (!identifier.is_local())
has_non_local_variables = true;
}));
if (has_non_local_variables) {
// 1. Let oldEnv be the running execution context's LexicalEnvironment.
// NOTE: 'uninitializedBoundNames' refers to the lexical bindings (i.e. Const/Let) present in the second and last form.
// 2. If uninitializedBoundNames is not an empty List, then
entered_lexical_scope = true;
// a. Assert: uninitializedBoundNames has no duplicate entries.
// b. Let newEnv be NewDeclarativeEnvironment(oldEnv).
generator.begin_variable_scope();
// c. For each String name of uninitializedBoundNames, do
// NOTE: Nothing in the callback throws an exception.
MUST(variable_declaration.for_each_bound_identifier([&](auto const& identifier) {
if (identifier.is_local())
return;
// i. Perform ! newEnv.CreateMutableBinding(name, false).
auto interned_identifier = generator.intern_identifier(identifier.string());
generator.emit<Bytecode::Op::CreateVariable>(interned_identifier, Bytecode::Op::EnvironmentMode::Lexical, false);
}));
// d. Set the running execution context's LexicalEnvironment to newEnv.
// NOTE: Done by CreateLexicalEnvironment.
}
}
} else {
// Runtime Semantics: ForInOfLoopEvaluation, for any of:
// ForInOfStatement : for ( LeftHandSideExpression in Expression ) Statement
// ForInOfStatement : for ( LeftHandSideExpression of AssignmentExpression ) Statement
result.lhs_kind = LHSKind::Assignment;
}
// 3. Let exprRef be the result of evaluating expr.
TRY(rhs->generate_bytecode(generator));
// 4. Set the running execution context's LexicalEnvironment to oldEnv.
if (entered_lexical_scope)
generator.end_variable_scope();
// 5. Let exprValue be ? GetValue(exprRef).
// NOTE: No need to store this anywhere.
// 6. If iterationKind is enumerate, then
if (iteration_kind == IterationKind::Enumerate) {
// a. If exprValue is undefined or null, then
auto& nullish_block = generator.make_block();
auto& continuation_block = generator.make_block();
auto& jump = generator.emit<Bytecode::Op::JumpNullish>();
jump.set_targets(Bytecode::Label { nullish_block }, Bytecode::Label { continuation_block });
// i. Return Completion Record { [[Type]]: break, [[Value]]: empty, [[Target]]: empty }.
generator.switch_to_basic_block(nullish_block);
generator.generate_break();
generator.switch_to_basic_block(continuation_block);
// b. Let obj be ! ToObject(exprValue).
// NOTE: GetObjectPropertyIterator does this.
// c. Let iterator be EnumerateObjectProperties(obj).
// d. Let nextMethod be ! GetV(iterator, "next").
// e. Return the Iterator Record { [[Iterator]]: iterator, [[NextMethod]]: nextMethod, [[Done]]: false }.
generator.emit<Bytecode::Op::GetObjectPropertyIterator>();
}
// 7. Else,
else {
// a. Assert: iterationKind is iterate or async-iterate.
// b. If iterationKind is async-iterate, let iteratorHint be async.
// c. Else, let iteratorHint be sync.
auto iterator_hint = iteration_kind == IterationKind::AsyncIterate ? IteratorHint::Async : IteratorHint::Sync;
// d. Return ? GetIterator(exprValue, iteratorHint).
generator.emit<Bytecode::Op::GetIterator>(iterator_hint);
}
return result;
}
// 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
static Bytecode::CodeGenerationErrorOr<void> for_in_of_body_evaluation(Bytecode::Generator& generator, ASTNode const& node, Variant<NonnullRefPtr<ASTNode const>, NonnullRefPtr<BindingPattern const>> const& lhs, ASTNode const& body, ForInOfHeadEvaluationResult const& head_result, Vector<DeprecatedFlyString> const& label_set, Bytecode::BasicBlock& loop_end, Bytecode::BasicBlock& loop_update, IteratorHint iterator_kind = IteratorHint::Sync)
{
auto iterator_register = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(iterator_register);
// 1. If iteratorKind is not present, set iteratorKind to sync.
// 2. Let oldEnv be the running execution context's LexicalEnvironment.
bool has_lexical_binding = false;
// 3. Let V be undefined.
// NOTE: We don't need 'V' as the resulting value will naturally flow through via the accumulator register.
// 4. Let destructuring be IsDestructuring of lhs.
auto destructuring = head_result.is_destructuring;
// 5. If destructuring is true and if lhsKind is assignment, then
if (destructuring && head_result.lhs_kind == LHSKind::Assignment) {
// a. Assert: lhs is a LeftHandSideExpression.
// b. Let assignmentPattern be the AssignmentPattern that is covered by lhs.
// FIXME: Implement this.
return Bytecode::CodeGenerationError {
&node,
"Unimplemented: assignment destructuring in for/of"sv,
};
}
// 6. Repeat,
generator.emit<Bytecode::Op::Jump>(Bytecode::Label { loop_update });
generator.switch_to_basic_block(loop_update);
generator.begin_continuable_scope(Bytecode::Label { loop_update }, label_set);
// a. Let nextResult be ? Call(iteratorRecord.[[NextMethod]], iteratorRecord.[[Iterator]]).
generator.emit<Bytecode::Op::Load>(iterator_register);
generator.emit<Bytecode::Op::IteratorNext>();
// b. If iteratorKind is async, set nextResult to ? Await(nextResult).
if (iterator_kind == IteratorHint::Async)
generate_await(generator);
// c. If Type(nextResult) is not Object, throw a TypeError exception.
generator.emit<Bytecode::Op::ThrowIfNotObject>();
// d. Let done be ? IteratorComplete(nextResult).
auto iterator_result_register = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(iterator_result_register);
generator.emit<Bytecode::Op::IteratorResultDone>();
// e. If done is true, return V.
auto& loop_continue = generator.make_block();
generator.emit<Bytecode::Op::JumpConditional>().set_targets(Bytecode::Label { loop_end }, Bytecode::Label { loop_continue });
generator.switch_to_basic_block(loop_continue);
// f. Let nextValue be ? IteratorValue(nextResult).
generator.emit<Bytecode::Op::Load>(iterator_result_register);
generator.emit<Bytecode::Op::IteratorResultValue>();
// g. If lhsKind is either assignment or varBinding, then
if (head_result.lhs_kind != LHSKind::LexicalBinding) {
// i. If destructuring is false, then
if (!destructuring) {
// 1. Let lhsRef be the result of evaluating lhs. (It may be evaluated repeatedly.)
// NOTE: We're skipping all the completion stuff that the spec does, as the unwinding mechanism will take case of doing that.
if (head_result.lhs_kind == LHSKind::VarBinding) {
auto& declaration = static_cast<VariableDeclaration const&>(*lhs.get<NonnullRefPtr<ASTNode const>>());
VERIFY(declaration.declarations().size() == 1);
TRY(assign_accumulator_to_variable_declarator(generator, declaration.declarations().first(), declaration));
} else {
if (auto ptr = lhs.get_pointer<NonnullRefPtr<ASTNode const>>()) {
TRY(generator.emit_store_to_reference(**ptr));
} else {
auto& binding_pattern = lhs.get<NonnullRefPtr<BindingPattern const>>();
auto value_register = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(value_register);
TRY(generate_binding_pattern_bytecode(generator, *binding_pattern, Bytecode::Op::SetVariable::InitializationMode::Set, value_register, false));
}
}
}
}
// h. Else,
else {
// i. Assert: lhsKind is lexicalBinding.
// ii. Assert: lhs is a ForDeclaration.
// iii. Let iterationEnv be NewDeclarativeEnvironment(oldEnv).
// iv. Perform ForDeclarationBindingInstantiation of lhs with argument iterationEnv.
// v. Set the running execution context's LexicalEnvironment to iterationEnv.
generator.begin_variable_scope();
has_lexical_binding = true;
// 14.7.5.4 Runtime Semantics: ForDeclarationBindingInstantiation, https://tc39.es/ecma262/#sec-runtime-semantics-fordeclarationbindinginstantiation
// 1. Assert: environment is a declarative Environment Record.
// NOTE: We just made it.
auto& variable_declaration = static_cast<VariableDeclaration const&>(*lhs.get<NonnullRefPtr<ASTNode const>>());
// 2. For each element name of the BoundNames of ForBinding, do
// NOTE: Nothing in the callback throws an exception.
MUST(variable_declaration.for_each_bound_identifier([&](auto const& identifier) {
if (identifier.is_local())
return;
auto interned_identifier = generator.intern_identifier(identifier.string());
// a. If IsConstantDeclaration of LetOrConst is true, then
if (variable_declaration.is_constant_declaration()) {
// i. Perform ! environment.CreateImmutableBinding(name, true).
generator.emit<Bytecode::Op::CreateVariable>(interned_identifier, Bytecode::Op::EnvironmentMode::Lexical, true);
}
// b. Else,
else {
// i. Perform ! environment.CreateMutableBinding(name, false).
generator.emit<Bytecode::Op::CreateVariable>(interned_identifier, Bytecode::Op::EnvironmentMode::Lexical, false);
}
}));
// 3. Return unused.
// NOTE: No need to do that as we've inlined this.
// vi. If destructuring is false, then
if (!destructuring) {
// 1. Assert: lhs binds a single name.
// 2. Let lhsName be the sole element of BoundNames of lhs.
auto lhs_name = variable_declaration.declarations().first()->target().get<NonnullRefPtr<Identifier const>>();
// 3. Let lhsRef be ! ResolveBinding(lhsName).
// NOTE: We're skipping all the completion stuff that the spec does, as the unwinding mechanism will take case of doing that.
generator.emit_set_variable(*lhs_name, Bytecode::Op::SetVariable::InitializationMode::Initialize, Bytecode::Op::EnvironmentMode::Lexical);
}
}
// i. If destructuring is false, then
if (!destructuring) {
// i. If lhsRef is an abrupt completion, then
// 1. Let status be lhsRef.
// ii. Else if lhsKind is lexicalBinding, then
// 1. Let status be Completion(InitializeReferencedBinding(lhsRef, nextValue)).
// iii. Else,
// 1. Let status be Completion(PutValue(lhsRef, nextValue)).
// NOTE: This is performed above.
}
// j. Else,
else {
// FIXME: i. If lhsKind is assignment, then
// 1. Let status be Completion(DestructuringAssignmentEvaluation of assignmentPattern with argument nextValue).
// ii. Else if lhsKind is varBinding, then
// 1. Assert: lhs is a ForBinding.
// 2. Let status be Completion(BindingInitialization of lhs with arguments nextValue and undefined).
// iii. Else,
// 1. Assert: lhsKind is lexicalBinding.
// 2. Assert: lhs is a ForDeclaration.
// 3. Let status be Completion(ForDeclarationBindingInitialization of lhs with arguments nextValue and iterationEnv).
if (head_result.lhs_kind == LHSKind::VarBinding || head_result.lhs_kind == LHSKind::LexicalBinding) {
auto& declaration = static_cast<VariableDeclaration const&>(*lhs.get<NonnullRefPtr<ASTNode const>>());
VERIFY(declaration.declarations().size() == 1);
auto& binding_pattern = declaration.declarations().first()->target().get<NonnullRefPtr<BindingPattern const>>();
auto value_register = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(value_register);
TRY(generate_binding_pattern_bytecode(generator, *binding_pattern, head_result.lhs_kind == LHSKind::VarBinding ? Bytecode::Op::SetVariable::InitializationMode::Set : Bytecode::Op::SetVariable::InitializationMode::Initialize, value_register, false));
} else {
return Bytecode::CodeGenerationError {
&node,
"Unimplemented: assignment destructuring in for/of"sv,
};
}
}
// FIXME: Implement iteration closure.
// k. If status is an abrupt completion, then
// i. Set the running execution context's LexicalEnvironment to oldEnv.
// ii. If iteratorKind is async, return ? AsyncIteratorClose(iteratorRecord, status).
// iii. If iterationKind is enumerate, then
// 1. Return ? status.
// iv. Else,
// 1. Assert: iterationKind is iterate.
// 2. Return ? IteratorClose(iteratorRecord, status).
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
// l. Let result be the result of evaluating stmt.
TRY(body.generate_bytecode(generator));
auto result_register = generator.allocate_register();
if (!generator.is_current_block_terminated())
generator.emit<Bytecode::Op::Store>(result_register);
// m. Set the running execution context's LexicalEnvironment to oldEnv.
if (has_lexical_binding)
generator.end_variable_scope();
generator.end_continuable_scope();
generator.end_breakable_scope();
// NOTE: If we're here, then the loop definitely continues.
// n. If LoopContinues(result, labelSet) is false, then
// i. If iterationKind is enumerate, then
// 1. Return ? UpdateEmpty(result, V).
// ii. Else,
// 1. Assert: iterationKind is iterate.
// 2. Set status to Completion(UpdateEmpty(result, V)).
// 3. If iteratorKind is async, return ? AsyncIteratorClose(iteratorRecord, status).
// 4. Return ? IteratorClose(iteratorRecord, status).
// o. If result.[[Value]] is not empty, set V to result.[[Value]].
// The body can contain an unconditional block terminator (e.g. return, throw), so we have to check for that before generating the Jump.
if (!generator.is_current_block_terminated())
generator.emit<Bytecode::Op::Jump>().set_targets(Bytecode::Label { loop_update }, {});
generator.switch_to_basic_block(loop_end);
generator.emit<Bytecode::Op::Load>(result_register);
return {};
}
Bytecode::CodeGenerationErrorOr<void> ForInStatement::generate_bytecode(Bytecode::Generator& generator) const
{
return generate_labelled_evaluation(generator, {});
}
// 14.7.5.5 Runtime Semantics: ForInOfLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-forinofloopevaluation
Bytecode::CodeGenerationErrorOr<void> ForInStatement::generate_labelled_evaluation(Bytecode::Generator& generator, Vector<DeprecatedFlyString> const& label_set) const
{
auto& loop_end = generator.make_block();
auto& loop_update = generator.make_block();
generator.begin_breakable_scope(Bytecode::Label { loop_end }, label_set);
auto head_result = TRY(for_in_of_head_evaluation(generator, IterationKind::Enumerate, m_lhs, m_rhs));
// Now perform the rest of ForInOfLoopEvaluation, given that the accumulator holds the iterator we're supposed to iterate over.
return for_in_of_body_evaluation(generator, *this, m_lhs, body(), head_result, label_set, loop_end, loop_update);
}
Bytecode::CodeGenerationErrorOr<void> ForOfStatement::generate_bytecode(Bytecode::Generator& generator) const
{
return generate_labelled_evaluation(generator, {});
}
Bytecode::CodeGenerationErrorOr<void> ForOfStatement::generate_labelled_evaluation(Bytecode::Generator& generator, Vector<DeprecatedFlyString> const& label_set) const
{
auto& loop_end = generator.make_block();
auto& loop_update = generator.make_block();
generator.begin_breakable_scope(Bytecode::Label { loop_end }, label_set);
auto head_result = TRY(for_in_of_head_evaluation(generator, IterationKind::Iterate, m_lhs, m_rhs));
// Now perform the rest of ForInOfLoopEvaluation, given that the accumulator holds the iterator we're supposed to iterate over.
return for_in_of_body_evaluation(generator, *this, m_lhs, body(), head_result, label_set, loop_end, loop_update);
}
Bytecode::CodeGenerationErrorOr<void> ForAwaitOfStatement::generate_bytecode(Bytecode::Generator& generator) const
{
return generate_labelled_evaluation(generator, {});
}
Bytecode::CodeGenerationErrorOr<void> ForAwaitOfStatement::generate_labelled_evaluation(Bytecode::Generator& generator, Vector<DeprecatedFlyString> const& label_set) const
{
auto& loop_end = generator.make_block();
auto& loop_update = generator.make_block();
generator.begin_breakable_scope(Bytecode::Label { loop_end }, label_set);
auto head_result = TRY(for_in_of_head_evaluation(generator, IterationKind::AsyncIterate, m_lhs, m_rhs));
// Now perform the rest of ForInOfLoopEvaluation, given that the accumulator holds the iterator we're supposed to iterate over.
return for_in_of_body_evaluation(generator, *this, m_lhs, m_body, head_result, label_set, loop_end, loop_update, IteratorHint::Async);
}
// 13.3.12.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-meta-properties-runtime-semantics-evaluation
Bytecode::CodeGenerationErrorOr<void> MetaProperty::generate_bytecode(Bytecode::Generator& generator) const
{
// NewTarget : new . target
if (m_type == MetaProperty::Type::NewTarget) {
// 1. Return GetNewTarget().
generator.emit<Bytecode::Op::GetNewTarget>();
return {};
}
// ImportMeta : import . meta
if (m_type == MetaProperty::Type::ImportMeta) {
generator.emit<Bytecode::Op::GetImportMeta>();
return {};
}
VERIFY_NOT_REACHED();
}
Bytecode::CodeGenerationErrorOr<void> ClassFieldInitializerStatement::generate_bytecode(Bytecode::Generator& generator) const
{
TRY(generator.emit_named_evaluation_if_anonymous_function(*m_expression, generator.intern_identifier(m_class_field_identifier_name)));
generator.perform_needed_unwinds<Bytecode::Op::Return>();
generator.emit<Bytecode::Op::Return>();
return {};
}
static Bytecode::CodeGenerationErrorOr<void> generate_optional_chain(Bytecode::Generator& generator, OptionalChain const& optional_chain, Bytecode::Register current_value_register, Bytecode::Register current_base_register)
{
if (is<MemberExpression>(optional_chain.base())) {
auto& member_expression = static_cast<MemberExpression const&>(optional_chain.base());
TRY(get_base_and_value_from_member_expression(generator, member_expression, current_base_register));
} else if (is<OptionalChain>(optional_chain.base())) {
auto& sub_optional_chain = static_cast<OptionalChain const&>(optional_chain.base());
TRY(generate_optional_chain(generator, sub_optional_chain, current_value_register, current_base_register));
} else {
TRY(optional_chain.base().generate_bytecode(generator));
}
generator.emit<Bytecode::Op::Store>(current_value_register);
auto& load_undefined_and_jump_to_end_block = generator.make_block();
auto& end_block = generator.make_block();
for (auto& reference : optional_chain.references()) {
auto is_optional = reference.visit([](auto& ref) { return ref.mode; }) == OptionalChain::Mode::Optional;
if (is_optional) {
auto& not_nullish_block = generator.make_block();
generator.emit<Bytecode::Op::JumpNullish>(
Bytecode::Label { load_undefined_and_jump_to_end_block },
Bytecode::Label { not_nullish_block });
generator.switch_to_basic_block(not_nullish_block);
}
TRY(reference.visit(
[&](OptionalChain::Call const& call) -> Bytecode::CodeGenerationErrorOr<void> {
TRY(arguments_to_array_for_call(generator, call.arguments));
generator.emit<Bytecode::Op::CallWithArgumentArray>(Bytecode::Op::CallType::Call, current_value_register, current_base_register);
generator.emit<Bytecode::Op::Store>(current_value_register);
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
generator.emit<Bytecode::Op::Store>(current_base_register);
generator.emit<Bytecode::Op::Load>(current_value_register);
return {};
},
[&](OptionalChain::ComputedReference const& ref) -> Bytecode::CodeGenerationErrorOr<void> {
generator.emit<Bytecode::Op::Store>(current_base_register);
TRY(ref.expression->generate_bytecode(generator));
generator.emit<Bytecode::Op::GetByValue>(current_base_register);
generator.emit<Bytecode::Op::Store>(current_value_register);
return {};
},
[&](OptionalChain::MemberReference const& ref) -> Bytecode::CodeGenerationErrorOr<void> {
generator.emit<Bytecode::Op::Store>(current_base_register);
generator.emit_get_by_id(generator.intern_identifier(ref.identifier->string()));
generator.emit<Bytecode::Op::Store>(current_value_register);
return {};
},
[&](OptionalChain::PrivateMemberReference const& ref) -> Bytecode::CodeGenerationErrorOr<void> {
generator.emit<Bytecode::Op::Store>(current_base_register);
generator.emit<Bytecode::Op::GetPrivateById>(generator.intern_identifier(ref.private_identifier->string()));
generator.emit<Bytecode::Op::Store>(current_value_register);
return {};
}));
}
generator.emit<Bytecode::Op::Jump>(Bytecode::Label { end_block });
generator.switch_to_basic_block(load_undefined_and_jump_to_end_block);
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
generator.emit<Bytecode::Op::Jump>(Bytecode::Label { end_block });
generator.switch_to_basic_block(end_block);
return {};
}
Bytecode::CodeGenerationErrorOr<void> OptionalChain::generate_bytecode(Bytecode::Generator& generator) const
{
auto current_base_register = generator.allocate_register();
auto current_value_register = generator.allocate_register();
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
generator.emit<Bytecode::Op::Store>(current_base_register);
return generate_optional_chain(generator, *this, current_value_register, current_base_register);
}
Bytecode::CodeGenerationErrorOr<void> ImportCall::generate_bytecode(Bytecode::Generator& generator) const
{
TRY(m_specifier->generate_bytecode(generator));
auto specifier_reg = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(specifier_reg);
if (m_options) {
TRY(m_options->generate_bytecode(generator));
} else {
generator.emit<Bytecode::Op::LoadImmediate>(js_undefined());
}
auto options_reg = generator.allocate_register();
generator.emit<Bytecode::Op::Store>(options_reg);
generator.emit<Bytecode::Op::ImportCall>(specifier_reg, options_reg);
return {};
}
Bytecode::CodeGenerationErrorOr<void> ExportStatement::generate_bytecode(Bytecode::Generator& generator) const
{
if (!is_default_export()) {
if (m_statement) {
return m_statement->generate_bytecode(generator);
}
return {};
}
VERIFY(m_statement);
if (is<FunctionDeclaration>(*m_statement) || is<ClassDeclaration>(*m_statement)) {
return m_statement->generate_bytecode(generator);
}
if (is<ClassExpression>(*m_statement)) {
TRY(generator.emit_named_evaluation_if_anonymous_function(static_cast<ClassExpression const&>(*m_statement), generator.intern_identifier("default"sv)));
if (!static_cast<ClassExpression const&>(*m_statement).has_name())
generator.emit<Bytecode::Op::SetVariable>(generator.intern_identifier(ExportStatement::local_name_for_default), Bytecode::Op::SetVariable::InitializationMode::Initialize);
return {};
}
// ExportDeclaration : export default AssignmentExpression ;
VERIFY(is<Expression>(*m_statement));
TRY(generator.emit_named_evaluation_if_anonymous_function(static_cast<Expression const&>(*m_statement), generator.intern_identifier("default"sv)));
generator.emit<Bytecode::Op::SetVariable>(generator.intern_identifier(ExportStatement::local_name_for_default), Bytecode::Op::SetVariable::InitializationMode::Initialize);
return {};
}
Bytecode::CodeGenerationErrorOr<void> ImportStatement::generate_bytecode(Bytecode::Generator&) const
{
return {};
}
}