mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-12-04 05:20:30 +00:00
94bb544c33
These changes are arbitrarily divided into multiple commits to make it easier to find potentially introduced bugs with git bisect. This commit touches some dbg() calls which are enclosed in macros. This should be fine because with the new constexpr stuff, we ensure that the stuff actually compiles.
556 lines
20 KiB
C++
556 lines
20 KiB
C++
/*
|
|
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <AK/Debug.h>
|
|
#include <AK/QuickSort.h>
|
|
#include <AK/ScopeGuard.h>
|
|
#include <AK/TemporaryChange.h>
|
|
#include <AK/Time.h>
|
|
#include <Kernel/PerformanceEventBuffer.h>
|
|
#include <Kernel/Process.h>
|
|
#include <Kernel/RTC.h>
|
|
#include <Kernel/Scheduler.h>
|
|
#include <Kernel/Time/TimeManagement.h>
|
|
#include <Kernel/TimerQueue.h>
|
|
|
|
//#define LOG_EVERY_CONTEXT_SWITCH
|
|
//#define SCHEDULER_DEBUG
|
|
//#define SCHEDULER_RUNNABLE_DEBUG
|
|
|
|
namespace Kernel {
|
|
|
|
class SchedulerPerProcessorData {
|
|
AK_MAKE_NONCOPYABLE(SchedulerPerProcessorData);
|
|
AK_MAKE_NONMOVABLE(SchedulerPerProcessorData);
|
|
|
|
public:
|
|
SchedulerPerProcessorData() = default;
|
|
|
|
WeakPtr<Thread> m_pending_beneficiary;
|
|
const char* m_pending_donate_reason { nullptr };
|
|
bool m_in_scheduler { true };
|
|
};
|
|
|
|
SchedulerData* g_scheduler_data;
|
|
RecursiveSpinLock g_scheduler_lock;
|
|
|
|
void Scheduler::init_thread(Thread& thread)
|
|
{
|
|
ASSERT(g_scheduler_data);
|
|
g_scheduler_data->m_nonrunnable_threads.append(thread);
|
|
}
|
|
|
|
static u32 time_slice_for(const Thread& thread)
|
|
{
|
|
// One time slice unit == 4ms (assuming 250 ticks/second)
|
|
if (&thread == Processor::current().idle_thread())
|
|
return 1;
|
|
return 2;
|
|
}
|
|
|
|
Thread* g_finalizer;
|
|
WaitQueue* g_finalizer_wait_queue;
|
|
Atomic<bool> g_finalizer_has_work { false };
|
|
static Process* s_colonel_process;
|
|
|
|
void Scheduler::start()
|
|
{
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
|
|
// We need to acquire our scheduler lock, which will be released
|
|
// by the idle thread once control transferred there
|
|
g_scheduler_lock.lock();
|
|
|
|
auto& processor = Processor::current();
|
|
processor.set_scheduler_data(*new SchedulerPerProcessorData());
|
|
ASSERT(processor.is_initialized());
|
|
auto& idle_thread = *processor.idle_thread();
|
|
ASSERT(processor.current_thread() == &idle_thread);
|
|
ASSERT(processor.idle_thread() == &idle_thread);
|
|
idle_thread.set_ticks_left(time_slice_for(idle_thread));
|
|
idle_thread.did_schedule();
|
|
idle_thread.set_initialized(true);
|
|
processor.init_context(idle_thread, false);
|
|
idle_thread.set_state(Thread::Running);
|
|
ASSERT(idle_thread.affinity() == (1u << processor.id()));
|
|
processor.initialize_context_switching(idle_thread);
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
bool Scheduler::pick_next()
|
|
{
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
|
|
auto current_thread = Thread::current();
|
|
|
|
// Set the m_in_scheduler flag before acquiring the spinlock. This
|
|
// prevents a recursive call into Scheduler::invoke_async upon
|
|
// leaving the scheduler lock.
|
|
ScopedCritical critical;
|
|
auto& scheduler_data = Processor::current().get_scheduler_data();
|
|
scheduler_data.m_in_scheduler = true;
|
|
ScopeGuard guard(
|
|
[]() {
|
|
// We may be on a different processor after we got switched
|
|
// back to this thread!
|
|
auto& scheduler_data = Processor::current().get_scheduler_data();
|
|
ASSERT(scheduler_data.m_in_scheduler);
|
|
scheduler_data.m_in_scheduler = false;
|
|
});
|
|
|
|
ScopedSpinLock lock(g_scheduler_lock);
|
|
|
|
if (current_thread->should_die() && current_thread->state() == Thread::Running) {
|
|
// Rather than immediately killing threads, yanking the kernel stack
|
|
// away from them (which can lead to e.g. reference leaks), we always
|
|
// allow Thread::wait_on to return. This allows the kernel stack to
|
|
// clean up and eventually we'll get here shortly before transitioning
|
|
// back to user mode (from Processor::exit_trap). At this point we
|
|
// no longer want to schedule this thread. We can't wait until
|
|
// Scheduler::enter_current because we don't want to allow it to
|
|
// transition back to user mode.
|
|
|
|
if constexpr (debug_scheduler)
|
|
dbgln("Scheduler[{}]: Thread {} is dying", Processor::current().id(), *current_thread);
|
|
|
|
current_thread->set_state(Thread::Dying);
|
|
}
|
|
|
|
if constexpr (debug_scheduler_runnable) {
|
|
dbgln("Scheduler[{}j]: Non-runnables:", Processor::current().id());
|
|
Scheduler::for_each_nonrunnable([&](Thread& thread) -> IterationDecision {
|
|
if (thread.state() == Thread::Dying) {
|
|
dbgln(" {:12} {} @ {:04x}:{:08x} Finalizable: {}",
|
|
thread.state_string(),
|
|
thread,
|
|
thread.tss().cs,
|
|
thread.tss().eip,
|
|
thread.is_finalizable());
|
|
} else {
|
|
dbgln(" {:12} {} @ {:04x}:{:08x}",
|
|
thread.state_string(),
|
|
thread,
|
|
thread.tss().cs,
|
|
thread.tss().eip);
|
|
}
|
|
|
|
return IterationDecision::Continue;
|
|
});
|
|
|
|
dbgln("Scheduler[{}j]: Runnables:", Processor::current().id());
|
|
Scheduler::for_each_runnable([](Thread& thread) -> IterationDecision {
|
|
dbgln(" {:3}/{:2} {:12} @ {:04x}:{:08x}",
|
|
thread.effective_priority(),
|
|
thread.priority(),
|
|
thread.state_string(),
|
|
thread.tss().cs,
|
|
thread.tss().eip);
|
|
|
|
return IterationDecision::Continue;
|
|
});
|
|
}
|
|
|
|
Thread* thread_to_schedule = nullptr;
|
|
|
|
auto pending_beneficiary = scheduler_data.m_pending_beneficiary.strong_ref();
|
|
Vector<Thread*, 128> sorted_runnables;
|
|
for_each_runnable([&](auto& thread) {
|
|
if ((thread.affinity() & (1u << Processor::current().id())) == 0)
|
|
return IterationDecision::Continue;
|
|
if (thread.state() == Thread::Running && &thread != current_thread)
|
|
return IterationDecision::Continue;
|
|
sorted_runnables.append(&thread);
|
|
if (&thread == pending_beneficiary) {
|
|
thread_to_schedule = &thread;
|
|
return IterationDecision::Break;
|
|
}
|
|
return IterationDecision::Continue;
|
|
});
|
|
|
|
if (thread_to_schedule) {
|
|
// The thread we're supposed to donate to still exists
|
|
const char* reason = scheduler_data.m_pending_donate_reason;
|
|
scheduler_data.m_pending_beneficiary = nullptr;
|
|
scheduler_data.m_pending_donate_reason = nullptr;
|
|
|
|
// We need to leave our first critical section before switching context,
|
|
// but since we're still holding the scheduler lock we're still in a critical section
|
|
critical.leave();
|
|
|
|
dbgln<debug_scheduler>("Processing pending donate to {} reason={}", *thread_to_schedule, reason);
|
|
return donate_to_and_switch(thread_to_schedule, reason);
|
|
}
|
|
|
|
// Either we're not donating or the beneficiary disappeared.
|
|
// Either way clear any pending information
|
|
scheduler_data.m_pending_beneficiary = nullptr;
|
|
scheduler_data.m_pending_donate_reason = nullptr;
|
|
|
|
quick_sort(sorted_runnables, [](auto& a, auto& b) { return a->effective_priority() >= b->effective_priority(); });
|
|
|
|
for (auto* thread : sorted_runnables) {
|
|
if (thread->process().exec_tid() && thread->process().exec_tid() != thread->tid())
|
|
continue;
|
|
|
|
ASSERT(thread->state() == Thread::Runnable || thread->state() == Thread::Running);
|
|
|
|
if (!thread_to_schedule) {
|
|
thread->m_extra_priority = 0;
|
|
thread_to_schedule = thread;
|
|
} else {
|
|
thread->m_extra_priority++;
|
|
}
|
|
}
|
|
|
|
if (!thread_to_schedule)
|
|
thread_to_schedule = Processor::current().idle_thread();
|
|
|
|
if constexpr (debug_scheduler) {
|
|
dbgln("Scheduler[{}]: Switch to {} @ {:04x}:{:08x}",
|
|
Processor::current().id(),
|
|
*thread_to_schedule,
|
|
thread_to_schedule->tss().cs, thread_to_schedule->tss().eip);
|
|
}
|
|
|
|
// We need to leave our first critical section before switching context,
|
|
// but since we're still holding the scheduler lock we're still in a critical section
|
|
critical.leave();
|
|
|
|
thread_to_schedule->set_ticks_left(time_slice_for(*thread_to_schedule));
|
|
return context_switch(thread_to_schedule);
|
|
}
|
|
|
|
bool Scheduler::yield()
|
|
{
|
|
InterruptDisabler disabler;
|
|
auto& proc = Processor::current();
|
|
auto& scheduler_data = proc.get_scheduler_data();
|
|
|
|
// Clear any pending beneficiary
|
|
scheduler_data.m_pending_beneficiary = nullptr;
|
|
scheduler_data.m_pending_donate_reason = nullptr;
|
|
|
|
auto current_thread = Thread::current();
|
|
dbgln<debug_scheduler>("Scheduler[{}]: yielding thread {} in_irq={}", proc.id(), *current_thread, proc.in_irq());
|
|
ASSERT(current_thread != nullptr);
|
|
if (proc.in_irq() || proc.in_critical()) {
|
|
// If we're handling an IRQ we can't switch context, or we're in
|
|
// a critical section where we don't want to switch contexts, then
|
|
// delay until exiting the trap or critical section
|
|
proc.invoke_scheduler_async();
|
|
return false;
|
|
}
|
|
|
|
if (!Scheduler::pick_next())
|
|
return false;
|
|
|
|
if constexpr (debug_scheduler)
|
|
dbgln("Scheduler[{}]: yield returns to thread {} in_irq={}", Processor::current().id(), *current_thread, Processor::current().in_irq());
|
|
return true;
|
|
}
|
|
|
|
bool Scheduler::donate_to_and_switch(Thread* beneficiary, [[maybe_unused]] const char* reason)
|
|
{
|
|
ASSERT(g_scheduler_lock.own_lock());
|
|
|
|
auto& proc = Processor::current();
|
|
ASSERT(proc.in_critical() == 1);
|
|
|
|
unsigned ticks_left = Thread::current()->ticks_left();
|
|
if (!beneficiary || beneficiary->state() != Thread::Runnable || ticks_left <= 1)
|
|
return Scheduler::yield();
|
|
|
|
unsigned ticks_to_donate = min(ticks_left - 1, time_slice_for(*beneficiary));
|
|
dbgln<debug_scheduler>("Scheduler[{}]: Donating {} ticks to {}, reason={}", proc.id(), ticks_to_donate, *beneficiary, reason);
|
|
beneficiary->set_ticks_left(ticks_to_donate);
|
|
|
|
return Scheduler::context_switch(beneficiary);
|
|
}
|
|
|
|
bool Scheduler::donate_to(RefPtr<Thread>& beneficiary, const char* reason)
|
|
{
|
|
ASSERT(beneficiary);
|
|
|
|
if (beneficiary == Thread::current())
|
|
return Scheduler::yield();
|
|
|
|
// Set the m_in_scheduler flag before acquiring the spinlock. This
|
|
// prevents a recursive call into Scheduler::invoke_async upon
|
|
// leaving the scheduler lock.
|
|
ScopedCritical critical;
|
|
auto& proc = Processor::current();
|
|
auto& scheduler_data = proc.get_scheduler_data();
|
|
scheduler_data.m_in_scheduler = true;
|
|
ScopeGuard guard(
|
|
[]() {
|
|
// We may be on a different processor after we got switched
|
|
// back to this thread!
|
|
auto& scheduler_data = Processor::current().get_scheduler_data();
|
|
ASSERT(scheduler_data.m_in_scheduler);
|
|
scheduler_data.m_in_scheduler = false;
|
|
});
|
|
|
|
ASSERT(!proc.in_irq());
|
|
|
|
if (proc.in_critical() > 1) {
|
|
scheduler_data.m_pending_beneficiary = beneficiary; // Save the beneficiary
|
|
scheduler_data.m_pending_donate_reason = reason;
|
|
proc.invoke_scheduler_async();
|
|
return false;
|
|
}
|
|
|
|
ScopedSpinLock lock(g_scheduler_lock);
|
|
|
|
// "Leave" the critical section before switching context. Since we
|
|
// still hold the scheduler lock, we're not actually leaving it.
|
|
// Processor::switch_context expects Processor::in_critical() to be 1
|
|
critical.leave();
|
|
donate_to_and_switch(beneficiary, reason);
|
|
return false;
|
|
}
|
|
|
|
bool Scheduler::context_switch(Thread* thread)
|
|
{
|
|
thread->did_schedule();
|
|
|
|
auto from_thread = Thread::current();
|
|
if (from_thread == thread)
|
|
return false;
|
|
|
|
if (from_thread) {
|
|
// If the last process hasn't blocked (still marked as running),
|
|
// mark it as runnable for the next round.
|
|
if (from_thread->state() == Thread::Running)
|
|
from_thread->set_state(Thread::Runnable);
|
|
|
|
#ifdef LOG_EVERY_CONTEXT_SWITCH
|
|
dbgln("Scheduler[{}]: {} -> {} [prio={}] {:04x}:{:08x}", Processor::current().id(), from_thread->tid().value(), thread->tid().value(), thread->priority(), thread->tss().cs, thread->tss().eip);
|
|
#endif
|
|
}
|
|
|
|
auto& proc = Processor::current();
|
|
if (!thread->is_initialized()) {
|
|
proc.init_context(*thread, false);
|
|
thread->set_initialized(true);
|
|
}
|
|
thread->set_state(Thread::Running);
|
|
|
|
// Mark it as active because we are using this thread. This is similar
|
|
// to comparing it with Processor::current_thread, but when there are
|
|
// multiple processors there's no easy way to check whether the thread
|
|
// is actually still needed. This prevents accidental finalization when
|
|
// a thread is no longer in Running state, but running on another core.
|
|
thread->set_active(true);
|
|
|
|
proc.switch_context(from_thread, thread);
|
|
|
|
// NOTE: from_thread at this point reflects the thread we were
|
|
// switched from, and thread reflects Thread::current()
|
|
enter_current(*from_thread, false);
|
|
ASSERT(thread == Thread::current());
|
|
|
|
#if ARCH(I386)
|
|
auto iopl = get_iopl_from_eflags(Thread::current()->get_register_dump_from_stack().eflags);
|
|
if (thread->process().is_user_process() && iopl != 0) {
|
|
dbgln("PANIC: Switched to thread {} with non-zero IOPL={}", Thread::current()->tid().value(), iopl);
|
|
Processor::halt();
|
|
}
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
void Scheduler::enter_current(Thread& prev_thread, bool is_first)
|
|
{
|
|
ASSERT(g_scheduler_lock.own_lock());
|
|
prev_thread.set_active(false);
|
|
if (prev_thread.state() == Thread::Dying) {
|
|
// If the thread we switched from is marked as dying, then notify
|
|
// the finalizer. Note that as soon as we leave the scheduler lock
|
|
// the finalizer may free from_thread!
|
|
notify_finalizer();
|
|
} else if (!is_first) {
|
|
// Check if we have any signals we should deliver (even if we don't
|
|
// end up switching to another thread).
|
|
auto current_thread = Thread::current();
|
|
if (!current_thread->is_in_block()) {
|
|
ScopedSpinLock lock(current_thread->get_lock());
|
|
if (current_thread->state() == Thread::Running && current_thread->pending_signals_for_state()) {
|
|
current_thread->dispatch_one_pending_signal();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Scheduler::leave_on_first_switch(u32 flags)
|
|
{
|
|
// This is called when a thread is switched into for the first time.
|
|
// At this point, enter_current has already be called, but because
|
|
// Scheduler::context_switch is not in the call stack we need to
|
|
// clean up and release locks manually here
|
|
g_scheduler_lock.unlock(flags);
|
|
auto& scheduler_data = Processor::current().get_scheduler_data();
|
|
ASSERT(scheduler_data.m_in_scheduler);
|
|
scheduler_data.m_in_scheduler = false;
|
|
}
|
|
|
|
void Scheduler::prepare_after_exec()
|
|
{
|
|
// This is called after exec() when doing a context "switch" into
|
|
// the new process. This is called from Processor::assume_context
|
|
ASSERT(g_scheduler_lock.own_lock());
|
|
auto& scheduler_data = Processor::current().get_scheduler_data();
|
|
ASSERT(!scheduler_data.m_in_scheduler);
|
|
scheduler_data.m_in_scheduler = true;
|
|
}
|
|
|
|
void Scheduler::prepare_for_idle_loop()
|
|
{
|
|
// This is called when the CPU finished setting up the idle loop
|
|
// and is about to run it. We need to acquire he scheduler lock
|
|
ASSERT(!g_scheduler_lock.own_lock());
|
|
g_scheduler_lock.lock();
|
|
auto& scheduler_data = Processor::current().get_scheduler_data();
|
|
ASSERT(!scheduler_data.m_in_scheduler);
|
|
scheduler_data.m_in_scheduler = true;
|
|
}
|
|
|
|
Process* Scheduler::colonel()
|
|
{
|
|
ASSERT(s_colonel_process);
|
|
return s_colonel_process;
|
|
}
|
|
|
|
void Scheduler::initialize()
|
|
{
|
|
ASSERT(&Processor::current() != nullptr); // sanity check
|
|
|
|
RefPtr<Thread> idle_thread;
|
|
g_scheduler_data = new SchedulerData;
|
|
g_finalizer_wait_queue = new WaitQueue;
|
|
|
|
g_finalizer_has_work.store(false, AK::MemoryOrder::memory_order_release);
|
|
s_colonel_process = Process::create_kernel_process(idle_thread, "colonel", idle_loop, nullptr, 1).leak_ref();
|
|
ASSERT(s_colonel_process);
|
|
ASSERT(idle_thread);
|
|
idle_thread->set_priority(THREAD_PRIORITY_MIN);
|
|
idle_thread->set_name(StringView("idle thread #0"));
|
|
|
|
set_idle_thread(idle_thread);
|
|
}
|
|
|
|
void Scheduler::set_idle_thread(Thread* idle_thread)
|
|
{
|
|
Processor::current().set_idle_thread(*idle_thread);
|
|
Processor::current().set_current_thread(*idle_thread);
|
|
}
|
|
|
|
Thread* Scheduler::create_ap_idle_thread(u32 cpu)
|
|
{
|
|
ASSERT(cpu != 0);
|
|
// This function is called on the bsp, but creates an idle thread for another AP
|
|
ASSERT(Processor::current().id() == 0);
|
|
|
|
ASSERT(s_colonel_process);
|
|
Thread* idle_thread = s_colonel_process->create_kernel_thread(idle_loop, nullptr, THREAD_PRIORITY_MIN, String::format("idle thread #%u", cpu), 1 << cpu, false);
|
|
ASSERT(idle_thread);
|
|
return idle_thread;
|
|
}
|
|
|
|
void Scheduler::timer_tick(const RegisterState& regs)
|
|
{
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
ASSERT(Processor::current().in_irq());
|
|
|
|
auto current_thread = Processor::current().current_thread();
|
|
if (!current_thread)
|
|
return;
|
|
|
|
bool is_bsp = Processor::current().id() == 0;
|
|
if (!is_bsp)
|
|
return; // TODO: This prevents scheduling on other CPUs!
|
|
if (current_thread->process().is_profiling()) {
|
|
ASSERT(current_thread->process().perf_events());
|
|
auto& perf_events = *current_thread->process().perf_events();
|
|
[[maybe_unused]] auto rc = perf_events.append(PERF_EVENT_SAMPLE, 0, 0);
|
|
}
|
|
|
|
if (current_thread->tick((regs.cs & 3) == 0))
|
|
return;
|
|
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
ASSERT(Processor::current().in_irq());
|
|
Processor::current().invoke_scheduler_async();
|
|
}
|
|
|
|
void Scheduler::invoke_async()
|
|
{
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
auto& proc = Processor::current();
|
|
ASSERT(!proc.in_irq());
|
|
|
|
// Since this function is called when leaving critical sections (such
|
|
// as a SpinLock), we need to check if we're not already doing this
|
|
// to prevent recursion
|
|
if (!proc.get_scheduler_data().m_in_scheduler)
|
|
pick_next();
|
|
}
|
|
|
|
void Scheduler::yield_from_critical()
|
|
{
|
|
auto& proc = Processor::current();
|
|
ASSERT(proc.in_critical());
|
|
ASSERT(!proc.in_irq());
|
|
|
|
yield(); // Flag a context switch
|
|
|
|
u32 prev_flags;
|
|
u32 prev_crit = Processor::current().clear_critical(prev_flags, false);
|
|
|
|
// Note, we may now be on a different CPU!
|
|
Processor::current().restore_critical(prev_crit, prev_flags);
|
|
}
|
|
|
|
void Scheduler::notify_finalizer()
|
|
{
|
|
if (g_finalizer_has_work.exchange(true, AK::MemoryOrder::memory_order_acq_rel) == false)
|
|
g_finalizer_wait_queue->wake_all();
|
|
}
|
|
|
|
void Scheduler::idle_loop(void*)
|
|
{
|
|
dbgln("Scheduler[{}]: idle loop running", Processor::current().id());
|
|
ASSERT(are_interrupts_enabled());
|
|
|
|
for (;;) {
|
|
asm("hlt");
|
|
|
|
if (Processor::current().id() == 0)
|
|
yield();
|
|
}
|
|
}
|
|
|
|
}
|