ladybird/Userland/Libraries/LibWasm/AbstractMachine/AbstractMachine.h
Ali Mohammad Pur 4a459d2430 LibWasm: Correct memory init size when instantiating
These limits are in units of page size, not bytes.
Also fixes incorrect debug logs.
2021-05-26 15:34:13 +04:30

495 lines
13 KiB
C++

/*
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Function.h>
#include <AK/HashMap.h>
#include <AK/HashTable.h>
#include <AK/OwnPtr.h>
#include <AK/Result.h>
#include <LibWasm/Types.h>
namespace Wasm {
class Configuration;
struct InstantiationError {
String error { "Unknown error" };
};
struct LinkError {
enum OtherErrors {
InvalidImportedModule,
};
Vector<String> missing_imports;
Vector<OtherErrors> other_errors;
};
TYPEDEF_DISTINCT_NUMERIC_GENERAL(u64, true, true, false, false, false, true, FunctionAddress);
TYPEDEF_DISTINCT_NUMERIC_GENERAL(u64, true, true, false, false, false, true, ExternAddress);
TYPEDEF_DISTINCT_NUMERIC_GENERAL(u64, true, true, false, false, false, true, TableAddress);
TYPEDEF_DISTINCT_NUMERIC_GENERAL(u64, true, true, false, false, false, true, GlobalAddress);
TYPEDEF_DISTINCT_NUMERIC_GENERAL(u64, true, true, false, false, false, true, MemoryAddress);
// FIXME: These should probably be made generic/virtual if/when we decide to do something more
// fancy than just a dumb interpreter.
class Value {
public:
using AnyValueType = Variant<i32, i64, float, double, FunctionAddress, ExternAddress>;
explicit Value(AnyValueType value)
: m_value(move(value))
, m_type(ValueType::I32)
{
if (m_value.has<i32>())
m_type = ValueType { ValueType::I32 };
else if (m_value.has<i64>())
m_type = ValueType { ValueType::I64 };
else if (m_value.has<float>())
m_type = ValueType { ValueType::F32 };
else if (m_value.has<double>())
m_type = ValueType { ValueType::F64 };
else if (m_value.has<FunctionAddress>())
m_type = ValueType { ValueType::FunctionReference };
else if (m_value.has<ExternAddress>())
m_type = ValueType { ValueType::ExternReference };
else
VERIFY_NOT_REACHED();
}
template<typename T>
requires(sizeof(T) == sizeof(u64)) explicit Value(ValueType type, T raw_value)
: m_value(0)
, m_type(type)
{
switch (type.kind()) {
case ValueType::Kind::ExternReference:
m_value = ExternAddress { bit_cast<u64>(raw_value) };
break;
case ValueType::Kind::FunctionReference:
m_value = FunctionAddress { bit_cast<u64>(raw_value) };
break;
case ValueType::Kind::I32:
m_value = static_cast<i32>(bit_cast<i64>(raw_value));
break;
case ValueType::Kind::I64:
m_value = static_cast<i64>(bit_cast<u64>(raw_value));
break;
case ValueType::Kind::F32:
m_value = static_cast<float>(bit_cast<double>(raw_value));
break;
case ValueType::Kind::F64:
m_value = bit_cast<double>(raw_value);
break;
default:
VERIFY_NOT_REACHED();
}
}
Value(const Value& value)
: m_value(AnyValueType { value.m_value })
, m_type(value.m_type)
{
}
Value(Value&& value)
: m_value(move(value.m_value))
, m_type(move(value.m_type))
{
}
Value& operator=(Value&& value)
{
m_value = move(value.m_value);
m_type = move(value.m_type);
return *this;
}
template<typename T>
Optional<T> to()
{
Optional<T> result;
m_value.visit(
[&](auto value) {
if constexpr (IsSame<T, decltype(value)>)
result = value;
},
[&](const FunctionAddress& address) {
if constexpr (IsSame<T, FunctionAddress>)
result = address;
},
[&](const ExternAddress& address) {
if constexpr (IsSame<T, ExternAddress>)
result = address;
});
return result;
}
auto& type() const { return m_type; }
auto& value() const { return m_value; }
private:
AnyValueType m_value;
ValueType m_type;
};
struct Trap {
// Empty value type
};
class Result {
public:
explicit Result(Vector<Value> values)
: m_values(move(values))
{
}
Result(Trap)
: m_is_trap(true)
{
}
auto& values() const { return m_values; }
auto& values() { return m_values; }
auto is_trap() const { return m_is_trap; }
private:
Vector<Value> m_values;
bool m_is_trap { false };
};
using ExternValue = Variant<FunctionAddress, TableAddress, MemoryAddress, GlobalAddress>;
class ExportInstance {
public:
explicit ExportInstance(String name, ExternValue value)
: m_name(move(name))
, m_value(move(value))
{
}
auto& name() const { return m_name; }
auto& value() const { return m_value; }
private:
String m_name;
ExternValue m_value;
};
class ModuleInstance {
public:
explicit ModuleInstance(
Vector<FunctionType> types, Vector<FunctionAddress> function_addresses, Vector<TableAddress> table_addresses,
Vector<MemoryAddress> memory_addresses, Vector<GlobalAddress> global_addresses, Vector<ExportInstance> exports)
: m_types(move(types))
, m_functions(move(function_addresses))
, m_tables(move(table_addresses))
, m_memories(move(memory_addresses))
, m_globals(move(global_addresses))
, m_exports(move(exports))
{
}
ModuleInstance() = default;
auto& types() const { return m_types; }
auto& functions() const { return m_functions; }
auto& tables() const { return m_tables; }
auto& memories() const { return m_memories; }
auto& globals() const { return m_globals; }
auto& exports() const { return m_exports; }
auto& types() { return m_types; }
auto& functions() { return m_functions; }
auto& tables() { return m_tables; }
auto& memories() { return m_memories; }
auto& globals() { return m_globals; }
auto& exports() { return m_exports; }
private:
Vector<FunctionType> m_types;
Vector<FunctionAddress> m_functions;
Vector<TableAddress> m_tables;
Vector<MemoryAddress> m_memories;
Vector<GlobalAddress> m_globals;
Vector<ExportInstance> m_exports;
};
class WasmFunction {
public:
explicit WasmFunction(const FunctionType& type, const ModuleInstance& module, const Module::Function& code)
: m_type(type)
, m_module(module)
, m_code(code)
{
}
auto& type() const { return m_type; }
auto& module() const { return m_module; }
auto& code() const { return m_code; }
private:
FunctionType m_type;
const ModuleInstance& m_module;
const Module::Function& m_code;
};
class HostFunction {
public:
explicit HostFunction(AK::Function<Result(Configuration&, Vector<Value>&)> function, const FunctionType& type)
: m_function(move(function))
, m_type(type)
{
}
auto& function() { return m_function; }
auto& type() const { return m_type; }
private:
AK::Function<Result(Configuration&, Vector<Value>&)> m_function;
FunctionType m_type;
};
using FunctionInstance = Variant<WasmFunction, HostFunction>;
class Reference {
public:
struct Null {
ValueType type;
};
struct Func {
FunctionAddress address;
};
struct Extern {
ExternAddress address;
};
using RefType = Variant<Null, Func, Extern>;
explicit Reference(RefType ref)
: m_ref(move(ref))
{
}
auto& ref() const { return m_ref; }
private:
RefType m_ref;
};
class TableInstance {
public:
explicit TableInstance(const TableType& type, Vector<Optional<Reference>> elements)
: m_elements(move(elements))
, m_type(type)
{
}
auto& elements() const { return m_elements; }
auto& elements() { return m_elements; }
auto& type() const { return m_type; }
private:
Vector<Optional<Reference>> m_elements;
const TableType& m_type;
};
class MemoryInstance {
public:
explicit MemoryInstance(const MemoryType& type)
: m_type(type)
{
grow(m_type.limits().min() * Constants::page_size);
}
auto& type() const { return m_type; }
auto size() const { return m_size; }
auto& data() const { return m_data; }
auto& data() { return m_data; }
bool grow(size_t size_to_grow)
{
if (size_to_grow == 0)
return true;
auto new_size = m_data.size() + size_to_grow;
if (m_type.limits().max().value_or(new_size) < new_size)
return false;
auto previous_size = m_size;
m_data.grow(new_size);
m_size = new_size;
// The spec requires that we zero out everything on grow
__builtin_memset(m_data.offset_pointer(previous_size), 0, size_to_grow);
return true;
}
private:
const MemoryType& m_type;
size_t m_size { 0 };
ByteBuffer m_data;
};
class GlobalInstance {
public:
explicit GlobalInstance(Value value, bool is_mutable)
: m_mutable(is_mutable)
, m_value(move(value))
{
}
auto is_mutable() const { return m_mutable; }
auto& value() const { return m_value; }
void set_value(Value value)
{
VERIFY(is_mutable());
m_value = move(value);
}
private:
bool m_mutable { false };
Value m_value;
};
class Store {
public:
Store() = default;
Optional<FunctionAddress> allocate(ModuleInstance& module, const Module::Function& function);
Optional<FunctionAddress> allocate(HostFunction&&);
Optional<TableAddress> allocate(const TableType&);
Optional<MemoryAddress> allocate(const MemoryType&);
Optional<GlobalAddress> allocate(const GlobalType&, Value);
FunctionInstance* get(FunctionAddress);
TableInstance* get(TableAddress);
MemoryInstance* get(MemoryAddress);
GlobalInstance* get(GlobalAddress);
private:
Vector<FunctionInstance> m_functions;
Vector<TableInstance> m_tables;
Vector<MemoryInstance> m_memories;
Vector<GlobalInstance> m_globals;
};
class Label {
public:
explicit Label(size_t arity, InstructionPointer continuation)
: m_arity(arity)
, m_continuation(continuation)
{
}
auto continuation() const { return m_continuation; }
auto arity() const { return m_arity; }
private:
size_t m_arity { 0 };
InstructionPointer m_continuation;
};
class Frame {
AK_MAKE_NONCOPYABLE(Frame);
public:
explicit Frame(const ModuleInstance& module, Vector<Value> locals, const Expression& expression, size_t arity)
: m_module(module)
, m_locals(move(locals))
, m_expression(expression)
, m_arity(arity)
{
}
auto& module() const { return m_module; }
auto& locals() const { return m_locals; }
auto& locals() { return m_locals; }
auto& expression() const { return m_expression; }
auto arity() const { return m_arity; }
private:
const ModuleInstance& m_module;
Vector<Value> m_locals;
const Expression& m_expression;
size_t m_arity { 0 };
};
class Stack {
public:
using EntryType = Variant<NonnullOwnPtr<Value>, NonnullOwnPtr<Label>, NonnullOwnPtr<Frame>>;
Stack() = default;
[[nodiscard]] bool is_empty() const { return m_data.is_empty(); }
void push(EntryType entry) { m_data.append(move(entry)); }
auto pop() { return m_data.take_last(); }
auto& peek() const { return m_data.last(); }
auto size() const { return m_data.size(); }
auto& entries() const { return m_data; }
private:
Vector<EntryType> m_data;
};
using InstantiationResult = AK::Result<NonnullOwnPtr<ModuleInstance>, InstantiationError>;
class AbstractMachine {
public:
explicit AbstractMachine() = default;
// Load and instantiate a module, and link it into this interpreter.
InstantiationResult instantiate(const Module&, Vector<ExternValue>);
Result invoke(FunctionAddress, Vector<Value>);
auto& store() const { return m_store; }
auto& store() { return m_store; }
private:
Optional<InstantiationError> allocate_all(const Module&, ModuleInstance&, Vector<ExternValue>&, Vector<Value>& global_values);
Store m_store;
};
class Linker {
public:
struct Name {
String module;
String name;
ImportSection::Import::ImportDesc type;
};
explicit Linker(const Module& module)
: m_module(module)
{
}
// Link a module, the import 'module name' is ignored with this.
void link(const ModuleInstance&);
// Link a bunch of qualified values, also matches 'module name'.
void link(const HashMap<Name, ExternValue>&);
auto& unresolved_imports()
{
populate();
return m_unresolved_imports;
}
AK::Result<Vector<ExternValue>, LinkError> finish();
private:
void populate();
const Module& m_module;
HashMap<Name, ExternValue> m_resolved_imports;
HashTable<Name> m_unresolved_imports;
Vector<Name> m_ordered_imports;
Optional<LinkError> m_error;
};
}
template<>
struct AK::Traits<Wasm::Linker::Name> : public AK::GenericTraits<Wasm::Linker::Name> {
static constexpr bool is_trivial() { return false; }
static unsigned hash(const Wasm::Linker::Name& entry) { return pair_int_hash(entry.module.hash(), entry.name.hash()); }
static bool equals(const Wasm::Linker::Name& a, const Wasm::Linker::Name& b) { return a.name == b.name && a.module == b.module; }
};