
This commit moves the length calculations out to be directly on the StringView users. This is an important step towards the goal of removing StringView(char const*), as it moves the responsibility of calculating the size of the string to the user of the StringView (which will prevent naive uses causing OOB access).
1668 lines
62 KiB
C++
1668 lines
62 KiB
C++
/*
|
|
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
|
|
* Copyright (c) 2022, Linus Groh <linusg@serenityos.org>
|
|
* Copyright (c) 2022, the SerenityOS developers.
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/BuiltinWrappers.h>
|
|
#include <AK/Format.h>
|
|
#include <AK/StdLibExtras.h>
|
|
#include <AK/StringBuilder.h>
|
|
#include <AK/Types.h>
|
|
|
|
#include <Kernel/Interrupts/APIC.h>
|
|
#include <Kernel/Process.h>
|
|
#include <Kernel/Scheduler.h>
|
|
#include <Kernel/Sections.h>
|
|
#include <Kernel/StdLib.h>
|
|
#include <Kernel/Thread.h>
|
|
|
|
#include <Kernel/Arch/InterruptDisabler.h>
|
|
#include <Kernel/Arch/Interrupts.h>
|
|
#include <Kernel/Arch/Processor.h>
|
|
#include <Kernel/Arch/SafeMem.h>
|
|
#include <Kernel/Arch/ScopedCritical.h>
|
|
#include <Kernel/Arch/x86/CPUID.h>
|
|
#include <Kernel/Arch/x86/MSR.h>
|
|
#include <Kernel/Arch/x86/ProcessorInfo.h>
|
|
#include <Kernel/Arch/x86/TrapFrame.h>
|
|
|
|
#include <Kernel/Memory/PageDirectory.h>
|
|
#include <Kernel/Memory/ScopedAddressSpaceSwitcher.h>
|
|
|
|
namespace Kernel {
|
|
|
|
READONLY_AFTER_INIT FPUState Processor::s_clean_fpu_state;
|
|
|
|
READONLY_AFTER_INIT static ProcessorContainer s_processors {};
|
|
READONLY_AFTER_INIT Atomic<u32> Processor::g_total_processors;
|
|
READONLY_AFTER_INIT static bool volatile s_smp_enabled;
|
|
|
|
static Atomic<ProcessorMessage*> s_message_pool;
|
|
Atomic<u32> Processor::s_idle_cpu_mask { 0 };
|
|
|
|
// The compiler can't see the calls to these functions inside assembly.
|
|
// Declare them, to avoid dead code warnings.
|
|
extern "C" void context_first_init(Thread* from_thread, Thread* to_thread, TrapFrame* trap) __attribute__((used));
|
|
extern "C" void enter_thread_context(Thread* from_thread, Thread* to_thread) __attribute__((used));
|
|
extern "C" FlatPtr do_init_context(Thread* thread, u32 flags) __attribute__((used));
|
|
extern "C" void syscall_entry();
|
|
|
|
bool Processor::is_smp_enabled()
|
|
{
|
|
return s_smp_enabled;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT static void sse_init()
|
|
{
|
|
write_cr0((read_cr0() & 0xfffffffbu) | 0x2);
|
|
write_cr4(read_cr4() | 0x600);
|
|
}
|
|
|
|
void exit_kernel_thread(void)
|
|
{
|
|
Thread::current()->exit();
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void Processor::cpu_detect()
|
|
{
|
|
// NOTE: This is called during Processor::early_initialize, we cannot
|
|
// safely log at this point because we don't have kmalloc
|
|
// initialized yet!
|
|
m_features = CPUFeature::Type(0u);
|
|
|
|
CPUID processor_info(0x1);
|
|
|
|
auto handle_edx_bit_11_feature = [&] {
|
|
u32 stepping = processor_info.eax() & 0xf;
|
|
u32 model = (processor_info.eax() >> 4) & 0xf;
|
|
u32 family = (processor_info.eax() >> 8) & 0xf;
|
|
// FIXME: I have no clue what these mean or where it's from (the Intel manual I've seen just says EDX[11] is SEP).
|
|
// If you do, please convert them to constants or add comments!
|
|
if (!(family == 6 && model < 3 && stepping < 3))
|
|
m_features |= CPUFeature::SEP;
|
|
if ((family == 6 && model >= 3) || (family == 0xf && model >= 0xe))
|
|
m_features |= CPUFeature::CONSTANT_TSC;
|
|
};
|
|
|
|
if (processor_info.ecx() & (1 << 0))
|
|
m_features |= CPUFeature::SSE3;
|
|
if (processor_info.ecx() & (1 << 1))
|
|
m_features |= CPUFeature::PCLMULQDQ;
|
|
if (processor_info.ecx() & (1 << 2))
|
|
m_features |= CPUFeature::DTES64;
|
|
if (processor_info.ecx() & (1 << 3))
|
|
m_features |= CPUFeature::MONITOR;
|
|
if (processor_info.ecx() & (1 << 4))
|
|
m_features |= CPUFeature::DS_CPL;
|
|
if (processor_info.ecx() & (1 << 5))
|
|
m_features |= CPUFeature::VMX;
|
|
if (processor_info.ecx() & (1 << 6))
|
|
m_features |= CPUFeature::SMX;
|
|
if (processor_info.ecx() & (1 << 7))
|
|
m_features |= CPUFeature::EST;
|
|
if (processor_info.ecx() & (1 << 8))
|
|
m_features |= CPUFeature::TM2;
|
|
if (processor_info.ecx() & (1 << 9))
|
|
m_features |= CPUFeature::SSSE3;
|
|
if (processor_info.ecx() & (1 << 10))
|
|
m_features |= CPUFeature::CNXT_ID;
|
|
if (processor_info.ecx() & (1 << 11))
|
|
m_features |= CPUFeature::SDBG;
|
|
if (processor_info.ecx() & (1 << 12))
|
|
m_features |= CPUFeature::FMA;
|
|
if (processor_info.ecx() & (1 << 13))
|
|
m_features |= CPUFeature::CX16;
|
|
if (processor_info.ecx() & (1 << 14))
|
|
m_features |= CPUFeature::XTPR;
|
|
if (processor_info.ecx() & (1 << 15))
|
|
m_features |= CPUFeature::PDCM;
|
|
if (processor_info.ecx() & (1 << 17))
|
|
m_features |= CPUFeature::PCID;
|
|
if (processor_info.ecx() & (1 << 18))
|
|
m_features |= CPUFeature::DCA;
|
|
if (processor_info.ecx() & (1 << 19))
|
|
m_features |= CPUFeature::SSE4_1;
|
|
if (processor_info.ecx() & (1 << 20))
|
|
m_features |= CPUFeature::SSE4_2;
|
|
if (processor_info.ecx() & (1 << 21))
|
|
m_features |= CPUFeature::X2APIC;
|
|
if (processor_info.ecx() & (1 << 22))
|
|
m_features |= CPUFeature::MOVBE;
|
|
if (processor_info.ecx() & (1 << 23))
|
|
m_features |= CPUFeature::POPCNT;
|
|
if (processor_info.ecx() & (1 << 24))
|
|
m_features |= CPUFeature::TSC_DEADLINE;
|
|
if (processor_info.ecx() & (1 << 25))
|
|
m_features |= CPUFeature::AES;
|
|
if (processor_info.ecx() & (1 << 26))
|
|
m_features |= CPUFeature::XSAVE;
|
|
if (processor_info.ecx() & (1 << 27))
|
|
m_features |= CPUFeature::OSXSAVE;
|
|
if (processor_info.ecx() & (1 << 28))
|
|
m_features |= CPUFeature::AVX;
|
|
if (processor_info.ecx() & (1 << 29))
|
|
m_features |= CPUFeature::F16C;
|
|
if (processor_info.ecx() & (1 << 30))
|
|
m_features |= CPUFeature::RDRAND;
|
|
if (processor_info.ecx() & (1 << 31))
|
|
m_features |= CPUFeature::HYPERVISOR;
|
|
|
|
if (processor_info.edx() & (1 << 0))
|
|
m_features |= CPUFeature::FPU;
|
|
if (processor_info.edx() & (1 << 1))
|
|
m_features |= CPUFeature::VME;
|
|
if (processor_info.edx() & (1 << 2))
|
|
m_features |= CPUFeature::DE;
|
|
if (processor_info.edx() & (1 << 3))
|
|
m_features |= CPUFeature::PSE;
|
|
if (processor_info.edx() & (1 << 4))
|
|
m_features |= CPUFeature::TSC;
|
|
if (processor_info.edx() & (1 << 5))
|
|
m_features |= CPUFeature::MSR;
|
|
if (processor_info.edx() & (1 << 6))
|
|
m_features |= CPUFeature::PAE;
|
|
if (processor_info.edx() & (1 << 7))
|
|
m_features |= CPUFeature::MCE;
|
|
if (processor_info.edx() & (1 << 8))
|
|
m_features |= CPUFeature::CX8;
|
|
if (processor_info.edx() & (1 << 9))
|
|
m_features |= CPUFeature::APIC;
|
|
if (processor_info.edx() & (1 << 11))
|
|
handle_edx_bit_11_feature();
|
|
if (processor_info.edx() & (1 << 12))
|
|
m_features |= CPUFeature::MTRR;
|
|
if (processor_info.edx() & (1 << 13))
|
|
m_features |= CPUFeature::PGE;
|
|
if (processor_info.edx() & (1 << 14))
|
|
m_features |= CPUFeature::MCA;
|
|
if (processor_info.edx() & (1 << 15))
|
|
m_features |= CPUFeature::CMOV;
|
|
if (processor_info.edx() & (1 << 16))
|
|
m_features |= CPUFeature::PAT;
|
|
if (processor_info.edx() & (1 << 17))
|
|
m_features |= CPUFeature::PSE36;
|
|
if (processor_info.edx() & (1 << 18))
|
|
m_features |= CPUFeature::PSN;
|
|
if (processor_info.edx() & (1 << 19))
|
|
m_features |= CPUFeature::CLFLUSH;
|
|
if (processor_info.edx() & (1 << 21))
|
|
m_features |= CPUFeature::DS;
|
|
if (processor_info.edx() & (1 << 22))
|
|
m_features |= CPUFeature::ACPI;
|
|
if (processor_info.edx() & (1 << 23))
|
|
m_features |= CPUFeature::MMX;
|
|
if (processor_info.edx() & (1 << 24))
|
|
m_features |= CPUFeature::FXSR;
|
|
if (processor_info.edx() & (1 << 25))
|
|
m_features |= CPUFeature::SSE;
|
|
if (processor_info.edx() & (1 << 26))
|
|
m_features |= CPUFeature::SSE2;
|
|
if (processor_info.edx() & (1 << 27))
|
|
m_features |= CPUFeature::SS;
|
|
if (processor_info.edx() & (1 << 28))
|
|
m_features |= CPUFeature::HTT;
|
|
if (processor_info.edx() & (1 << 29))
|
|
m_features |= CPUFeature::TM;
|
|
if (processor_info.edx() & (1 << 30))
|
|
m_features |= CPUFeature::IA64;
|
|
if (processor_info.edx() & (1 << 31))
|
|
m_features |= CPUFeature::PBE;
|
|
|
|
CPUID extended_features(0x7);
|
|
|
|
if (extended_features.ebx() & (1 << 0))
|
|
m_features |= CPUFeature::FSGSBASE;
|
|
if (extended_features.ebx() & (1 << 1))
|
|
m_features |= CPUFeature::TSC_ADJUST;
|
|
if (extended_features.ebx() & (1 << 2))
|
|
m_features |= CPUFeature::SGX;
|
|
if (extended_features.ebx() & (1 << 3))
|
|
m_features |= CPUFeature::BMI1;
|
|
if (extended_features.ebx() & (1 << 4))
|
|
m_features |= CPUFeature::HLE;
|
|
if (extended_features.ebx() & (1 << 5))
|
|
m_features |= CPUFeature::AVX2;
|
|
if (extended_features.ebx() & (1 << 6))
|
|
m_features |= CPUFeature::FDP_EXCPTN_ONLY;
|
|
if (extended_features.ebx() & (1 << 7))
|
|
m_features |= CPUFeature::SMEP;
|
|
if (extended_features.ebx() & (1 << 8))
|
|
m_features |= CPUFeature::BMI2;
|
|
if (extended_features.ebx() & (1 << 9))
|
|
m_features |= CPUFeature::ERMS;
|
|
if (extended_features.ebx() & (1 << 10))
|
|
m_features |= CPUFeature::INVPCID;
|
|
if (extended_features.ebx() & (1 << 11))
|
|
m_features |= CPUFeature::RTM;
|
|
if (extended_features.ebx() & (1 << 12))
|
|
m_features |= CPUFeature::PQM;
|
|
if (extended_features.ebx() & (1 << 13))
|
|
m_features |= CPUFeature::ZERO_FCS_FDS;
|
|
if (extended_features.ebx() & (1 << 14))
|
|
m_features |= CPUFeature::MPX;
|
|
if (extended_features.ebx() & (1 << 15))
|
|
m_features |= CPUFeature::PQE;
|
|
if (extended_features.ebx() & (1 << 16))
|
|
m_features |= CPUFeature::AVX512_F;
|
|
if (extended_features.ebx() & (1 << 17))
|
|
m_features |= CPUFeature::AVX512_DQ;
|
|
if (extended_features.ebx() & (1 << 18))
|
|
m_features |= CPUFeature::RDSEED;
|
|
if (extended_features.ebx() & (1 << 19))
|
|
m_features |= CPUFeature::ADX;
|
|
if (extended_features.ebx() & (1 << 20))
|
|
m_features |= CPUFeature::SMAP;
|
|
if (extended_features.ebx() & (1 << 21))
|
|
m_features |= CPUFeature::AVX512_IFMA;
|
|
if (extended_features.ebx() & (1 << 22))
|
|
m_features |= CPUFeature::PCOMMIT;
|
|
if (extended_features.ebx() & (1 << 23))
|
|
m_features |= CPUFeature::CLFLUSHOPT;
|
|
if (extended_features.ebx() & (1 << 24))
|
|
m_features |= CPUFeature::CLWB;
|
|
if (extended_features.ebx() & (1 << 25))
|
|
m_features |= CPUFeature::INTEL_PT;
|
|
if (extended_features.ebx() & (1 << 26))
|
|
m_features |= CPUFeature::AVX512_PF;
|
|
if (extended_features.ebx() & (1 << 27))
|
|
m_features |= CPUFeature::AVX512_ER;
|
|
if (extended_features.ebx() & (1 << 28))
|
|
m_features |= CPUFeature::AVX512_CD;
|
|
if (extended_features.ebx() & (1 << 29))
|
|
m_features |= CPUFeature::SHA;
|
|
if (extended_features.ebx() & (1 << 30))
|
|
m_features |= CPUFeature::AVX512_BW;
|
|
if (extended_features.ebx() & (1 << 31))
|
|
m_features |= CPUFeature::AVX512_VL;
|
|
|
|
if (extended_features.ecx() & (1 << 0))
|
|
m_features |= CPUFeature::PREFETCHWT1;
|
|
if (extended_features.ecx() & (1 << 1))
|
|
m_features |= CPUFeature::AVX512_VBMI;
|
|
if (extended_features.ecx() & (1 << 2))
|
|
m_features |= CPUFeature::UMIP;
|
|
if (extended_features.ecx() & (1 << 3))
|
|
m_features |= CPUFeature::PKU;
|
|
if (extended_features.ecx() & (1 << 4))
|
|
m_features |= CPUFeature::OSPKE;
|
|
if (extended_features.ecx() & (1 << 5))
|
|
m_features |= CPUFeature::WAITPKG;
|
|
if (extended_features.ecx() & (1 << 6))
|
|
m_features |= CPUFeature::AVX512_VBMI2;
|
|
if (extended_features.ecx() & (1 << 7))
|
|
m_features |= CPUFeature::CET_SS;
|
|
if (extended_features.ecx() & (1 << 8))
|
|
m_features |= CPUFeature::GFNI;
|
|
if (extended_features.ecx() & (1 << 9))
|
|
m_features |= CPUFeature::VAES;
|
|
if (extended_features.ecx() & (1 << 10))
|
|
m_features |= CPUFeature::VPCLMULQDQ;
|
|
if (extended_features.ecx() & (1 << 11))
|
|
m_features |= CPUFeature::AVX512_VNNI;
|
|
if (extended_features.ecx() & (1 << 12))
|
|
m_features |= CPUFeature::AVX512_BITALG;
|
|
if (extended_features.ecx() & (1 << 13))
|
|
m_features |= CPUFeature::TME_EN;
|
|
if (extended_features.ecx() & (1 << 14))
|
|
m_features |= CPUFeature::AVX512_VPOPCNTDQ;
|
|
if (extended_features.ecx() & (1 << 16))
|
|
m_features |= CPUFeature::INTEL_5_LEVEL_PAGING;
|
|
if (extended_features.ecx() & (1 << 22))
|
|
m_features |= CPUFeature::RDPID;
|
|
if (extended_features.ecx() & (1 << 23))
|
|
m_features |= CPUFeature::KL;
|
|
if (extended_features.ecx() & (1 << 25))
|
|
m_features |= CPUFeature::CLDEMOTE;
|
|
if (extended_features.ecx() & (1 << 27))
|
|
m_features |= CPUFeature::MOVDIRI;
|
|
if (extended_features.ecx() & (1 << 28))
|
|
m_features |= CPUFeature::MOVDIR64B;
|
|
if (extended_features.ecx() & (1 << 29))
|
|
m_features |= CPUFeature::ENQCMD;
|
|
if (extended_features.ecx() & (1 << 30))
|
|
m_features |= CPUFeature::SGX_LC;
|
|
if (extended_features.ecx() & (1 << 31))
|
|
m_features |= CPUFeature::PKS;
|
|
|
|
if (extended_features.edx() & (1 << 2))
|
|
m_features |= CPUFeature::AVX512_4VNNIW;
|
|
if (extended_features.edx() & (1 << 3))
|
|
m_features |= CPUFeature::AVX512_4FMAPS;
|
|
if (extended_features.edx() & (1 << 4))
|
|
m_features |= CPUFeature::FSRM;
|
|
if (extended_features.edx() & (1 << 8))
|
|
m_features |= CPUFeature::AVX512_VP2INTERSECT;
|
|
if (extended_features.edx() & (1 << 9))
|
|
m_features |= CPUFeature::SRBDS_CTRL;
|
|
if (extended_features.edx() & (1 << 10))
|
|
m_features |= CPUFeature::MD_CLEAR;
|
|
if (extended_features.edx() & (1 << 11))
|
|
m_features |= CPUFeature::RTM_ALWAYS_ABORT;
|
|
if (extended_features.edx() & (1 << 13))
|
|
m_features |= CPUFeature::TSX_FORCE_ABORT;
|
|
if (extended_features.edx() & (1 << 14))
|
|
m_features |= CPUFeature::SERIALIZE;
|
|
if (extended_features.edx() & (1 << 15))
|
|
m_features |= CPUFeature::HYBRID;
|
|
if (extended_features.edx() & (1 << 16))
|
|
m_features |= CPUFeature::TSXLDTRK;
|
|
if (extended_features.edx() & (1 << 18))
|
|
m_features |= CPUFeature::PCONFIG;
|
|
if (extended_features.edx() & (1 << 19))
|
|
m_features |= CPUFeature::LBR;
|
|
if (extended_features.edx() & (1 << 20))
|
|
m_features |= CPUFeature::CET_IBT;
|
|
if (extended_features.edx() & (1 << 22))
|
|
m_features |= CPUFeature::AMX_BF16;
|
|
if (extended_features.edx() & (1 << 23))
|
|
m_features |= CPUFeature::AVX512_FP16;
|
|
if (extended_features.edx() & (1 << 24))
|
|
m_features |= CPUFeature::AMX_TILE;
|
|
if (extended_features.edx() & (1 << 25))
|
|
m_features |= CPUFeature::AMX_INT8;
|
|
if (extended_features.edx() & (1 << 26))
|
|
m_features |= CPUFeature::SPEC_CTRL;
|
|
if (extended_features.edx() & (1 << 27))
|
|
m_features |= CPUFeature::STIBP;
|
|
if (extended_features.edx() & (1 << 28))
|
|
m_features |= CPUFeature::L1D_FLUSH;
|
|
if (extended_features.edx() & (1 << 29))
|
|
m_features |= CPUFeature::IA32_ARCH_CAPABILITIES;
|
|
if (extended_features.edx() & (1 << 30))
|
|
m_features |= CPUFeature::IA32_CORE_CAPABILITIES;
|
|
if (extended_features.edx() & (1 << 31))
|
|
m_features |= CPUFeature::SSBD;
|
|
|
|
u32 max_extended_leaf = CPUID(0x80000000).eax();
|
|
|
|
if (max_extended_leaf >= 0x80000001) {
|
|
CPUID extended_processor_info(0x80000001);
|
|
|
|
if (extended_processor_info.ecx() & (1 << 0))
|
|
m_features |= CPUFeature::LAHF_LM;
|
|
if (extended_processor_info.ecx() & (1 << 1))
|
|
m_features |= CPUFeature::CMP_LEGACY;
|
|
if (extended_processor_info.ecx() & (1 << 2))
|
|
m_features |= CPUFeature::SVM;
|
|
if (extended_processor_info.ecx() & (1 << 3))
|
|
m_features |= CPUFeature::EXTAPIC;
|
|
if (extended_processor_info.ecx() & (1 << 4))
|
|
m_features |= CPUFeature::CR8_LEGACY;
|
|
if (extended_processor_info.ecx() & (1 << 5))
|
|
m_features |= CPUFeature::ABM;
|
|
if (extended_processor_info.ecx() & (1 << 6))
|
|
m_features |= CPUFeature::SSE4A;
|
|
if (extended_processor_info.ecx() & (1 << 7))
|
|
m_features |= CPUFeature::MISALIGNSSE;
|
|
if (extended_processor_info.ecx() & (1 << 8))
|
|
m_features |= CPUFeature::_3DNOWPREFETCH;
|
|
if (extended_processor_info.ecx() & (1 << 9))
|
|
m_features |= CPUFeature::OSVW;
|
|
if (extended_processor_info.ecx() & (1 << 10))
|
|
m_features |= CPUFeature::IBS;
|
|
if (extended_processor_info.ecx() & (1 << 11))
|
|
m_features |= CPUFeature::XOP;
|
|
if (extended_processor_info.ecx() & (1 << 12))
|
|
m_features |= CPUFeature::SKINIT;
|
|
if (extended_processor_info.ecx() & (1 << 13))
|
|
m_features |= CPUFeature::WDT;
|
|
if (extended_processor_info.ecx() & (1 << 15))
|
|
m_features |= CPUFeature::LWP;
|
|
if (extended_processor_info.ecx() & (1 << 16))
|
|
m_features |= CPUFeature::FMA4;
|
|
if (extended_processor_info.ecx() & (1 << 17))
|
|
m_features |= CPUFeature::TCE;
|
|
if (extended_processor_info.ecx() & (1 << 19))
|
|
m_features |= CPUFeature::NODEID_MSR;
|
|
if (extended_processor_info.ecx() & (1 << 21))
|
|
m_features |= CPUFeature::TBM;
|
|
if (extended_processor_info.ecx() & (1 << 22))
|
|
m_features |= CPUFeature::TOPOEXT;
|
|
if (extended_processor_info.ecx() & (1 << 23))
|
|
m_features |= CPUFeature::PERFCTR_CORE;
|
|
if (extended_processor_info.ecx() & (1 << 24))
|
|
m_features |= CPUFeature::PERFCTR_NB;
|
|
if (extended_processor_info.ecx() & (1 << 26))
|
|
m_features |= CPUFeature::DBX;
|
|
if (extended_processor_info.ecx() & (1 << 27))
|
|
m_features |= CPUFeature::PERFTSC;
|
|
if (extended_processor_info.ecx() & (1 << 28))
|
|
m_features |= CPUFeature::PCX_L2I;
|
|
|
|
if (extended_processor_info.edx() & (1 << 11))
|
|
m_features |= CPUFeature::SYSCALL; // Only available in 64 bit mode
|
|
if (extended_processor_info.edx() & (1 << 19))
|
|
m_features |= CPUFeature::MP;
|
|
if (extended_processor_info.edx() & (1 << 20))
|
|
m_features |= CPUFeature::NX;
|
|
if (extended_processor_info.edx() & (1 << 22))
|
|
m_features |= CPUFeature::MMXEXT;
|
|
if (extended_processor_info.edx() & (1 << 23))
|
|
m_features |= CPUFeature::RDTSCP;
|
|
if (extended_processor_info.edx() & (1 << 25))
|
|
m_features |= CPUFeature::FXSR_OPT;
|
|
if (extended_processor_info.edx() & (1 << 26))
|
|
m_features |= CPUFeature::PDPE1GB;
|
|
if (extended_processor_info.edx() & (1 << 27))
|
|
m_features |= CPUFeature::RDTSCP;
|
|
if (extended_processor_info.edx() & (1 << 29))
|
|
m_features |= CPUFeature::LM;
|
|
if (extended_processor_info.edx() & (1 << 30))
|
|
m_features |= CPUFeature::_3DNOWEXT;
|
|
if (extended_processor_info.edx() & (1 << 31))
|
|
m_features |= CPUFeature::_3DNOW;
|
|
}
|
|
|
|
if (max_extended_leaf >= 0x80000007) {
|
|
CPUID cpuid(0x80000007);
|
|
if (cpuid.edx() & (1 << 8)) {
|
|
m_features |= CPUFeature::CONSTANT_TSC;
|
|
m_features |= CPUFeature::NONSTOP_TSC;
|
|
}
|
|
}
|
|
|
|
#if ARCH(X86_64)
|
|
m_has_qemu_hvf_quirk = false;
|
|
#endif
|
|
|
|
if (max_extended_leaf >= 0x80000008) {
|
|
// CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the processor.
|
|
CPUID cpuid(0x80000008);
|
|
m_physical_address_bit_width = cpuid.eax() & 0xff;
|
|
// CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the processor.
|
|
m_virtual_address_bit_width = (cpuid.eax() >> 8) & 0xff;
|
|
} else {
|
|
// For processors that do not support CPUID function 80000008H, the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 and 32 otherwise.
|
|
m_physical_address_bit_width = has_feature(CPUFeature::PAE) ? 36 : 32;
|
|
// Processors that do not support CPUID function 80000008H, support a linear-address width of 32.
|
|
m_virtual_address_bit_width = 32;
|
|
#if ARCH(X86_64)
|
|
// Workaround QEMU hypervisor.framework bug
|
|
// https://gitlab.com/qemu-project/qemu/-/issues/664
|
|
//
|
|
// We detect this as follows:
|
|
// * We're in a hypervisor
|
|
// * hypervisor_leaf_range is null under Hypervisor.framework
|
|
// * m_physical_address_bit_width is 36 bits
|
|
if (has_feature(CPUFeature::HYPERVISOR)) {
|
|
CPUID hypervisor_leaf_range(0x40000000);
|
|
if (!hypervisor_leaf_range.ebx() && m_physical_address_bit_width == 36) {
|
|
m_has_qemu_hvf_quirk = true;
|
|
m_virtual_address_bit_width = 48;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void Processor::cpu_setup()
|
|
{
|
|
// NOTE: This is called during Processor::early_initialize, we cannot
|
|
// safely log at this point because we don't have kmalloc
|
|
// initialized yet!
|
|
cpu_detect();
|
|
|
|
if (has_feature(CPUFeature::SSE)) {
|
|
// enter_thread_context() assumes that if a x86 CPU supports SSE then it also supports FXSR.
|
|
// SSE support without FXSR is an extremely unlikely scenario, so let's be pragmatic about it.
|
|
VERIFY(has_feature(CPUFeature::FXSR));
|
|
sse_init();
|
|
}
|
|
|
|
write_cr0(read_cr0() | 0x00010000);
|
|
|
|
if (has_feature(CPUFeature::PGE)) {
|
|
// Turn on CR4.PGE so the CPU will respect the G bit in page tables.
|
|
write_cr4(read_cr4() | 0x80);
|
|
}
|
|
|
|
if (has_feature(CPUFeature::NX)) {
|
|
// Turn on IA32_EFER.NXE
|
|
MSR ia32_efer(MSR_IA32_EFER);
|
|
ia32_efer.set(ia32_efer.get() | 0x800);
|
|
}
|
|
|
|
if (has_feature(CPUFeature::PAT)) {
|
|
MSR ia32_pat(MSR_IA32_PAT);
|
|
// Set PA4 to Write Comine. This allows us to
|
|
// use this mode by only setting the bit in the PTE
|
|
// and leaving all other bits in the upper levels unset,
|
|
// which maps to setting bit 3 of the index, resulting
|
|
// in the index value 0 or 4.
|
|
u64 pat = ia32_pat.get() & ~(0x7ull << 32);
|
|
pat |= 0x1ull << 32; // set WC mode for PA4
|
|
ia32_pat.set(pat);
|
|
}
|
|
|
|
if (has_feature(CPUFeature::SMEP)) {
|
|
// Turn on CR4.SMEP
|
|
write_cr4(read_cr4() | 0x100000);
|
|
}
|
|
|
|
if (has_feature(CPUFeature::SMAP)) {
|
|
// Turn on CR4.SMAP
|
|
write_cr4(read_cr4() | 0x200000);
|
|
}
|
|
|
|
if (has_feature(CPUFeature::UMIP)) {
|
|
write_cr4(read_cr4() | 0x800);
|
|
}
|
|
|
|
if (has_feature(CPUFeature::XSAVE)) {
|
|
// Turn on CR4.OSXSAVE
|
|
write_cr4(read_cr4() | 0x40000);
|
|
|
|
// According to the Intel manual: "After reset, all bits (except bit 0) in XCR0 are cleared to zero; XCR0[0] is set to 1."
|
|
// Sadly we can't trust this, for example VirtualBox starts with bits 0-4 set, so let's do it ourselves.
|
|
write_xcr0(0x1);
|
|
|
|
if (has_feature(CPUFeature::AVX)) {
|
|
// Turn on SSE, AVX and x87 flags
|
|
write_xcr0(read_xcr0() | SIMD::StateComponent::AVX | SIMD::StateComponent::SSE | SIMD::StateComponent::X87);
|
|
}
|
|
}
|
|
|
|
#if ARCH(X86_64)
|
|
// x86_64 processors must support the syscall feature.
|
|
VERIFY(has_feature(CPUFeature::SYSCALL));
|
|
MSR efer_msr(MSR_EFER);
|
|
efer_msr.set(efer_msr.get() | 1u);
|
|
|
|
// Write code and stack selectors to the STAR MSR. The first value stored in bits 63:48 controls the sysret CS (value + 0x10) and SS (value + 0x8),
|
|
// and the value stored in bits 47:32 controls the syscall CS (value) and SS (value + 0x8).
|
|
u64 star = 0;
|
|
star |= 0x13ul << 48u;
|
|
star |= 0x08ul << 32u;
|
|
MSR star_msr(MSR_STAR);
|
|
star_msr.set(star);
|
|
|
|
// Write the syscall entry point to the LSTAR MSR.
|
|
MSR lstar_msr(MSR_LSTAR);
|
|
lstar_msr.set(reinterpret_cast<u64>(&syscall_entry));
|
|
|
|
// Write the SFMASK MSR. This MSR controls which bits of rflags are masked when a syscall instruction is executed -
|
|
// if a bit is set in sfmask, the corresponding bit in rflags is cleared. The value set here clears most of rflags,
|
|
// but keeps the reserved and virtualization bits intact. The userspace rflags value is saved in r11 by syscall.
|
|
constexpr u64 rflags_mask = 0x257fd5u;
|
|
MSR sfmask_msr(MSR_SFMASK);
|
|
sfmask_msr.set(rflags_mask);
|
|
|
|
if (has_feature(CPUFeature::FSGSBASE)) {
|
|
// Turn off CR4.FSGSBASE to ensure the current Processor base kernel address is not leaked via
|
|
// the RDGSBASE instruction until we implement proper GS swapping at the userspace/kernel boundaries
|
|
write_cr4(read_cr4() & ~0x10000);
|
|
}
|
|
#endif
|
|
|
|
// Query OS-enabled CPUID features again, and set the flags if needed.
|
|
CPUID processor_info(0x1);
|
|
if (processor_info.ecx() & (1 << 27))
|
|
m_features |= CPUFeature::OSXSAVE;
|
|
CPUID extended_features(0x7);
|
|
if (extended_features.ecx() & (1 << 4))
|
|
m_features |= CPUFeature::OSPKE;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void Processor::early_initialize(u32 cpu)
|
|
{
|
|
m_self = this;
|
|
|
|
m_cpu = cpu;
|
|
m_in_irq = 0;
|
|
m_in_critical = 0;
|
|
|
|
m_invoke_scheduler_async = false;
|
|
m_scheduler_initialized = false;
|
|
m_in_scheduler = true;
|
|
|
|
m_message_queue = nullptr;
|
|
m_idle_thread = nullptr;
|
|
m_current_thread = nullptr;
|
|
m_info = nullptr;
|
|
|
|
m_halt_requested = false;
|
|
if (cpu == 0) {
|
|
s_smp_enabled = false;
|
|
g_total_processors.store(1u, AK::MemoryOrder::memory_order_release);
|
|
} else {
|
|
g_total_processors.fetch_add(1u, AK::MemoryOrder::memory_order_acq_rel);
|
|
}
|
|
|
|
deferred_call_pool_init();
|
|
|
|
cpu_setup();
|
|
gdt_init();
|
|
|
|
VERIFY(is_initialized()); // sanity check
|
|
VERIFY(¤t() == this); // sanity check
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void Processor::initialize(u32 cpu)
|
|
{
|
|
VERIFY(m_self == this);
|
|
VERIFY(¤t() == this); // sanity check
|
|
|
|
m_info = new ProcessorInfo(*this);
|
|
|
|
dmesgln("CPU[{}]: Supported features: {}", current_id(), m_info->features_string());
|
|
if (!has_feature(CPUFeature::RDRAND))
|
|
dmesgln("CPU[{}]: No RDRAND support detected, randomness will be poor", current_id());
|
|
dmesgln("CPU[{}]: Physical address bit width: {}", current_id(), m_physical_address_bit_width);
|
|
dmesgln("CPU[{}]: Virtual address bit width: {}", current_id(), m_virtual_address_bit_width);
|
|
#if ARCH(X86_64)
|
|
if (m_has_qemu_hvf_quirk)
|
|
dmesgln("CPU[{}]: Applied correction for QEMU Hypervisor.framework quirk", current_id());
|
|
#endif
|
|
|
|
if (cpu == 0)
|
|
initialize_interrupts();
|
|
else
|
|
flush_idt();
|
|
|
|
if (cpu == 0) {
|
|
VERIFY((FlatPtr(&s_clean_fpu_state) & 0xF) == 0);
|
|
asm volatile("fninit");
|
|
// Initialize AVX state
|
|
if (has_feature(CPUFeature::XSAVE | CPUFeature::AVX)) {
|
|
asm volatile("xsave %0\n"
|
|
: "=m"(s_clean_fpu_state)
|
|
: "a"(static_cast<u32>(SIMD::StateComponent::AVX | SIMD::StateComponent::SSE | SIMD::StateComponent::X87)), "d"(0u));
|
|
} else if (has_feature(CPUFeature::FXSR)) {
|
|
asm volatile("fxsave %0"
|
|
: "=m"(s_clean_fpu_state));
|
|
} else {
|
|
asm volatile("fnsave %0"
|
|
: "=m"(s_clean_fpu_state));
|
|
}
|
|
|
|
if (has_feature(CPUFeature::HYPERVISOR))
|
|
detect_hypervisor();
|
|
}
|
|
|
|
{
|
|
// We need to prevent races between APs starting up at the same time
|
|
VERIFY(cpu < s_processors.size());
|
|
s_processors[cpu] = this;
|
|
}
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void Processor::detect_hypervisor()
|
|
{
|
|
CPUID hypervisor_leaf_range(0x40000000);
|
|
auto hypervisor_vendor_id_string = m_info->hypervisor_vendor_id_string();
|
|
dmesgln("CPU[{}]: CPUID hypervisor signature '{}', max leaf {:#x}", current_id(), hypervisor_vendor_id_string, hypervisor_leaf_range.eax());
|
|
|
|
if (hypervisor_vendor_id_string == "Microsoft Hv"sv)
|
|
detect_hypervisor_hyperv(hypervisor_leaf_range);
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void Processor::detect_hypervisor_hyperv(CPUID const& hypervisor_leaf_range)
|
|
{
|
|
if (hypervisor_leaf_range.eax() < 0x40000001)
|
|
return;
|
|
|
|
CPUID hypervisor_interface(0x40000001);
|
|
|
|
// Get signature of hypervisor interface.
|
|
alignas(sizeof(u32)) char interface_signature_buffer[5];
|
|
*reinterpret_cast<u32*>(interface_signature_buffer) = hypervisor_interface.eax();
|
|
interface_signature_buffer[4] = '\0';
|
|
StringView hyperv_interface_signature { interface_signature_buffer, strlen(interface_signature_buffer) };
|
|
|
|
dmesgln("CPU[{}]: Hyper-V interface signature '{}' ({:#x})", current_id(), hyperv_interface_signature, hypervisor_interface.eax());
|
|
|
|
if (hypervisor_leaf_range.eax() < 0x40000001)
|
|
return;
|
|
|
|
CPUID hypervisor_sysid(0x40000002);
|
|
dmesgln("CPU[{}]: Hyper-V system identity {}.{}, build number {}", current_id(), hypervisor_sysid.ebx() >> 16, hypervisor_sysid.ebx() & 0xFFFF, hypervisor_sysid.eax());
|
|
|
|
if (hypervisor_leaf_range.eax() < 0x40000005 || hyperv_interface_signature != "Hv#1"sv)
|
|
return;
|
|
|
|
dmesgln("CPU[{}]: Hyper-V hypervisor detected", current_id());
|
|
|
|
// TODO: Actually do something with Hyper-V.
|
|
}
|
|
|
|
void Processor::write_raw_gdt_entry(u16 selector, u32 low, u32 high)
|
|
{
|
|
u16 i = (selector & 0xfffc) >> 3;
|
|
u32 prev_gdt_length = m_gdt_length;
|
|
|
|
if (i >= m_gdt_length) {
|
|
m_gdt_length = i + 1;
|
|
VERIFY(m_gdt_length <= sizeof(m_gdt) / sizeof(m_gdt[0]));
|
|
m_gdtr.limit = (m_gdt_length + 1) * 8 - 1;
|
|
}
|
|
m_gdt[i].low = low;
|
|
m_gdt[i].high = high;
|
|
|
|
// clear selectors we may have skipped
|
|
for (auto j = prev_gdt_length; j < i; ++j) {
|
|
m_gdt[j].low = 0;
|
|
m_gdt[j].high = 0;
|
|
}
|
|
}
|
|
|
|
void Processor::write_gdt_entry(u16 selector, Descriptor& descriptor)
|
|
{
|
|
write_raw_gdt_entry(selector, descriptor.low, descriptor.high);
|
|
}
|
|
|
|
Descriptor& Processor::get_gdt_entry(u16 selector)
|
|
{
|
|
u16 i = (selector & 0xfffc) >> 3;
|
|
return *(Descriptor*)(&m_gdt[i]);
|
|
}
|
|
|
|
void Processor::flush_gdt()
|
|
{
|
|
m_gdtr.address = m_gdt;
|
|
m_gdtr.limit = (m_gdt_length * 8) - 1;
|
|
asm volatile("lgdt %0" ::"m"(m_gdtr)
|
|
: "memory");
|
|
}
|
|
|
|
DescriptorTablePointer const& Processor::get_gdtr()
|
|
{
|
|
return m_gdtr;
|
|
}
|
|
|
|
ErrorOr<Vector<FlatPtr, 32>> Processor::capture_stack_trace(Thread& thread, size_t max_frames)
|
|
{
|
|
FlatPtr frame_ptr = 0, ip = 0;
|
|
Vector<FlatPtr, 32> stack_trace;
|
|
|
|
auto walk_stack = [&](FlatPtr stack_ptr) -> ErrorOr<void> {
|
|
constexpr size_t max_stack_frames = 4096;
|
|
bool is_walking_userspace_stack = false;
|
|
TRY(stack_trace.try_append(ip));
|
|
size_t count = 1;
|
|
while (stack_ptr && stack_trace.size() < max_stack_frames) {
|
|
FlatPtr retaddr;
|
|
|
|
count++;
|
|
if (max_frames != 0 && count > max_frames)
|
|
break;
|
|
|
|
if (!Memory::is_user_address(VirtualAddress { stack_ptr })) {
|
|
if (is_walking_userspace_stack) {
|
|
dbgln("SHENANIGANS! Userspace stack points back into kernel memory");
|
|
break;
|
|
}
|
|
} else {
|
|
is_walking_userspace_stack = true;
|
|
}
|
|
|
|
if (Memory::is_user_range(VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2)) {
|
|
if (copy_from_user(&retaddr, &((FlatPtr*)stack_ptr)[1]).is_error() || !retaddr)
|
|
break;
|
|
TRY(stack_trace.try_append(retaddr));
|
|
if (copy_from_user(&stack_ptr, (FlatPtr*)stack_ptr).is_error())
|
|
break;
|
|
} else {
|
|
void* fault_at;
|
|
if (!safe_memcpy(&retaddr, &((FlatPtr*)stack_ptr)[1], sizeof(FlatPtr), fault_at) || !retaddr)
|
|
break;
|
|
TRY(stack_trace.try_append(retaddr));
|
|
if (!safe_memcpy(&stack_ptr, (FlatPtr*)stack_ptr, sizeof(FlatPtr), fault_at))
|
|
break;
|
|
}
|
|
}
|
|
return {};
|
|
};
|
|
auto capture_current_thread = [&]() {
|
|
frame_ptr = (FlatPtr)__builtin_frame_address(0);
|
|
ip = (FlatPtr)__builtin_return_address(0);
|
|
|
|
return walk_stack(frame_ptr);
|
|
};
|
|
|
|
// Since the thread may be running on another processor, there
|
|
// is a chance a context switch may happen while we're trying
|
|
// to get it. It also won't be entirely accurate and merely
|
|
// reflect the status at the last context switch.
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
if (&thread == Processor::current_thread()) {
|
|
VERIFY(thread.state() == Thread::State::Running);
|
|
// Leave the scheduler lock. If we trigger page faults we may
|
|
// need to be preempted. Since this is our own thread it won't
|
|
// cause any problems as the stack won't change below this frame.
|
|
lock.unlock();
|
|
TRY(capture_current_thread());
|
|
} else if (thread.is_active()) {
|
|
VERIFY(thread.cpu() != Processor::current_id());
|
|
// If this is the case, the thread is currently running
|
|
// on another processor. We can't trust the kernel stack as
|
|
// it may be changing at any time. We need to probably send
|
|
// an IPI to that processor, have it walk the stack and wait
|
|
// until it returns the data back to us
|
|
auto& proc = Processor::current();
|
|
ErrorOr<void> result;
|
|
smp_unicast(
|
|
thread.cpu(),
|
|
[&]() {
|
|
dbgln("CPU[{}] getting stack for cpu #{}", Processor::current_id(), proc.id());
|
|
ScopedAddressSpaceSwitcher switcher(thread.process());
|
|
VERIFY(&Processor::current() != &proc);
|
|
VERIFY(&thread == Processor::current_thread());
|
|
// NOTE: Because the other processor is still holding the
|
|
// scheduler lock while waiting for this callback to finish,
|
|
// the current thread on the target processor cannot change
|
|
|
|
// TODO: What to do about page faults here? We might deadlock
|
|
// because the other processor is still holding the
|
|
// scheduler lock...
|
|
result = capture_current_thread();
|
|
},
|
|
false);
|
|
TRY(result);
|
|
} else {
|
|
switch (thread.state()) {
|
|
case Thread::State::Running:
|
|
VERIFY_NOT_REACHED(); // should have been handled above
|
|
case Thread::State::Runnable:
|
|
case Thread::State::Stopped:
|
|
case Thread::State::Blocked:
|
|
case Thread::State::Dying:
|
|
case Thread::State::Dead: {
|
|
// We need to retrieve ebp from what was last pushed to the kernel
|
|
// stack. Before switching out of that thread, it switch_context
|
|
// pushed the callee-saved registers, and the last of them happens
|
|
// to be ebp.
|
|
ScopedAddressSpaceSwitcher switcher(thread.process());
|
|
auto& regs = thread.regs();
|
|
auto* stack_top = reinterpret_cast<FlatPtr*>(regs.sp());
|
|
if (Memory::is_user_range(VirtualAddress(stack_top), sizeof(FlatPtr))) {
|
|
if (copy_from_user(&frame_ptr, &((FlatPtr*)stack_top)[0]).is_error())
|
|
frame_ptr = 0;
|
|
} else {
|
|
void* fault_at;
|
|
if (!safe_memcpy(&frame_ptr, &((FlatPtr*)stack_top)[0], sizeof(FlatPtr), fault_at))
|
|
frame_ptr = 0;
|
|
}
|
|
|
|
ip = regs.ip();
|
|
|
|
// TODO: We need to leave the scheduler lock here, but we also
|
|
// need to prevent the target thread from being run while
|
|
// we walk the stack
|
|
lock.unlock();
|
|
TRY(walk_stack(frame_ptr));
|
|
break;
|
|
}
|
|
default:
|
|
dbgln("Cannot capture stack trace for thread {} in state {}", thread, thread.state_string());
|
|
break;
|
|
}
|
|
}
|
|
return stack_trace;
|
|
}
|
|
|
|
ProcessorContainer& Processor::processors()
|
|
{
|
|
return s_processors;
|
|
}
|
|
|
|
Processor& Processor::by_id(u32 id)
|
|
{
|
|
return *s_processors[id];
|
|
}
|
|
|
|
void Processor::enter_trap(TrapFrame& trap, bool raise_irq)
|
|
{
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
VERIFY(&Processor::current() == this);
|
|
trap.prev_irq_level = m_in_irq;
|
|
if (raise_irq)
|
|
m_in_irq++;
|
|
auto* current_thread = Processor::current_thread();
|
|
if (current_thread) {
|
|
auto& current_trap = current_thread->current_trap();
|
|
trap.next_trap = current_trap;
|
|
current_trap = &trap;
|
|
// The cs register of this trap tells us where we will return back to
|
|
auto new_previous_mode = ((trap.regs->cs & 3) != 0) ? Thread::PreviousMode::UserMode : Thread::PreviousMode::KernelMode;
|
|
if (current_thread->set_previous_mode(new_previous_mode) && trap.prev_irq_level == 0) {
|
|
current_thread->update_time_scheduled(Scheduler::current_time(), new_previous_mode == Thread::PreviousMode::KernelMode, false);
|
|
}
|
|
} else {
|
|
trap.next_trap = nullptr;
|
|
}
|
|
}
|
|
|
|
void Processor::exit_trap(TrapFrame& trap)
|
|
{
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
VERIFY(&Processor::current() == this);
|
|
|
|
// Temporarily enter a critical section. This is to prevent critical
|
|
// sections entered and left within e.g. smp_process_pending_messages
|
|
// to trigger a context switch while we're executing this function
|
|
// See the comment at the end of the function why we don't use
|
|
// ScopedCritical here.
|
|
m_in_critical = m_in_critical + 1;
|
|
|
|
VERIFY(m_in_irq >= trap.prev_irq_level);
|
|
m_in_irq = trap.prev_irq_level;
|
|
|
|
if (s_smp_enabled)
|
|
smp_process_pending_messages();
|
|
|
|
// Process the deferred call queue. Among other things, this ensures
|
|
// that any pending thread unblocks happen before we enter the scheduler.
|
|
deferred_call_execute_pending();
|
|
|
|
auto* current_thread = Processor::current_thread();
|
|
if (current_thread) {
|
|
auto& current_trap = current_thread->current_trap();
|
|
current_trap = trap.next_trap;
|
|
Thread::PreviousMode new_previous_mode;
|
|
if (current_trap) {
|
|
VERIFY(current_trap->regs);
|
|
// If we have another higher level trap then we probably returned
|
|
// from an interrupt or irq handler. The cs register of the
|
|
// new/higher level trap tells us what the mode prior to it was
|
|
new_previous_mode = ((current_trap->regs->cs & 3) != 0) ? Thread::PreviousMode::UserMode : Thread::PreviousMode::KernelMode;
|
|
} else {
|
|
// If we don't have a higher level trap then we're back in user mode.
|
|
// Which means that the previous mode prior to being back in user mode was kernel mode
|
|
new_previous_mode = Thread::PreviousMode::KernelMode;
|
|
}
|
|
|
|
if (current_thread->set_previous_mode(new_previous_mode))
|
|
current_thread->update_time_scheduled(Scheduler::current_time(), true, false);
|
|
}
|
|
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
|
|
// Leave the critical section without actually enabling interrupts.
|
|
// We don't want context switches to happen until we're explicitly
|
|
// triggering a switch in check_invoke_scheduler.
|
|
m_in_critical = m_in_critical - 1;
|
|
if (!m_in_irq && !m_in_critical)
|
|
check_invoke_scheduler();
|
|
}
|
|
|
|
void Processor::check_invoke_scheduler()
|
|
{
|
|
InterruptDisabler disabler;
|
|
VERIFY(!m_in_irq);
|
|
VERIFY(!m_in_critical);
|
|
VERIFY(&Processor::current() == this);
|
|
if (m_invoke_scheduler_async && m_scheduler_initialized) {
|
|
m_invoke_scheduler_async = false;
|
|
Scheduler::invoke_async();
|
|
}
|
|
}
|
|
|
|
void Processor::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
|
|
{
|
|
auto ptr = vaddr.as_ptr();
|
|
while (page_count > 0) {
|
|
// clang-format off
|
|
asm volatile("invlpg %0"
|
|
:
|
|
: "m"(*ptr)
|
|
: "memory");
|
|
// clang-format on
|
|
ptr += PAGE_SIZE;
|
|
page_count--;
|
|
}
|
|
}
|
|
|
|
void Processor::flush_tlb(Memory::PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
|
|
{
|
|
if (s_smp_enabled && (!Memory::is_user_address(vaddr) || Process::current().thread_count() > 1))
|
|
smp_broadcast_flush_tlb(page_directory, vaddr, page_count);
|
|
else
|
|
flush_tlb_local(vaddr, page_count);
|
|
}
|
|
|
|
void Processor::smp_return_to_pool(ProcessorMessage& msg)
|
|
{
|
|
ProcessorMessage* next = nullptr;
|
|
for (;;) {
|
|
msg.next = next;
|
|
if (s_message_pool.compare_exchange_strong(next, &msg, AK::MemoryOrder::memory_order_acq_rel))
|
|
break;
|
|
Processor::pause();
|
|
}
|
|
}
|
|
|
|
ProcessorMessage& Processor::smp_get_from_pool()
|
|
{
|
|
ProcessorMessage* msg;
|
|
|
|
// The assumption is that messages are never removed from the pool!
|
|
for (;;) {
|
|
msg = s_message_pool.load(AK::MemoryOrder::memory_order_consume);
|
|
if (!msg) {
|
|
if (!Processor::current().smp_process_pending_messages()) {
|
|
Processor::pause();
|
|
}
|
|
continue;
|
|
}
|
|
// If another processor were to use this message in the meanwhile,
|
|
// "msg" is still valid (because it never gets freed). We'd detect
|
|
// this because the expected value "msg" and pool would
|
|
// no longer match, and the compare_exchange will fail. But accessing
|
|
// "msg->next" is always safe here.
|
|
if (s_message_pool.compare_exchange_strong(msg, msg->next, AK::MemoryOrder::memory_order_acq_rel)) {
|
|
// We successfully "popped" this available message
|
|
break;
|
|
}
|
|
}
|
|
|
|
VERIFY(msg != nullptr);
|
|
return *msg;
|
|
}
|
|
|
|
u32 Processor::smp_wake_n_idle_processors(u32 wake_count)
|
|
{
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
VERIFY(wake_count > 0);
|
|
if (!s_smp_enabled)
|
|
return 0;
|
|
|
|
// Wake at most N - 1 processors
|
|
if (wake_count >= Processor::count()) {
|
|
wake_count = Processor::count() - 1;
|
|
VERIFY(wake_count > 0);
|
|
}
|
|
|
|
u32 current_id = Processor::current_id();
|
|
|
|
u32 did_wake_count = 0;
|
|
auto& apic = APIC::the();
|
|
while (did_wake_count < wake_count) {
|
|
// Try to get a set of idle CPUs and flip them to busy
|
|
u32 idle_mask = s_idle_cpu_mask.load(AK::MemoryOrder::memory_order_relaxed) & ~(1u << current_id);
|
|
u32 idle_count = popcount(idle_mask);
|
|
if (idle_count == 0)
|
|
break; // No (more) idle processor available
|
|
|
|
u32 found_mask = 0;
|
|
for (u32 i = 0; i < idle_count; i++) {
|
|
u32 cpu = bit_scan_forward(idle_mask) - 1;
|
|
idle_mask &= ~(1u << cpu);
|
|
found_mask |= 1u << cpu;
|
|
}
|
|
|
|
idle_mask = s_idle_cpu_mask.fetch_and(~found_mask, AK::MemoryOrder::memory_order_acq_rel) & found_mask;
|
|
if (idle_mask == 0)
|
|
continue; // All of them were flipped to busy, try again
|
|
idle_count = popcount(idle_mask);
|
|
for (u32 i = 0; i < idle_count; i++) {
|
|
u32 cpu = bit_scan_forward(idle_mask) - 1;
|
|
idle_mask &= ~(1u << cpu);
|
|
|
|
// Send an IPI to that CPU to wake it up. There is a possibility
|
|
// someone else woke it up as well, or that it woke up due to
|
|
// a timer interrupt. But we tried hard to avoid this...
|
|
apic.send_ipi(cpu);
|
|
did_wake_count++;
|
|
}
|
|
}
|
|
return did_wake_count;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void Processor::smp_enable()
|
|
{
|
|
size_t msg_pool_size = Processor::count() * 100u;
|
|
size_t msg_entries_cnt = Processor::count();
|
|
|
|
auto msgs = new ProcessorMessage[msg_pool_size];
|
|
auto msg_entries = new ProcessorMessageEntry[msg_pool_size * msg_entries_cnt];
|
|
size_t msg_entry_i = 0;
|
|
for (size_t i = 0; i < msg_pool_size; i++, msg_entry_i += msg_entries_cnt) {
|
|
auto& msg = msgs[i];
|
|
msg.next = i < msg_pool_size - 1 ? &msgs[i + 1] : nullptr;
|
|
msg.per_proc_entries = &msg_entries[msg_entry_i];
|
|
for (size_t k = 0; k < msg_entries_cnt; k++)
|
|
msg_entries[msg_entry_i + k].msg = &msg;
|
|
}
|
|
|
|
s_message_pool.store(&msgs[0], AK::MemoryOrder::memory_order_release);
|
|
|
|
// Start sending IPI messages
|
|
s_smp_enabled = true;
|
|
}
|
|
|
|
void Processor::smp_cleanup_message(ProcessorMessage& msg)
|
|
{
|
|
switch (msg.type) {
|
|
case ProcessorMessage::Callback:
|
|
msg.callback_value().~Function();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool Processor::smp_process_pending_messages()
|
|
{
|
|
VERIFY(s_smp_enabled);
|
|
|
|
bool did_process = false;
|
|
enter_critical();
|
|
|
|
if (auto pending_msgs = m_message_queue.exchange(nullptr, AK::MemoryOrder::memory_order_acq_rel)) {
|
|
// We pulled the stack of pending messages in LIFO order, so we need to reverse the list first
|
|
auto reverse_list =
|
|
[](ProcessorMessageEntry* list) -> ProcessorMessageEntry* {
|
|
ProcessorMessageEntry* rev_list = nullptr;
|
|
while (list) {
|
|
auto next = list->next;
|
|
list->next = rev_list;
|
|
rev_list = list;
|
|
list = next;
|
|
}
|
|
return rev_list;
|
|
};
|
|
|
|
pending_msgs = reverse_list(pending_msgs);
|
|
|
|
// now process in the right order
|
|
ProcessorMessageEntry* next_msg;
|
|
for (auto cur_msg = pending_msgs; cur_msg; cur_msg = next_msg) {
|
|
next_msg = cur_msg->next;
|
|
auto msg = cur_msg->msg;
|
|
|
|
dbgln_if(SMP_DEBUG, "SMP[{}]: Processing message {}", current_id(), VirtualAddress(msg));
|
|
|
|
switch (msg->type) {
|
|
case ProcessorMessage::Callback:
|
|
msg->invoke_callback();
|
|
break;
|
|
case ProcessorMessage::FlushTlb:
|
|
if (Memory::is_user_address(VirtualAddress(msg->flush_tlb.ptr))) {
|
|
// We assume that we don't cross into kernel land!
|
|
VERIFY(Memory::is_user_range(VirtualAddress(msg->flush_tlb.ptr), msg->flush_tlb.page_count * PAGE_SIZE));
|
|
if (read_cr3() != msg->flush_tlb.page_directory->cr3()) {
|
|
// This processor isn't using this page directory right now, we can ignore this request
|
|
dbgln_if(SMP_DEBUG, "SMP[{}]: No need to flush {} pages at {}", current_id(), msg->flush_tlb.page_count, VirtualAddress(msg->flush_tlb.ptr));
|
|
break;
|
|
}
|
|
}
|
|
flush_tlb_local(VirtualAddress(msg->flush_tlb.ptr), msg->flush_tlb.page_count);
|
|
break;
|
|
}
|
|
|
|
bool is_async = msg->async; // Need to cache this value *before* dropping the ref count!
|
|
auto prev_refs = msg->refs.fetch_sub(1u, AK::MemoryOrder::memory_order_acq_rel);
|
|
VERIFY(prev_refs != 0);
|
|
if (prev_refs == 1) {
|
|
// All processors handled this. If this is an async message,
|
|
// we need to clean it up and return it to the pool
|
|
if (is_async) {
|
|
smp_cleanup_message(*msg);
|
|
smp_return_to_pool(*msg);
|
|
}
|
|
}
|
|
|
|
if (m_halt_requested.load(AK::MemoryOrder::memory_order_relaxed))
|
|
halt_this();
|
|
}
|
|
did_process = true;
|
|
} else if (m_halt_requested.load(AK::MemoryOrder::memory_order_relaxed)) {
|
|
halt_this();
|
|
}
|
|
|
|
leave_critical();
|
|
return did_process;
|
|
}
|
|
|
|
bool Processor::smp_enqueue_message(ProcessorMessage& msg)
|
|
{
|
|
// Note that it's quite possible that the other processor may pop
|
|
// the queue at any given time. We rely on the fact that the messages
|
|
// are pooled and never get freed!
|
|
auto& msg_entry = msg.per_proc_entries[id()];
|
|
VERIFY(msg_entry.msg == &msg);
|
|
ProcessorMessageEntry* next = nullptr;
|
|
for (;;) {
|
|
msg_entry.next = next;
|
|
if (m_message_queue.compare_exchange_strong(next, &msg_entry, AK::MemoryOrder::memory_order_acq_rel))
|
|
break;
|
|
Processor::pause();
|
|
}
|
|
|
|
// If the enqueued message was the only message in the queue when posted,
|
|
// we return true. This is used by callers when deciding whether to generate an IPI.
|
|
return next == nullptr;
|
|
}
|
|
|
|
void Processor::smp_broadcast_message(ProcessorMessage& msg)
|
|
{
|
|
auto& current_processor = Processor::current();
|
|
|
|
dbgln_if(SMP_DEBUG, "SMP[{}]: Broadcast message {} to cpus: {} processor: {}", current_processor.id(), VirtualAddress(&msg), count(), VirtualAddress(¤t_processor));
|
|
|
|
msg.refs.store(count() - 1, AK::MemoryOrder::memory_order_release);
|
|
VERIFY(msg.refs > 0);
|
|
bool need_broadcast = false;
|
|
for_each(
|
|
[&](Processor& proc) {
|
|
if (&proc != ¤t_processor) {
|
|
if (proc.smp_enqueue_message(msg))
|
|
need_broadcast = true;
|
|
}
|
|
});
|
|
|
|
// Now trigger an IPI on all other APs (unless all targets already had messages queued)
|
|
if (need_broadcast)
|
|
APIC::the().broadcast_ipi();
|
|
}
|
|
|
|
void Processor::smp_broadcast_wait_sync(ProcessorMessage& msg)
|
|
{
|
|
auto& cur_proc = Processor::current();
|
|
VERIFY(!msg.async);
|
|
// If synchronous then we must cleanup and return the message back
|
|
// to the pool. Otherwise, the last processor to complete it will return it
|
|
while (msg.refs.load(AK::MemoryOrder::memory_order_consume) != 0) {
|
|
Processor::pause();
|
|
|
|
// We need to process any messages that may have been sent to
|
|
// us while we're waiting. This also checks if another processor
|
|
// may have requested us to halt.
|
|
cur_proc.smp_process_pending_messages();
|
|
}
|
|
|
|
smp_cleanup_message(msg);
|
|
smp_return_to_pool(msg);
|
|
}
|
|
|
|
void Processor::smp_unicast_message(u32 cpu, ProcessorMessage& msg, bool async)
|
|
{
|
|
auto& current_processor = Processor::current();
|
|
VERIFY(cpu != current_processor.id());
|
|
auto& target_processor = processors()[cpu];
|
|
msg.async = async;
|
|
|
|
dbgln_if(SMP_DEBUG, "SMP[{}]: Send message {} to cpu #{} processor: {}", current_processor.id(), VirtualAddress(&msg), cpu, VirtualAddress(&target_processor));
|
|
|
|
msg.refs.store(1u, AK::MemoryOrder::memory_order_release);
|
|
if (target_processor->smp_enqueue_message(msg)) {
|
|
APIC::the().send_ipi(cpu);
|
|
}
|
|
|
|
if (!async) {
|
|
// If synchronous then we must cleanup and return the message back
|
|
// to the pool. Otherwise, the last processor to complete it will return it
|
|
while (msg.refs.load(AK::MemoryOrder::memory_order_consume) != 0) {
|
|
Processor::pause();
|
|
|
|
// We need to process any messages that may have been sent to
|
|
// us while we're waiting. This also checks if another processor
|
|
// may have requested us to halt.
|
|
current_processor.smp_process_pending_messages();
|
|
}
|
|
|
|
smp_cleanup_message(msg);
|
|
smp_return_to_pool(msg);
|
|
}
|
|
}
|
|
|
|
void Processor::smp_unicast(u32 cpu, Function<void()> callback, bool async)
|
|
{
|
|
auto& msg = smp_get_from_pool();
|
|
msg.type = ProcessorMessage::Callback;
|
|
new (msg.callback_storage) ProcessorMessage::CallbackFunction(move(callback));
|
|
smp_unicast_message(cpu, msg, async);
|
|
}
|
|
|
|
void Processor::smp_broadcast_flush_tlb(Memory::PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
|
|
{
|
|
auto& msg = smp_get_from_pool();
|
|
msg.async = false;
|
|
msg.type = ProcessorMessage::FlushTlb;
|
|
msg.flush_tlb.page_directory = page_directory;
|
|
msg.flush_tlb.ptr = vaddr.as_ptr();
|
|
msg.flush_tlb.page_count = page_count;
|
|
smp_broadcast_message(msg);
|
|
// While the other processors handle this request, we'll flush ours
|
|
flush_tlb_local(vaddr, page_count);
|
|
// Now wait until everybody is done as well
|
|
smp_broadcast_wait_sync(msg);
|
|
}
|
|
|
|
void Processor::smp_broadcast_halt()
|
|
{
|
|
// We don't want to use a message, because this could have been triggered
|
|
// by being out of memory and we might not be able to get a message
|
|
for_each(
|
|
[&](Processor& proc) {
|
|
proc.m_halt_requested.store(true, AK::MemoryOrder::memory_order_release);
|
|
});
|
|
|
|
// Now trigger an IPI on all other APs
|
|
APIC::the().broadcast_ipi();
|
|
}
|
|
|
|
void Processor::Processor::halt()
|
|
{
|
|
if (s_smp_enabled)
|
|
smp_broadcast_halt();
|
|
|
|
halt_this();
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void Processor::deferred_call_pool_init()
|
|
{
|
|
size_t pool_count = sizeof(m_deferred_call_pool) / sizeof(m_deferred_call_pool[0]);
|
|
for (size_t i = 0; i < pool_count; i++) {
|
|
auto& entry = m_deferred_call_pool[i];
|
|
entry.next = i < pool_count - 1 ? &m_deferred_call_pool[i + 1] : nullptr;
|
|
new (entry.handler_storage) DeferredCallEntry::HandlerFunction;
|
|
entry.was_allocated = false;
|
|
}
|
|
m_pending_deferred_calls = nullptr;
|
|
m_free_deferred_call_pool_entry = &m_deferred_call_pool[0];
|
|
}
|
|
|
|
void Processor::deferred_call_return_to_pool(DeferredCallEntry* entry)
|
|
{
|
|
VERIFY(m_in_critical);
|
|
VERIFY(!entry->was_allocated);
|
|
|
|
entry->handler_value() = {};
|
|
|
|
entry->next = m_free_deferred_call_pool_entry;
|
|
m_free_deferred_call_pool_entry = entry;
|
|
}
|
|
|
|
DeferredCallEntry* Processor::deferred_call_get_free()
|
|
{
|
|
VERIFY(m_in_critical);
|
|
|
|
if (m_free_deferred_call_pool_entry) {
|
|
// Fast path, we have an entry in our pool
|
|
auto* entry = m_free_deferred_call_pool_entry;
|
|
m_free_deferred_call_pool_entry = entry->next;
|
|
VERIFY(!entry->was_allocated);
|
|
return entry;
|
|
}
|
|
|
|
auto* entry = new DeferredCallEntry;
|
|
new (entry->handler_storage) DeferredCallEntry::HandlerFunction;
|
|
entry->was_allocated = true;
|
|
return entry;
|
|
}
|
|
|
|
void Processor::deferred_call_execute_pending()
|
|
{
|
|
VERIFY(m_in_critical);
|
|
|
|
if (!m_pending_deferred_calls)
|
|
return;
|
|
auto* pending_list = m_pending_deferred_calls;
|
|
m_pending_deferred_calls = nullptr;
|
|
|
|
// We pulled the stack of pending deferred calls in LIFO order, so we need to reverse the list first
|
|
auto reverse_list =
|
|
[](DeferredCallEntry* list) -> DeferredCallEntry* {
|
|
DeferredCallEntry* rev_list = nullptr;
|
|
while (list) {
|
|
auto next = list->next;
|
|
list->next = rev_list;
|
|
rev_list = list;
|
|
list = next;
|
|
}
|
|
return rev_list;
|
|
};
|
|
pending_list = reverse_list(pending_list);
|
|
|
|
do {
|
|
pending_list->invoke_handler();
|
|
|
|
// Return the entry back to the pool, or free it
|
|
auto* next = pending_list->next;
|
|
if (pending_list->was_allocated) {
|
|
pending_list->handler_value().~Function();
|
|
delete pending_list;
|
|
} else
|
|
deferred_call_return_to_pool(pending_list);
|
|
pending_list = next;
|
|
} while (pending_list);
|
|
}
|
|
|
|
void Processor::deferred_call_queue_entry(DeferredCallEntry* entry)
|
|
{
|
|
VERIFY(m_in_critical);
|
|
entry->next = m_pending_deferred_calls;
|
|
m_pending_deferred_calls = entry;
|
|
}
|
|
|
|
void Processor::deferred_call_queue(Function<void()> callback)
|
|
{
|
|
// NOTE: If we are called outside of a critical section and outside
|
|
// of an irq handler, the function will be executed before we return!
|
|
ScopedCritical critical;
|
|
auto& cur_proc = Processor::current();
|
|
|
|
auto* entry = cur_proc.deferred_call_get_free();
|
|
entry->handler_value() = move(callback);
|
|
|
|
cur_proc.deferred_call_queue_entry(entry);
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void Processor::gdt_init()
|
|
{
|
|
m_gdt_length = 0;
|
|
m_gdtr.address = nullptr;
|
|
m_gdtr.limit = 0;
|
|
|
|
write_raw_gdt_entry(0x0000, 0x00000000, 0x00000000);
|
|
#if ARCH(I386)
|
|
write_raw_gdt_entry(GDT_SELECTOR_CODE0, 0x0000ffff, 0x00cf9a00); // code0
|
|
write_raw_gdt_entry(GDT_SELECTOR_DATA0, 0x0000ffff, 0x00cf9200); // data0
|
|
write_raw_gdt_entry(GDT_SELECTOR_CODE3, 0x0000ffff, 0x00cffa00); // code3
|
|
write_raw_gdt_entry(GDT_SELECTOR_DATA3, 0x0000ffff, 0x00cff200); // data3
|
|
#else
|
|
write_raw_gdt_entry(GDT_SELECTOR_CODE0, 0x0000ffff, 0x00af9a00); // code0
|
|
write_raw_gdt_entry(GDT_SELECTOR_DATA0, 0x0000ffff, 0x00af9200); // data0
|
|
write_raw_gdt_entry(GDT_SELECTOR_DATA3, 0x0000ffff, 0x008ff200); // data3
|
|
write_raw_gdt_entry(GDT_SELECTOR_CODE3, 0x0000ffff, 0x00affa00); // code3
|
|
#endif
|
|
|
|
#if ARCH(I386)
|
|
Descriptor tls_descriptor {};
|
|
tls_descriptor.low = tls_descriptor.high = 0;
|
|
tls_descriptor.dpl = 3;
|
|
tls_descriptor.segment_present = 1;
|
|
tls_descriptor.granularity = 0;
|
|
tls_descriptor.operation_size64 = 0;
|
|
tls_descriptor.operation_size32 = 1;
|
|
tls_descriptor.descriptor_type = 1;
|
|
tls_descriptor.type = 2;
|
|
write_gdt_entry(GDT_SELECTOR_TLS, tls_descriptor); // tls3
|
|
|
|
Descriptor gs_descriptor {};
|
|
gs_descriptor.set_base(VirtualAddress { this });
|
|
gs_descriptor.set_limit(sizeof(Processor) - 1);
|
|
gs_descriptor.dpl = 0;
|
|
gs_descriptor.segment_present = 1;
|
|
gs_descriptor.granularity = 0;
|
|
gs_descriptor.operation_size64 = 0;
|
|
gs_descriptor.operation_size32 = 1;
|
|
gs_descriptor.descriptor_type = 1;
|
|
gs_descriptor.type = 2;
|
|
write_gdt_entry(GDT_SELECTOR_PROC, gs_descriptor); // gs0
|
|
#endif
|
|
|
|
Descriptor tss_descriptor {};
|
|
tss_descriptor.set_base(VirtualAddress { (size_t)&m_tss & 0xffffffff });
|
|
tss_descriptor.set_limit(sizeof(TSS) - 1);
|
|
tss_descriptor.dpl = 0;
|
|
tss_descriptor.segment_present = 1;
|
|
tss_descriptor.granularity = 0;
|
|
tss_descriptor.operation_size64 = 0;
|
|
tss_descriptor.operation_size32 = 1;
|
|
tss_descriptor.descriptor_type = 0;
|
|
tss_descriptor.type = Descriptor::SystemType::AvailableTSS;
|
|
write_gdt_entry(GDT_SELECTOR_TSS, tss_descriptor); // tss
|
|
|
|
#if ARCH(X86_64)
|
|
Descriptor tss_descriptor_part2 {};
|
|
tss_descriptor_part2.low = (size_t)&m_tss >> 32;
|
|
write_gdt_entry(GDT_SELECTOR_TSS_PART2, tss_descriptor_part2);
|
|
#endif
|
|
|
|
flush_gdt();
|
|
load_task_register(GDT_SELECTOR_TSS);
|
|
|
|
#if ARCH(X86_64)
|
|
MSR gs_base(MSR_GS_BASE);
|
|
gs_base.set((u64)this);
|
|
#else
|
|
asm volatile(
|
|
"mov %%ax, %%ds\n"
|
|
"mov %%ax, %%es\n"
|
|
"mov %%ax, %%fs\n"
|
|
"mov %%ax, %%ss\n" ::"a"(GDT_SELECTOR_DATA0)
|
|
: "memory");
|
|
set_gs(GDT_SELECTOR_PROC);
|
|
#endif
|
|
|
|
#if ARCH(I386)
|
|
// Make sure CS points to the kernel code descriptor.
|
|
// clang-format off
|
|
asm volatile(
|
|
"ljmpl $" __STRINGIFY(GDT_SELECTOR_CODE0) ", $sanity\n"
|
|
"sanity:\n");
|
|
// clang-format on
|
|
#endif
|
|
}
|
|
|
|
extern "C" void context_first_init([[maybe_unused]] Thread* from_thread, [[maybe_unused]] Thread* to_thread, [[maybe_unused]] TrapFrame* trap)
|
|
{
|
|
VERIFY(!are_interrupts_enabled());
|
|
VERIFY(is_kernel_mode());
|
|
|
|
dbgln_if(CONTEXT_SWITCH_DEBUG, "switch_context <-- from {} {} to {} {} (context_first_init)", VirtualAddress(from_thread), *from_thread, VirtualAddress(to_thread), *to_thread);
|
|
|
|
VERIFY(to_thread == Thread::current());
|
|
|
|
Scheduler::enter_current(*from_thread);
|
|
|
|
auto in_critical = to_thread->saved_critical();
|
|
VERIFY(in_critical > 0);
|
|
Processor::restore_in_critical(in_critical);
|
|
|
|
// Since we got here and don't have Scheduler::context_switch in the
|
|
// call stack (because this is the first time we switched into this
|
|
// context), we need to notify the scheduler so that it can release
|
|
// the scheduler lock. We don't want to enable interrupts at this point
|
|
// as we're still in the middle of a context switch. Doing so could
|
|
// trigger a context switch within a context switch, leading to a crash.
|
|
FlatPtr flags = trap->regs->flags();
|
|
Scheduler::leave_on_first_switch(flags & ~0x200);
|
|
}
|
|
|
|
extern "C" void enter_thread_context(Thread* from_thread, Thread* to_thread)
|
|
{
|
|
VERIFY(from_thread == to_thread || from_thread->state() != Thread::State::Running);
|
|
VERIFY(to_thread->state() == Thread::State::Running);
|
|
|
|
bool has_fxsr = Processor::current().has_feature(CPUFeature::FXSR);
|
|
bool has_xsave_avx_support = Processor::current().has_feature(CPUFeature::XSAVE) && Processor::current().has_feature(CPUFeature::AVX);
|
|
Processor::set_current_thread(*to_thread);
|
|
|
|
auto& from_regs = from_thread->regs();
|
|
auto& to_regs = to_thread->regs();
|
|
|
|
// NOTE: IOPL should never be non-zero in any situation, so let's panic immediately
|
|
// instead of carrying on with elevated I/O privileges.
|
|
VERIFY(get_iopl_from_eflags(to_regs.flags()) == 0);
|
|
|
|
if (has_xsave_avx_support) {
|
|
// The specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the logical-AND of EDX:EAX and XCR0.
|
|
// https://www.moritz.systems/blog/how-debuggers-work-getting-and-setting-x86-registers-part-2/
|
|
asm volatile("xsave %0\n"
|
|
: "=m"(from_thread->fpu_state())
|
|
: "a"(static_cast<u32>(SIMD::StateComponent::AVX | SIMD::StateComponent::SSE | SIMD::StateComponent::X87)), "d"(0u));
|
|
} else if (has_fxsr) {
|
|
asm volatile("fxsave %0"
|
|
: "=m"(from_thread->fpu_state()));
|
|
} else {
|
|
asm volatile("fnsave %0"
|
|
: "=m"(from_thread->fpu_state()));
|
|
}
|
|
|
|
#if ARCH(I386)
|
|
from_regs.fs = get_fs();
|
|
from_regs.gs = get_gs();
|
|
set_fs(to_regs.fs);
|
|
set_gs(to_regs.gs);
|
|
#endif
|
|
|
|
if (from_thread->process().is_traced())
|
|
read_debug_registers_into(from_thread->debug_register_state());
|
|
|
|
if (to_thread->process().is_traced()) {
|
|
write_debug_registers_from(to_thread->debug_register_state());
|
|
} else {
|
|
clear_debug_registers();
|
|
}
|
|
|
|
auto& processor = Processor::current();
|
|
#if ARCH(I386)
|
|
auto& tls_descriptor = processor.get_gdt_entry(GDT_SELECTOR_TLS);
|
|
tls_descriptor.set_base(to_thread->thread_specific_data());
|
|
tls_descriptor.set_limit(to_thread->thread_specific_region_size());
|
|
#else
|
|
MSR fs_base_msr(MSR_FS_BASE);
|
|
fs_base_msr.set(to_thread->thread_specific_data().get());
|
|
#endif
|
|
|
|
if (from_regs.cr3 != to_regs.cr3)
|
|
write_cr3(to_regs.cr3);
|
|
|
|
to_thread->set_cpu(processor.id());
|
|
|
|
auto in_critical = to_thread->saved_critical();
|
|
VERIFY(in_critical > 0);
|
|
Processor::restore_in_critical(in_critical);
|
|
|
|
if (has_xsave_avx_support)
|
|
asm volatile("xrstor %0" ::"m"(to_thread->fpu_state()), "a"(static_cast<u32>(SIMD::StateComponent::AVX | SIMD::StateComponent::SSE | SIMD::StateComponent::X87)), "d"(0u));
|
|
else if (has_fxsr)
|
|
asm volatile("fxrstor %0" ::"m"(to_thread->fpu_state()));
|
|
else
|
|
asm volatile("frstor %0" ::"m"(to_thread->fpu_state()));
|
|
}
|
|
|
|
extern "C" FlatPtr do_init_context(Thread* thread, u32 flags)
|
|
{
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
thread->regs().set_flags(flags);
|
|
return Processor::current().init_context(*thread, true);
|
|
}
|
|
|
|
void Processor::assume_context(Thread& thread, FlatPtr flags)
|
|
{
|
|
dbgln_if(CONTEXT_SWITCH_DEBUG, "Assume context for thread {} {}", VirtualAddress(&thread), thread);
|
|
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
Scheduler::prepare_after_exec();
|
|
// in_critical() should be 2 here. The critical section in Process::exec
|
|
// and then the scheduler lock
|
|
VERIFY(Processor::in_critical() == 2);
|
|
|
|
do_assume_context(&thread, flags);
|
|
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
u64 Processor::time_spent_idle() const
|
|
{
|
|
return m_idle_thread->time_in_user() + m_idle_thread->time_in_kernel();
|
|
}
|
|
|
|
}
|