ladybird/Kernel/Arch/x86/common/Processor.cpp
sin-ack c70f45ff44 Everywhere: Explicitly specify the size in StringView constructors
This commit moves the length calculations out to be directly on the
StringView users. This is an important step towards the goal of removing
StringView(char const*), as it moves the responsibility of calculating
the size of the string to the user of the StringView (which will prevent
naive uses causing OOB access).
2022-07-12 23:11:35 +02:00

1668 lines
62 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2022, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2022, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/BuiltinWrappers.h>
#include <AK/Format.h>
#include <AK/StdLibExtras.h>
#include <AK/StringBuilder.h>
#include <AK/Types.h>
#include <Kernel/Interrupts/APIC.h>
#include <Kernel/Process.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Sections.h>
#include <Kernel/StdLib.h>
#include <Kernel/Thread.h>
#include <Kernel/Arch/InterruptDisabler.h>
#include <Kernel/Arch/Interrupts.h>
#include <Kernel/Arch/Processor.h>
#include <Kernel/Arch/SafeMem.h>
#include <Kernel/Arch/ScopedCritical.h>
#include <Kernel/Arch/x86/CPUID.h>
#include <Kernel/Arch/x86/MSR.h>
#include <Kernel/Arch/x86/ProcessorInfo.h>
#include <Kernel/Arch/x86/TrapFrame.h>
#include <Kernel/Memory/PageDirectory.h>
#include <Kernel/Memory/ScopedAddressSpaceSwitcher.h>
namespace Kernel {
READONLY_AFTER_INIT FPUState Processor::s_clean_fpu_state;
READONLY_AFTER_INIT static ProcessorContainer s_processors {};
READONLY_AFTER_INIT Atomic<u32> Processor::g_total_processors;
READONLY_AFTER_INIT static bool volatile s_smp_enabled;
static Atomic<ProcessorMessage*> s_message_pool;
Atomic<u32> Processor::s_idle_cpu_mask { 0 };
// The compiler can't see the calls to these functions inside assembly.
// Declare them, to avoid dead code warnings.
extern "C" void context_first_init(Thread* from_thread, Thread* to_thread, TrapFrame* trap) __attribute__((used));
extern "C" void enter_thread_context(Thread* from_thread, Thread* to_thread) __attribute__((used));
extern "C" FlatPtr do_init_context(Thread* thread, u32 flags) __attribute__((used));
extern "C" void syscall_entry();
bool Processor::is_smp_enabled()
{
return s_smp_enabled;
}
UNMAP_AFTER_INIT static void sse_init()
{
write_cr0((read_cr0() & 0xfffffffbu) | 0x2);
write_cr4(read_cr4() | 0x600);
}
void exit_kernel_thread(void)
{
Thread::current()->exit();
}
UNMAP_AFTER_INIT void Processor::cpu_detect()
{
// NOTE: This is called during Processor::early_initialize, we cannot
// safely log at this point because we don't have kmalloc
// initialized yet!
m_features = CPUFeature::Type(0u);
CPUID processor_info(0x1);
auto handle_edx_bit_11_feature = [&] {
u32 stepping = processor_info.eax() & 0xf;
u32 model = (processor_info.eax() >> 4) & 0xf;
u32 family = (processor_info.eax() >> 8) & 0xf;
// FIXME: I have no clue what these mean or where it's from (the Intel manual I've seen just says EDX[11] is SEP).
// If you do, please convert them to constants or add comments!
if (!(family == 6 && model < 3 && stepping < 3))
m_features |= CPUFeature::SEP;
if ((family == 6 && model >= 3) || (family == 0xf && model >= 0xe))
m_features |= CPUFeature::CONSTANT_TSC;
};
if (processor_info.ecx() & (1 << 0))
m_features |= CPUFeature::SSE3;
if (processor_info.ecx() & (1 << 1))
m_features |= CPUFeature::PCLMULQDQ;
if (processor_info.ecx() & (1 << 2))
m_features |= CPUFeature::DTES64;
if (processor_info.ecx() & (1 << 3))
m_features |= CPUFeature::MONITOR;
if (processor_info.ecx() & (1 << 4))
m_features |= CPUFeature::DS_CPL;
if (processor_info.ecx() & (1 << 5))
m_features |= CPUFeature::VMX;
if (processor_info.ecx() & (1 << 6))
m_features |= CPUFeature::SMX;
if (processor_info.ecx() & (1 << 7))
m_features |= CPUFeature::EST;
if (processor_info.ecx() & (1 << 8))
m_features |= CPUFeature::TM2;
if (processor_info.ecx() & (1 << 9))
m_features |= CPUFeature::SSSE3;
if (processor_info.ecx() & (1 << 10))
m_features |= CPUFeature::CNXT_ID;
if (processor_info.ecx() & (1 << 11))
m_features |= CPUFeature::SDBG;
if (processor_info.ecx() & (1 << 12))
m_features |= CPUFeature::FMA;
if (processor_info.ecx() & (1 << 13))
m_features |= CPUFeature::CX16;
if (processor_info.ecx() & (1 << 14))
m_features |= CPUFeature::XTPR;
if (processor_info.ecx() & (1 << 15))
m_features |= CPUFeature::PDCM;
if (processor_info.ecx() & (1 << 17))
m_features |= CPUFeature::PCID;
if (processor_info.ecx() & (1 << 18))
m_features |= CPUFeature::DCA;
if (processor_info.ecx() & (1 << 19))
m_features |= CPUFeature::SSE4_1;
if (processor_info.ecx() & (1 << 20))
m_features |= CPUFeature::SSE4_2;
if (processor_info.ecx() & (1 << 21))
m_features |= CPUFeature::X2APIC;
if (processor_info.ecx() & (1 << 22))
m_features |= CPUFeature::MOVBE;
if (processor_info.ecx() & (1 << 23))
m_features |= CPUFeature::POPCNT;
if (processor_info.ecx() & (1 << 24))
m_features |= CPUFeature::TSC_DEADLINE;
if (processor_info.ecx() & (1 << 25))
m_features |= CPUFeature::AES;
if (processor_info.ecx() & (1 << 26))
m_features |= CPUFeature::XSAVE;
if (processor_info.ecx() & (1 << 27))
m_features |= CPUFeature::OSXSAVE;
if (processor_info.ecx() & (1 << 28))
m_features |= CPUFeature::AVX;
if (processor_info.ecx() & (1 << 29))
m_features |= CPUFeature::F16C;
if (processor_info.ecx() & (1 << 30))
m_features |= CPUFeature::RDRAND;
if (processor_info.ecx() & (1 << 31))
m_features |= CPUFeature::HYPERVISOR;
if (processor_info.edx() & (1 << 0))
m_features |= CPUFeature::FPU;
if (processor_info.edx() & (1 << 1))
m_features |= CPUFeature::VME;
if (processor_info.edx() & (1 << 2))
m_features |= CPUFeature::DE;
if (processor_info.edx() & (1 << 3))
m_features |= CPUFeature::PSE;
if (processor_info.edx() & (1 << 4))
m_features |= CPUFeature::TSC;
if (processor_info.edx() & (1 << 5))
m_features |= CPUFeature::MSR;
if (processor_info.edx() & (1 << 6))
m_features |= CPUFeature::PAE;
if (processor_info.edx() & (1 << 7))
m_features |= CPUFeature::MCE;
if (processor_info.edx() & (1 << 8))
m_features |= CPUFeature::CX8;
if (processor_info.edx() & (1 << 9))
m_features |= CPUFeature::APIC;
if (processor_info.edx() & (1 << 11))
handle_edx_bit_11_feature();
if (processor_info.edx() & (1 << 12))
m_features |= CPUFeature::MTRR;
if (processor_info.edx() & (1 << 13))
m_features |= CPUFeature::PGE;
if (processor_info.edx() & (1 << 14))
m_features |= CPUFeature::MCA;
if (processor_info.edx() & (1 << 15))
m_features |= CPUFeature::CMOV;
if (processor_info.edx() & (1 << 16))
m_features |= CPUFeature::PAT;
if (processor_info.edx() & (1 << 17))
m_features |= CPUFeature::PSE36;
if (processor_info.edx() & (1 << 18))
m_features |= CPUFeature::PSN;
if (processor_info.edx() & (1 << 19))
m_features |= CPUFeature::CLFLUSH;
if (processor_info.edx() & (1 << 21))
m_features |= CPUFeature::DS;
if (processor_info.edx() & (1 << 22))
m_features |= CPUFeature::ACPI;
if (processor_info.edx() & (1 << 23))
m_features |= CPUFeature::MMX;
if (processor_info.edx() & (1 << 24))
m_features |= CPUFeature::FXSR;
if (processor_info.edx() & (1 << 25))
m_features |= CPUFeature::SSE;
if (processor_info.edx() & (1 << 26))
m_features |= CPUFeature::SSE2;
if (processor_info.edx() & (1 << 27))
m_features |= CPUFeature::SS;
if (processor_info.edx() & (1 << 28))
m_features |= CPUFeature::HTT;
if (processor_info.edx() & (1 << 29))
m_features |= CPUFeature::TM;
if (processor_info.edx() & (1 << 30))
m_features |= CPUFeature::IA64;
if (processor_info.edx() & (1 << 31))
m_features |= CPUFeature::PBE;
CPUID extended_features(0x7);
if (extended_features.ebx() & (1 << 0))
m_features |= CPUFeature::FSGSBASE;
if (extended_features.ebx() & (1 << 1))
m_features |= CPUFeature::TSC_ADJUST;
if (extended_features.ebx() & (1 << 2))
m_features |= CPUFeature::SGX;
if (extended_features.ebx() & (1 << 3))
m_features |= CPUFeature::BMI1;
if (extended_features.ebx() & (1 << 4))
m_features |= CPUFeature::HLE;
if (extended_features.ebx() & (1 << 5))
m_features |= CPUFeature::AVX2;
if (extended_features.ebx() & (1 << 6))
m_features |= CPUFeature::FDP_EXCPTN_ONLY;
if (extended_features.ebx() & (1 << 7))
m_features |= CPUFeature::SMEP;
if (extended_features.ebx() & (1 << 8))
m_features |= CPUFeature::BMI2;
if (extended_features.ebx() & (1 << 9))
m_features |= CPUFeature::ERMS;
if (extended_features.ebx() & (1 << 10))
m_features |= CPUFeature::INVPCID;
if (extended_features.ebx() & (1 << 11))
m_features |= CPUFeature::RTM;
if (extended_features.ebx() & (1 << 12))
m_features |= CPUFeature::PQM;
if (extended_features.ebx() & (1 << 13))
m_features |= CPUFeature::ZERO_FCS_FDS;
if (extended_features.ebx() & (1 << 14))
m_features |= CPUFeature::MPX;
if (extended_features.ebx() & (1 << 15))
m_features |= CPUFeature::PQE;
if (extended_features.ebx() & (1 << 16))
m_features |= CPUFeature::AVX512_F;
if (extended_features.ebx() & (1 << 17))
m_features |= CPUFeature::AVX512_DQ;
if (extended_features.ebx() & (1 << 18))
m_features |= CPUFeature::RDSEED;
if (extended_features.ebx() & (1 << 19))
m_features |= CPUFeature::ADX;
if (extended_features.ebx() & (1 << 20))
m_features |= CPUFeature::SMAP;
if (extended_features.ebx() & (1 << 21))
m_features |= CPUFeature::AVX512_IFMA;
if (extended_features.ebx() & (1 << 22))
m_features |= CPUFeature::PCOMMIT;
if (extended_features.ebx() & (1 << 23))
m_features |= CPUFeature::CLFLUSHOPT;
if (extended_features.ebx() & (1 << 24))
m_features |= CPUFeature::CLWB;
if (extended_features.ebx() & (1 << 25))
m_features |= CPUFeature::INTEL_PT;
if (extended_features.ebx() & (1 << 26))
m_features |= CPUFeature::AVX512_PF;
if (extended_features.ebx() & (1 << 27))
m_features |= CPUFeature::AVX512_ER;
if (extended_features.ebx() & (1 << 28))
m_features |= CPUFeature::AVX512_CD;
if (extended_features.ebx() & (1 << 29))
m_features |= CPUFeature::SHA;
if (extended_features.ebx() & (1 << 30))
m_features |= CPUFeature::AVX512_BW;
if (extended_features.ebx() & (1 << 31))
m_features |= CPUFeature::AVX512_VL;
if (extended_features.ecx() & (1 << 0))
m_features |= CPUFeature::PREFETCHWT1;
if (extended_features.ecx() & (1 << 1))
m_features |= CPUFeature::AVX512_VBMI;
if (extended_features.ecx() & (1 << 2))
m_features |= CPUFeature::UMIP;
if (extended_features.ecx() & (1 << 3))
m_features |= CPUFeature::PKU;
if (extended_features.ecx() & (1 << 4))
m_features |= CPUFeature::OSPKE;
if (extended_features.ecx() & (1 << 5))
m_features |= CPUFeature::WAITPKG;
if (extended_features.ecx() & (1 << 6))
m_features |= CPUFeature::AVX512_VBMI2;
if (extended_features.ecx() & (1 << 7))
m_features |= CPUFeature::CET_SS;
if (extended_features.ecx() & (1 << 8))
m_features |= CPUFeature::GFNI;
if (extended_features.ecx() & (1 << 9))
m_features |= CPUFeature::VAES;
if (extended_features.ecx() & (1 << 10))
m_features |= CPUFeature::VPCLMULQDQ;
if (extended_features.ecx() & (1 << 11))
m_features |= CPUFeature::AVX512_VNNI;
if (extended_features.ecx() & (1 << 12))
m_features |= CPUFeature::AVX512_BITALG;
if (extended_features.ecx() & (1 << 13))
m_features |= CPUFeature::TME_EN;
if (extended_features.ecx() & (1 << 14))
m_features |= CPUFeature::AVX512_VPOPCNTDQ;
if (extended_features.ecx() & (1 << 16))
m_features |= CPUFeature::INTEL_5_LEVEL_PAGING;
if (extended_features.ecx() & (1 << 22))
m_features |= CPUFeature::RDPID;
if (extended_features.ecx() & (1 << 23))
m_features |= CPUFeature::KL;
if (extended_features.ecx() & (1 << 25))
m_features |= CPUFeature::CLDEMOTE;
if (extended_features.ecx() & (1 << 27))
m_features |= CPUFeature::MOVDIRI;
if (extended_features.ecx() & (1 << 28))
m_features |= CPUFeature::MOVDIR64B;
if (extended_features.ecx() & (1 << 29))
m_features |= CPUFeature::ENQCMD;
if (extended_features.ecx() & (1 << 30))
m_features |= CPUFeature::SGX_LC;
if (extended_features.ecx() & (1 << 31))
m_features |= CPUFeature::PKS;
if (extended_features.edx() & (1 << 2))
m_features |= CPUFeature::AVX512_4VNNIW;
if (extended_features.edx() & (1 << 3))
m_features |= CPUFeature::AVX512_4FMAPS;
if (extended_features.edx() & (1 << 4))
m_features |= CPUFeature::FSRM;
if (extended_features.edx() & (1 << 8))
m_features |= CPUFeature::AVX512_VP2INTERSECT;
if (extended_features.edx() & (1 << 9))
m_features |= CPUFeature::SRBDS_CTRL;
if (extended_features.edx() & (1 << 10))
m_features |= CPUFeature::MD_CLEAR;
if (extended_features.edx() & (1 << 11))
m_features |= CPUFeature::RTM_ALWAYS_ABORT;
if (extended_features.edx() & (1 << 13))
m_features |= CPUFeature::TSX_FORCE_ABORT;
if (extended_features.edx() & (1 << 14))
m_features |= CPUFeature::SERIALIZE;
if (extended_features.edx() & (1 << 15))
m_features |= CPUFeature::HYBRID;
if (extended_features.edx() & (1 << 16))
m_features |= CPUFeature::TSXLDTRK;
if (extended_features.edx() & (1 << 18))
m_features |= CPUFeature::PCONFIG;
if (extended_features.edx() & (1 << 19))
m_features |= CPUFeature::LBR;
if (extended_features.edx() & (1 << 20))
m_features |= CPUFeature::CET_IBT;
if (extended_features.edx() & (1 << 22))
m_features |= CPUFeature::AMX_BF16;
if (extended_features.edx() & (1 << 23))
m_features |= CPUFeature::AVX512_FP16;
if (extended_features.edx() & (1 << 24))
m_features |= CPUFeature::AMX_TILE;
if (extended_features.edx() & (1 << 25))
m_features |= CPUFeature::AMX_INT8;
if (extended_features.edx() & (1 << 26))
m_features |= CPUFeature::SPEC_CTRL;
if (extended_features.edx() & (1 << 27))
m_features |= CPUFeature::STIBP;
if (extended_features.edx() & (1 << 28))
m_features |= CPUFeature::L1D_FLUSH;
if (extended_features.edx() & (1 << 29))
m_features |= CPUFeature::IA32_ARCH_CAPABILITIES;
if (extended_features.edx() & (1 << 30))
m_features |= CPUFeature::IA32_CORE_CAPABILITIES;
if (extended_features.edx() & (1 << 31))
m_features |= CPUFeature::SSBD;
u32 max_extended_leaf = CPUID(0x80000000).eax();
if (max_extended_leaf >= 0x80000001) {
CPUID extended_processor_info(0x80000001);
if (extended_processor_info.ecx() & (1 << 0))
m_features |= CPUFeature::LAHF_LM;
if (extended_processor_info.ecx() & (1 << 1))
m_features |= CPUFeature::CMP_LEGACY;
if (extended_processor_info.ecx() & (1 << 2))
m_features |= CPUFeature::SVM;
if (extended_processor_info.ecx() & (1 << 3))
m_features |= CPUFeature::EXTAPIC;
if (extended_processor_info.ecx() & (1 << 4))
m_features |= CPUFeature::CR8_LEGACY;
if (extended_processor_info.ecx() & (1 << 5))
m_features |= CPUFeature::ABM;
if (extended_processor_info.ecx() & (1 << 6))
m_features |= CPUFeature::SSE4A;
if (extended_processor_info.ecx() & (1 << 7))
m_features |= CPUFeature::MISALIGNSSE;
if (extended_processor_info.ecx() & (1 << 8))
m_features |= CPUFeature::_3DNOWPREFETCH;
if (extended_processor_info.ecx() & (1 << 9))
m_features |= CPUFeature::OSVW;
if (extended_processor_info.ecx() & (1 << 10))
m_features |= CPUFeature::IBS;
if (extended_processor_info.ecx() & (1 << 11))
m_features |= CPUFeature::XOP;
if (extended_processor_info.ecx() & (1 << 12))
m_features |= CPUFeature::SKINIT;
if (extended_processor_info.ecx() & (1 << 13))
m_features |= CPUFeature::WDT;
if (extended_processor_info.ecx() & (1 << 15))
m_features |= CPUFeature::LWP;
if (extended_processor_info.ecx() & (1 << 16))
m_features |= CPUFeature::FMA4;
if (extended_processor_info.ecx() & (1 << 17))
m_features |= CPUFeature::TCE;
if (extended_processor_info.ecx() & (1 << 19))
m_features |= CPUFeature::NODEID_MSR;
if (extended_processor_info.ecx() & (1 << 21))
m_features |= CPUFeature::TBM;
if (extended_processor_info.ecx() & (1 << 22))
m_features |= CPUFeature::TOPOEXT;
if (extended_processor_info.ecx() & (1 << 23))
m_features |= CPUFeature::PERFCTR_CORE;
if (extended_processor_info.ecx() & (1 << 24))
m_features |= CPUFeature::PERFCTR_NB;
if (extended_processor_info.ecx() & (1 << 26))
m_features |= CPUFeature::DBX;
if (extended_processor_info.ecx() & (1 << 27))
m_features |= CPUFeature::PERFTSC;
if (extended_processor_info.ecx() & (1 << 28))
m_features |= CPUFeature::PCX_L2I;
if (extended_processor_info.edx() & (1 << 11))
m_features |= CPUFeature::SYSCALL; // Only available in 64 bit mode
if (extended_processor_info.edx() & (1 << 19))
m_features |= CPUFeature::MP;
if (extended_processor_info.edx() & (1 << 20))
m_features |= CPUFeature::NX;
if (extended_processor_info.edx() & (1 << 22))
m_features |= CPUFeature::MMXEXT;
if (extended_processor_info.edx() & (1 << 23))
m_features |= CPUFeature::RDTSCP;
if (extended_processor_info.edx() & (1 << 25))
m_features |= CPUFeature::FXSR_OPT;
if (extended_processor_info.edx() & (1 << 26))
m_features |= CPUFeature::PDPE1GB;
if (extended_processor_info.edx() & (1 << 27))
m_features |= CPUFeature::RDTSCP;
if (extended_processor_info.edx() & (1 << 29))
m_features |= CPUFeature::LM;
if (extended_processor_info.edx() & (1 << 30))
m_features |= CPUFeature::_3DNOWEXT;
if (extended_processor_info.edx() & (1 << 31))
m_features |= CPUFeature::_3DNOW;
}
if (max_extended_leaf >= 0x80000007) {
CPUID cpuid(0x80000007);
if (cpuid.edx() & (1 << 8)) {
m_features |= CPUFeature::CONSTANT_TSC;
m_features |= CPUFeature::NONSTOP_TSC;
}
}
#if ARCH(X86_64)
m_has_qemu_hvf_quirk = false;
#endif
if (max_extended_leaf >= 0x80000008) {
// CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the processor.
CPUID cpuid(0x80000008);
m_physical_address_bit_width = cpuid.eax() & 0xff;
// CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the processor.
m_virtual_address_bit_width = (cpuid.eax() >> 8) & 0xff;
} else {
// For processors that do not support CPUID function 80000008H, the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 and 32 otherwise.
m_physical_address_bit_width = has_feature(CPUFeature::PAE) ? 36 : 32;
// Processors that do not support CPUID function 80000008H, support a linear-address width of 32.
m_virtual_address_bit_width = 32;
#if ARCH(X86_64)
// Workaround QEMU hypervisor.framework bug
// https://gitlab.com/qemu-project/qemu/-/issues/664
//
// We detect this as follows:
// * We're in a hypervisor
// * hypervisor_leaf_range is null under Hypervisor.framework
// * m_physical_address_bit_width is 36 bits
if (has_feature(CPUFeature::HYPERVISOR)) {
CPUID hypervisor_leaf_range(0x40000000);
if (!hypervisor_leaf_range.ebx() && m_physical_address_bit_width == 36) {
m_has_qemu_hvf_quirk = true;
m_virtual_address_bit_width = 48;
}
}
#endif
}
}
UNMAP_AFTER_INIT void Processor::cpu_setup()
{
// NOTE: This is called during Processor::early_initialize, we cannot
// safely log at this point because we don't have kmalloc
// initialized yet!
cpu_detect();
if (has_feature(CPUFeature::SSE)) {
// enter_thread_context() assumes that if a x86 CPU supports SSE then it also supports FXSR.
// SSE support without FXSR is an extremely unlikely scenario, so let's be pragmatic about it.
VERIFY(has_feature(CPUFeature::FXSR));
sse_init();
}
write_cr0(read_cr0() | 0x00010000);
if (has_feature(CPUFeature::PGE)) {
// Turn on CR4.PGE so the CPU will respect the G bit in page tables.
write_cr4(read_cr4() | 0x80);
}
if (has_feature(CPUFeature::NX)) {
// Turn on IA32_EFER.NXE
MSR ia32_efer(MSR_IA32_EFER);
ia32_efer.set(ia32_efer.get() | 0x800);
}
if (has_feature(CPUFeature::PAT)) {
MSR ia32_pat(MSR_IA32_PAT);
// Set PA4 to Write Comine. This allows us to
// use this mode by only setting the bit in the PTE
// and leaving all other bits in the upper levels unset,
// which maps to setting bit 3 of the index, resulting
// in the index value 0 or 4.
u64 pat = ia32_pat.get() & ~(0x7ull << 32);
pat |= 0x1ull << 32; // set WC mode for PA4
ia32_pat.set(pat);
}
if (has_feature(CPUFeature::SMEP)) {
// Turn on CR4.SMEP
write_cr4(read_cr4() | 0x100000);
}
if (has_feature(CPUFeature::SMAP)) {
// Turn on CR4.SMAP
write_cr4(read_cr4() | 0x200000);
}
if (has_feature(CPUFeature::UMIP)) {
write_cr4(read_cr4() | 0x800);
}
if (has_feature(CPUFeature::XSAVE)) {
// Turn on CR4.OSXSAVE
write_cr4(read_cr4() | 0x40000);
// According to the Intel manual: "After reset, all bits (except bit 0) in XCR0 are cleared to zero; XCR0[0] is set to 1."
// Sadly we can't trust this, for example VirtualBox starts with bits 0-4 set, so let's do it ourselves.
write_xcr0(0x1);
if (has_feature(CPUFeature::AVX)) {
// Turn on SSE, AVX and x87 flags
write_xcr0(read_xcr0() | SIMD::StateComponent::AVX | SIMD::StateComponent::SSE | SIMD::StateComponent::X87);
}
}
#if ARCH(X86_64)
// x86_64 processors must support the syscall feature.
VERIFY(has_feature(CPUFeature::SYSCALL));
MSR efer_msr(MSR_EFER);
efer_msr.set(efer_msr.get() | 1u);
// Write code and stack selectors to the STAR MSR. The first value stored in bits 63:48 controls the sysret CS (value + 0x10) and SS (value + 0x8),
// and the value stored in bits 47:32 controls the syscall CS (value) and SS (value + 0x8).
u64 star = 0;
star |= 0x13ul << 48u;
star |= 0x08ul << 32u;
MSR star_msr(MSR_STAR);
star_msr.set(star);
// Write the syscall entry point to the LSTAR MSR.
MSR lstar_msr(MSR_LSTAR);
lstar_msr.set(reinterpret_cast<u64>(&syscall_entry));
// Write the SFMASK MSR. This MSR controls which bits of rflags are masked when a syscall instruction is executed -
// if a bit is set in sfmask, the corresponding bit in rflags is cleared. The value set here clears most of rflags,
// but keeps the reserved and virtualization bits intact. The userspace rflags value is saved in r11 by syscall.
constexpr u64 rflags_mask = 0x257fd5u;
MSR sfmask_msr(MSR_SFMASK);
sfmask_msr.set(rflags_mask);
if (has_feature(CPUFeature::FSGSBASE)) {
// Turn off CR4.FSGSBASE to ensure the current Processor base kernel address is not leaked via
// the RDGSBASE instruction until we implement proper GS swapping at the userspace/kernel boundaries
write_cr4(read_cr4() & ~0x10000);
}
#endif
// Query OS-enabled CPUID features again, and set the flags if needed.
CPUID processor_info(0x1);
if (processor_info.ecx() & (1 << 27))
m_features |= CPUFeature::OSXSAVE;
CPUID extended_features(0x7);
if (extended_features.ecx() & (1 << 4))
m_features |= CPUFeature::OSPKE;
}
UNMAP_AFTER_INIT void Processor::early_initialize(u32 cpu)
{
m_self = this;
m_cpu = cpu;
m_in_irq = 0;
m_in_critical = 0;
m_invoke_scheduler_async = false;
m_scheduler_initialized = false;
m_in_scheduler = true;
m_message_queue = nullptr;
m_idle_thread = nullptr;
m_current_thread = nullptr;
m_info = nullptr;
m_halt_requested = false;
if (cpu == 0) {
s_smp_enabled = false;
g_total_processors.store(1u, AK::MemoryOrder::memory_order_release);
} else {
g_total_processors.fetch_add(1u, AK::MemoryOrder::memory_order_acq_rel);
}
deferred_call_pool_init();
cpu_setup();
gdt_init();
VERIFY(is_initialized()); // sanity check
VERIFY(&current() == this); // sanity check
}
UNMAP_AFTER_INIT void Processor::initialize(u32 cpu)
{
VERIFY(m_self == this);
VERIFY(&current() == this); // sanity check
m_info = new ProcessorInfo(*this);
dmesgln("CPU[{}]: Supported features: {}", current_id(), m_info->features_string());
if (!has_feature(CPUFeature::RDRAND))
dmesgln("CPU[{}]: No RDRAND support detected, randomness will be poor", current_id());
dmesgln("CPU[{}]: Physical address bit width: {}", current_id(), m_physical_address_bit_width);
dmesgln("CPU[{}]: Virtual address bit width: {}", current_id(), m_virtual_address_bit_width);
#if ARCH(X86_64)
if (m_has_qemu_hvf_quirk)
dmesgln("CPU[{}]: Applied correction for QEMU Hypervisor.framework quirk", current_id());
#endif
if (cpu == 0)
initialize_interrupts();
else
flush_idt();
if (cpu == 0) {
VERIFY((FlatPtr(&s_clean_fpu_state) & 0xF) == 0);
asm volatile("fninit");
// Initialize AVX state
if (has_feature(CPUFeature::XSAVE | CPUFeature::AVX)) {
asm volatile("xsave %0\n"
: "=m"(s_clean_fpu_state)
: "a"(static_cast<u32>(SIMD::StateComponent::AVX | SIMD::StateComponent::SSE | SIMD::StateComponent::X87)), "d"(0u));
} else if (has_feature(CPUFeature::FXSR)) {
asm volatile("fxsave %0"
: "=m"(s_clean_fpu_state));
} else {
asm volatile("fnsave %0"
: "=m"(s_clean_fpu_state));
}
if (has_feature(CPUFeature::HYPERVISOR))
detect_hypervisor();
}
{
// We need to prevent races between APs starting up at the same time
VERIFY(cpu < s_processors.size());
s_processors[cpu] = this;
}
}
UNMAP_AFTER_INIT void Processor::detect_hypervisor()
{
CPUID hypervisor_leaf_range(0x40000000);
auto hypervisor_vendor_id_string = m_info->hypervisor_vendor_id_string();
dmesgln("CPU[{}]: CPUID hypervisor signature '{}', max leaf {:#x}", current_id(), hypervisor_vendor_id_string, hypervisor_leaf_range.eax());
if (hypervisor_vendor_id_string == "Microsoft Hv"sv)
detect_hypervisor_hyperv(hypervisor_leaf_range);
}
UNMAP_AFTER_INIT void Processor::detect_hypervisor_hyperv(CPUID const& hypervisor_leaf_range)
{
if (hypervisor_leaf_range.eax() < 0x40000001)
return;
CPUID hypervisor_interface(0x40000001);
// Get signature of hypervisor interface.
alignas(sizeof(u32)) char interface_signature_buffer[5];
*reinterpret_cast<u32*>(interface_signature_buffer) = hypervisor_interface.eax();
interface_signature_buffer[4] = '\0';
StringView hyperv_interface_signature { interface_signature_buffer, strlen(interface_signature_buffer) };
dmesgln("CPU[{}]: Hyper-V interface signature '{}' ({:#x})", current_id(), hyperv_interface_signature, hypervisor_interface.eax());
if (hypervisor_leaf_range.eax() < 0x40000001)
return;
CPUID hypervisor_sysid(0x40000002);
dmesgln("CPU[{}]: Hyper-V system identity {}.{}, build number {}", current_id(), hypervisor_sysid.ebx() >> 16, hypervisor_sysid.ebx() & 0xFFFF, hypervisor_sysid.eax());
if (hypervisor_leaf_range.eax() < 0x40000005 || hyperv_interface_signature != "Hv#1"sv)
return;
dmesgln("CPU[{}]: Hyper-V hypervisor detected", current_id());
// TODO: Actually do something with Hyper-V.
}
void Processor::write_raw_gdt_entry(u16 selector, u32 low, u32 high)
{
u16 i = (selector & 0xfffc) >> 3;
u32 prev_gdt_length = m_gdt_length;
if (i >= m_gdt_length) {
m_gdt_length = i + 1;
VERIFY(m_gdt_length <= sizeof(m_gdt) / sizeof(m_gdt[0]));
m_gdtr.limit = (m_gdt_length + 1) * 8 - 1;
}
m_gdt[i].low = low;
m_gdt[i].high = high;
// clear selectors we may have skipped
for (auto j = prev_gdt_length; j < i; ++j) {
m_gdt[j].low = 0;
m_gdt[j].high = 0;
}
}
void Processor::write_gdt_entry(u16 selector, Descriptor& descriptor)
{
write_raw_gdt_entry(selector, descriptor.low, descriptor.high);
}
Descriptor& Processor::get_gdt_entry(u16 selector)
{
u16 i = (selector & 0xfffc) >> 3;
return *(Descriptor*)(&m_gdt[i]);
}
void Processor::flush_gdt()
{
m_gdtr.address = m_gdt;
m_gdtr.limit = (m_gdt_length * 8) - 1;
asm volatile("lgdt %0" ::"m"(m_gdtr)
: "memory");
}
DescriptorTablePointer const& Processor::get_gdtr()
{
return m_gdtr;
}
ErrorOr<Vector<FlatPtr, 32>> Processor::capture_stack_trace(Thread& thread, size_t max_frames)
{
FlatPtr frame_ptr = 0, ip = 0;
Vector<FlatPtr, 32> stack_trace;
auto walk_stack = [&](FlatPtr stack_ptr) -> ErrorOr<void> {
constexpr size_t max_stack_frames = 4096;
bool is_walking_userspace_stack = false;
TRY(stack_trace.try_append(ip));
size_t count = 1;
while (stack_ptr && stack_trace.size() < max_stack_frames) {
FlatPtr retaddr;
count++;
if (max_frames != 0 && count > max_frames)
break;
if (!Memory::is_user_address(VirtualAddress { stack_ptr })) {
if (is_walking_userspace_stack) {
dbgln("SHENANIGANS! Userspace stack points back into kernel memory");
break;
}
} else {
is_walking_userspace_stack = true;
}
if (Memory::is_user_range(VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2)) {
if (copy_from_user(&retaddr, &((FlatPtr*)stack_ptr)[1]).is_error() || !retaddr)
break;
TRY(stack_trace.try_append(retaddr));
if (copy_from_user(&stack_ptr, (FlatPtr*)stack_ptr).is_error())
break;
} else {
void* fault_at;
if (!safe_memcpy(&retaddr, &((FlatPtr*)stack_ptr)[1], sizeof(FlatPtr), fault_at) || !retaddr)
break;
TRY(stack_trace.try_append(retaddr));
if (!safe_memcpy(&stack_ptr, (FlatPtr*)stack_ptr, sizeof(FlatPtr), fault_at))
break;
}
}
return {};
};
auto capture_current_thread = [&]() {
frame_ptr = (FlatPtr)__builtin_frame_address(0);
ip = (FlatPtr)__builtin_return_address(0);
return walk_stack(frame_ptr);
};
// Since the thread may be running on another processor, there
// is a chance a context switch may happen while we're trying
// to get it. It also won't be entirely accurate and merely
// reflect the status at the last context switch.
SpinlockLocker lock(g_scheduler_lock);
if (&thread == Processor::current_thread()) {
VERIFY(thread.state() == Thread::State::Running);
// Leave the scheduler lock. If we trigger page faults we may
// need to be preempted. Since this is our own thread it won't
// cause any problems as the stack won't change below this frame.
lock.unlock();
TRY(capture_current_thread());
} else if (thread.is_active()) {
VERIFY(thread.cpu() != Processor::current_id());
// If this is the case, the thread is currently running
// on another processor. We can't trust the kernel stack as
// it may be changing at any time. We need to probably send
// an IPI to that processor, have it walk the stack and wait
// until it returns the data back to us
auto& proc = Processor::current();
ErrorOr<void> result;
smp_unicast(
thread.cpu(),
[&]() {
dbgln("CPU[{}] getting stack for cpu #{}", Processor::current_id(), proc.id());
ScopedAddressSpaceSwitcher switcher(thread.process());
VERIFY(&Processor::current() != &proc);
VERIFY(&thread == Processor::current_thread());
// NOTE: Because the other processor is still holding the
// scheduler lock while waiting for this callback to finish,
// the current thread on the target processor cannot change
// TODO: What to do about page faults here? We might deadlock
// because the other processor is still holding the
// scheduler lock...
result = capture_current_thread();
},
false);
TRY(result);
} else {
switch (thread.state()) {
case Thread::State::Running:
VERIFY_NOT_REACHED(); // should have been handled above
case Thread::State::Runnable:
case Thread::State::Stopped:
case Thread::State::Blocked:
case Thread::State::Dying:
case Thread::State::Dead: {
// We need to retrieve ebp from what was last pushed to the kernel
// stack. Before switching out of that thread, it switch_context
// pushed the callee-saved registers, and the last of them happens
// to be ebp.
ScopedAddressSpaceSwitcher switcher(thread.process());
auto& regs = thread.regs();
auto* stack_top = reinterpret_cast<FlatPtr*>(regs.sp());
if (Memory::is_user_range(VirtualAddress(stack_top), sizeof(FlatPtr))) {
if (copy_from_user(&frame_ptr, &((FlatPtr*)stack_top)[0]).is_error())
frame_ptr = 0;
} else {
void* fault_at;
if (!safe_memcpy(&frame_ptr, &((FlatPtr*)stack_top)[0], sizeof(FlatPtr), fault_at))
frame_ptr = 0;
}
ip = regs.ip();
// TODO: We need to leave the scheduler lock here, but we also
// need to prevent the target thread from being run while
// we walk the stack
lock.unlock();
TRY(walk_stack(frame_ptr));
break;
}
default:
dbgln("Cannot capture stack trace for thread {} in state {}", thread, thread.state_string());
break;
}
}
return stack_trace;
}
ProcessorContainer& Processor::processors()
{
return s_processors;
}
Processor& Processor::by_id(u32 id)
{
return *s_processors[id];
}
void Processor::enter_trap(TrapFrame& trap, bool raise_irq)
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(&Processor::current() == this);
trap.prev_irq_level = m_in_irq;
if (raise_irq)
m_in_irq++;
auto* current_thread = Processor::current_thread();
if (current_thread) {
auto& current_trap = current_thread->current_trap();
trap.next_trap = current_trap;
current_trap = &trap;
// The cs register of this trap tells us where we will return back to
auto new_previous_mode = ((trap.regs->cs & 3) != 0) ? Thread::PreviousMode::UserMode : Thread::PreviousMode::KernelMode;
if (current_thread->set_previous_mode(new_previous_mode) && trap.prev_irq_level == 0) {
current_thread->update_time_scheduled(Scheduler::current_time(), new_previous_mode == Thread::PreviousMode::KernelMode, false);
}
} else {
trap.next_trap = nullptr;
}
}
void Processor::exit_trap(TrapFrame& trap)
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(&Processor::current() == this);
// Temporarily enter a critical section. This is to prevent critical
// sections entered and left within e.g. smp_process_pending_messages
// to trigger a context switch while we're executing this function
// See the comment at the end of the function why we don't use
// ScopedCritical here.
m_in_critical = m_in_critical + 1;
VERIFY(m_in_irq >= trap.prev_irq_level);
m_in_irq = trap.prev_irq_level;
if (s_smp_enabled)
smp_process_pending_messages();
// Process the deferred call queue. Among other things, this ensures
// that any pending thread unblocks happen before we enter the scheduler.
deferred_call_execute_pending();
auto* current_thread = Processor::current_thread();
if (current_thread) {
auto& current_trap = current_thread->current_trap();
current_trap = trap.next_trap;
Thread::PreviousMode new_previous_mode;
if (current_trap) {
VERIFY(current_trap->regs);
// If we have another higher level trap then we probably returned
// from an interrupt or irq handler. The cs register of the
// new/higher level trap tells us what the mode prior to it was
new_previous_mode = ((current_trap->regs->cs & 3) != 0) ? Thread::PreviousMode::UserMode : Thread::PreviousMode::KernelMode;
} else {
// If we don't have a higher level trap then we're back in user mode.
// Which means that the previous mode prior to being back in user mode was kernel mode
new_previous_mode = Thread::PreviousMode::KernelMode;
}
if (current_thread->set_previous_mode(new_previous_mode))
current_thread->update_time_scheduled(Scheduler::current_time(), true, false);
}
VERIFY_INTERRUPTS_DISABLED();
// Leave the critical section without actually enabling interrupts.
// We don't want context switches to happen until we're explicitly
// triggering a switch in check_invoke_scheduler.
m_in_critical = m_in_critical - 1;
if (!m_in_irq && !m_in_critical)
check_invoke_scheduler();
}
void Processor::check_invoke_scheduler()
{
InterruptDisabler disabler;
VERIFY(!m_in_irq);
VERIFY(!m_in_critical);
VERIFY(&Processor::current() == this);
if (m_invoke_scheduler_async && m_scheduler_initialized) {
m_invoke_scheduler_async = false;
Scheduler::invoke_async();
}
}
void Processor::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
{
auto ptr = vaddr.as_ptr();
while (page_count > 0) {
// clang-format off
asm volatile("invlpg %0"
:
: "m"(*ptr)
: "memory");
// clang-format on
ptr += PAGE_SIZE;
page_count--;
}
}
void Processor::flush_tlb(Memory::PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
{
if (s_smp_enabled && (!Memory::is_user_address(vaddr) || Process::current().thread_count() > 1))
smp_broadcast_flush_tlb(page_directory, vaddr, page_count);
else
flush_tlb_local(vaddr, page_count);
}
void Processor::smp_return_to_pool(ProcessorMessage& msg)
{
ProcessorMessage* next = nullptr;
for (;;) {
msg.next = next;
if (s_message_pool.compare_exchange_strong(next, &msg, AK::MemoryOrder::memory_order_acq_rel))
break;
Processor::pause();
}
}
ProcessorMessage& Processor::smp_get_from_pool()
{
ProcessorMessage* msg;
// The assumption is that messages are never removed from the pool!
for (;;) {
msg = s_message_pool.load(AK::MemoryOrder::memory_order_consume);
if (!msg) {
if (!Processor::current().smp_process_pending_messages()) {
Processor::pause();
}
continue;
}
// If another processor were to use this message in the meanwhile,
// "msg" is still valid (because it never gets freed). We'd detect
// this because the expected value "msg" and pool would
// no longer match, and the compare_exchange will fail. But accessing
// "msg->next" is always safe here.
if (s_message_pool.compare_exchange_strong(msg, msg->next, AK::MemoryOrder::memory_order_acq_rel)) {
// We successfully "popped" this available message
break;
}
}
VERIFY(msg != nullptr);
return *msg;
}
u32 Processor::smp_wake_n_idle_processors(u32 wake_count)
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(wake_count > 0);
if (!s_smp_enabled)
return 0;
// Wake at most N - 1 processors
if (wake_count >= Processor::count()) {
wake_count = Processor::count() - 1;
VERIFY(wake_count > 0);
}
u32 current_id = Processor::current_id();
u32 did_wake_count = 0;
auto& apic = APIC::the();
while (did_wake_count < wake_count) {
// Try to get a set of idle CPUs and flip them to busy
u32 idle_mask = s_idle_cpu_mask.load(AK::MemoryOrder::memory_order_relaxed) & ~(1u << current_id);
u32 idle_count = popcount(idle_mask);
if (idle_count == 0)
break; // No (more) idle processor available
u32 found_mask = 0;
for (u32 i = 0; i < idle_count; i++) {
u32 cpu = bit_scan_forward(idle_mask) - 1;
idle_mask &= ~(1u << cpu);
found_mask |= 1u << cpu;
}
idle_mask = s_idle_cpu_mask.fetch_and(~found_mask, AK::MemoryOrder::memory_order_acq_rel) & found_mask;
if (idle_mask == 0)
continue; // All of them were flipped to busy, try again
idle_count = popcount(idle_mask);
for (u32 i = 0; i < idle_count; i++) {
u32 cpu = bit_scan_forward(idle_mask) - 1;
idle_mask &= ~(1u << cpu);
// Send an IPI to that CPU to wake it up. There is a possibility
// someone else woke it up as well, or that it woke up due to
// a timer interrupt. But we tried hard to avoid this...
apic.send_ipi(cpu);
did_wake_count++;
}
}
return did_wake_count;
}
UNMAP_AFTER_INIT void Processor::smp_enable()
{
size_t msg_pool_size = Processor::count() * 100u;
size_t msg_entries_cnt = Processor::count();
auto msgs = new ProcessorMessage[msg_pool_size];
auto msg_entries = new ProcessorMessageEntry[msg_pool_size * msg_entries_cnt];
size_t msg_entry_i = 0;
for (size_t i = 0; i < msg_pool_size; i++, msg_entry_i += msg_entries_cnt) {
auto& msg = msgs[i];
msg.next = i < msg_pool_size - 1 ? &msgs[i + 1] : nullptr;
msg.per_proc_entries = &msg_entries[msg_entry_i];
for (size_t k = 0; k < msg_entries_cnt; k++)
msg_entries[msg_entry_i + k].msg = &msg;
}
s_message_pool.store(&msgs[0], AK::MemoryOrder::memory_order_release);
// Start sending IPI messages
s_smp_enabled = true;
}
void Processor::smp_cleanup_message(ProcessorMessage& msg)
{
switch (msg.type) {
case ProcessorMessage::Callback:
msg.callback_value().~Function();
break;
default:
break;
}
}
bool Processor::smp_process_pending_messages()
{
VERIFY(s_smp_enabled);
bool did_process = false;
enter_critical();
if (auto pending_msgs = m_message_queue.exchange(nullptr, AK::MemoryOrder::memory_order_acq_rel)) {
// We pulled the stack of pending messages in LIFO order, so we need to reverse the list first
auto reverse_list =
[](ProcessorMessageEntry* list) -> ProcessorMessageEntry* {
ProcessorMessageEntry* rev_list = nullptr;
while (list) {
auto next = list->next;
list->next = rev_list;
rev_list = list;
list = next;
}
return rev_list;
};
pending_msgs = reverse_list(pending_msgs);
// now process in the right order
ProcessorMessageEntry* next_msg;
for (auto cur_msg = pending_msgs; cur_msg; cur_msg = next_msg) {
next_msg = cur_msg->next;
auto msg = cur_msg->msg;
dbgln_if(SMP_DEBUG, "SMP[{}]: Processing message {}", current_id(), VirtualAddress(msg));
switch (msg->type) {
case ProcessorMessage::Callback:
msg->invoke_callback();
break;
case ProcessorMessage::FlushTlb:
if (Memory::is_user_address(VirtualAddress(msg->flush_tlb.ptr))) {
// We assume that we don't cross into kernel land!
VERIFY(Memory::is_user_range(VirtualAddress(msg->flush_tlb.ptr), msg->flush_tlb.page_count * PAGE_SIZE));
if (read_cr3() != msg->flush_tlb.page_directory->cr3()) {
// This processor isn't using this page directory right now, we can ignore this request
dbgln_if(SMP_DEBUG, "SMP[{}]: No need to flush {} pages at {}", current_id(), msg->flush_tlb.page_count, VirtualAddress(msg->flush_tlb.ptr));
break;
}
}
flush_tlb_local(VirtualAddress(msg->flush_tlb.ptr), msg->flush_tlb.page_count);
break;
}
bool is_async = msg->async; // Need to cache this value *before* dropping the ref count!
auto prev_refs = msg->refs.fetch_sub(1u, AK::MemoryOrder::memory_order_acq_rel);
VERIFY(prev_refs != 0);
if (prev_refs == 1) {
// All processors handled this. If this is an async message,
// we need to clean it up and return it to the pool
if (is_async) {
smp_cleanup_message(*msg);
smp_return_to_pool(*msg);
}
}
if (m_halt_requested.load(AK::MemoryOrder::memory_order_relaxed))
halt_this();
}
did_process = true;
} else if (m_halt_requested.load(AK::MemoryOrder::memory_order_relaxed)) {
halt_this();
}
leave_critical();
return did_process;
}
bool Processor::smp_enqueue_message(ProcessorMessage& msg)
{
// Note that it's quite possible that the other processor may pop
// the queue at any given time. We rely on the fact that the messages
// are pooled and never get freed!
auto& msg_entry = msg.per_proc_entries[id()];
VERIFY(msg_entry.msg == &msg);
ProcessorMessageEntry* next = nullptr;
for (;;) {
msg_entry.next = next;
if (m_message_queue.compare_exchange_strong(next, &msg_entry, AK::MemoryOrder::memory_order_acq_rel))
break;
Processor::pause();
}
// If the enqueued message was the only message in the queue when posted,
// we return true. This is used by callers when deciding whether to generate an IPI.
return next == nullptr;
}
void Processor::smp_broadcast_message(ProcessorMessage& msg)
{
auto& current_processor = Processor::current();
dbgln_if(SMP_DEBUG, "SMP[{}]: Broadcast message {} to cpus: {} processor: {}", current_processor.id(), VirtualAddress(&msg), count(), VirtualAddress(&current_processor));
msg.refs.store(count() - 1, AK::MemoryOrder::memory_order_release);
VERIFY(msg.refs > 0);
bool need_broadcast = false;
for_each(
[&](Processor& proc) {
if (&proc != &current_processor) {
if (proc.smp_enqueue_message(msg))
need_broadcast = true;
}
});
// Now trigger an IPI on all other APs (unless all targets already had messages queued)
if (need_broadcast)
APIC::the().broadcast_ipi();
}
void Processor::smp_broadcast_wait_sync(ProcessorMessage& msg)
{
auto& cur_proc = Processor::current();
VERIFY(!msg.async);
// If synchronous then we must cleanup and return the message back
// to the pool. Otherwise, the last processor to complete it will return it
while (msg.refs.load(AK::MemoryOrder::memory_order_consume) != 0) {
Processor::pause();
// We need to process any messages that may have been sent to
// us while we're waiting. This also checks if another processor
// may have requested us to halt.
cur_proc.smp_process_pending_messages();
}
smp_cleanup_message(msg);
smp_return_to_pool(msg);
}
void Processor::smp_unicast_message(u32 cpu, ProcessorMessage& msg, bool async)
{
auto& current_processor = Processor::current();
VERIFY(cpu != current_processor.id());
auto& target_processor = processors()[cpu];
msg.async = async;
dbgln_if(SMP_DEBUG, "SMP[{}]: Send message {} to cpu #{} processor: {}", current_processor.id(), VirtualAddress(&msg), cpu, VirtualAddress(&target_processor));
msg.refs.store(1u, AK::MemoryOrder::memory_order_release);
if (target_processor->smp_enqueue_message(msg)) {
APIC::the().send_ipi(cpu);
}
if (!async) {
// If synchronous then we must cleanup and return the message back
// to the pool. Otherwise, the last processor to complete it will return it
while (msg.refs.load(AK::MemoryOrder::memory_order_consume) != 0) {
Processor::pause();
// We need to process any messages that may have been sent to
// us while we're waiting. This also checks if another processor
// may have requested us to halt.
current_processor.smp_process_pending_messages();
}
smp_cleanup_message(msg);
smp_return_to_pool(msg);
}
}
void Processor::smp_unicast(u32 cpu, Function<void()> callback, bool async)
{
auto& msg = smp_get_from_pool();
msg.type = ProcessorMessage::Callback;
new (msg.callback_storage) ProcessorMessage::CallbackFunction(move(callback));
smp_unicast_message(cpu, msg, async);
}
void Processor::smp_broadcast_flush_tlb(Memory::PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
{
auto& msg = smp_get_from_pool();
msg.async = false;
msg.type = ProcessorMessage::FlushTlb;
msg.flush_tlb.page_directory = page_directory;
msg.flush_tlb.ptr = vaddr.as_ptr();
msg.flush_tlb.page_count = page_count;
smp_broadcast_message(msg);
// While the other processors handle this request, we'll flush ours
flush_tlb_local(vaddr, page_count);
// Now wait until everybody is done as well
smp_broadcast_wait_sync(msg);
}
void Processor::smp_broadcast_halt()
{
// We don't want to use a message, because this could have been triggered
// by being out of memory and we might not be able to get a message
for_each(
[&](Processor& proc) {
proc.m_halt_requested.store(true, AK::MemoryOrder::memory_order_release);
});
// Now trigger an IPI on all other APs
APIC::the().broadcast_ipi();
}
void Processor::Processor::halt()
{
if (s_smp_enabled)
smp_broadcast_halt();
halt_this();
}
UNMAP_AFTER_INIT void Processor::deferred_call_pool_init()
{
size_t pool_count = sizeof(m_deferred_call_pool) / sizeof(m_deferred_call_pool[0]);
for (size_t i = 0; i < pool_count; i++) {
auto& entry = m_deferred_call_pool[i];
entry.next = i < pool_count - 1 ? &m_deferred_call_pool[i + 1] : nullptr;
new (entry.handler_storage) DeferredCallEntry::HandlerFunction;
entry.was_allocated = false;
}
m_pending_deferred_calls = nullptr;
m_free_deferred_call_pool_entry = &m_deferred_call_pool[0];
}
void Processor::deferred_call_return_to_pool(DeferredCallEntry* entry)
{
VERIFY(m_in_critical);
VERIFY(!entry->was_allocated);
entry->handler_value() = {};
entry->next = m_free_deferred_call_pool_entry;
m_free_deferred_call_pool_entry = entry;
}
DeferredCallEntry* Processor::deferred_call_get_free()
{
VERIFY(m_in_critical);
if (m_free_deferred_call_pool_entry) {
// Fast path, we have an entry in our pool
auto* entry = m_free_deferred_call_pool_entry;
m_free_deferred_call_pool_entry = entry->next;
VERIFY(!entry->was_allocated);
return entry;
}
auto* entry = new DeferredCallEntry;
new (entry->handler_storage) DeferredCallEntry::HandlerFunction;
entry->was_allocated = true;
return entry;
}
void Processor::deferred_call_execute_pending()
{
VERIFY(m_in_critical);
if (!m_pending_deferred_calls)
return;
auto* pending_list = m_pending_deferred_calls;
m_pending_deferred_calls = nullptr;
// We pulled the stack of pending deferred calls in LIFO order, so we need to reverse the list first
auto reverse_list =
[](DeferredCallEntry* list) -> DeferredCallEntry* {
DeferredCallEntry* rev_list = nullptr;
while (list) {
auto next = list->next;
list->next = rev_list;
rev_list = list;
list = next;
}
return rev_list;
};
pending_list = reverse_list(pending_list);
do {
pending_list->invoke_handler();
// Return the entry back to the pool, or free it
auto* next = pending_list->next;
if (pending_list->was_allocated) {
pending_list->handler_value().~Function();
delete pending_list;
} else
deferred_call_return_to_pool(pending_list);
pending_list = next;
} while (pending_list);
}
void Processor::deferred_call_queue_entry(DeferredCallEntry* entry)
{
VERIFY(m_in_critical);
entry->next = m_pending_deferred_calls;
m_pending_deferred_calls = entry;
}
void Processor::deferred_call_queue(Function<void()> callback)
{
// NOTE: If we are called outside of a critical section and outside
// of an irq handler, the function will be executed before we return!
ScopedCritical critical;
auto& cur_proc = Processor::current();
auto* entry = cur_proc.deferred_call_get_free();
entry->handler_value() = move(callback);
cur_proc.deferred_call_queue_entry(entry);
}
UNMAP_AFTER_INIT void Processor::gdt_init()
{
m_gdt_length = 0;
m_gdtr.address = nullptr;
m_gdtr.limit = 0;
write_raw_gdt_entry(0x0000, 0x00000000, 0x00000000);
#if ARCH(I386)
write_raw_gdt_entry(GDT_SELECTOR_CODE0, 0x0000ffff, 0x00cf9a00); // code0
write_raw_gdt_entry(GDT_SELECTOR_DATA0, 0x0000ffff, 0x00cf9200); // data0
write_raw_gdt_entry(GDT_SELECTOR_CODE3, 0x0000ffff, 0x00cffa00); // code3
write_raw_gdt_entry(GDT_SELECTOR_DATA3, 0x0000ffff, 0x00cff200); // data3
#else
write_raw_gdt_entry(GDT_SELECTOR_CODE0, 0x0000ffff, 0x00af9a00); // code0
write_raw_gdt_entry(GDT_SELECTOR_DATA0, 0x0000ffff, 0x00af9200); // data0
write_raw_gdt_entry(GDT_SELECTOR_DATA3, 0x0000ffff, 0x008ff200); // data3
write_raw_gdt_entry(GDT_SELECTOR_CODE3, 0x0000ffff, 0x00affa00); // code3
#endif
#if ARCH(I386)
Descriptor tls_descriptor {};
tls_descriptor.low = tls_descriptor.high = 0;
tls_descriptor.dpl = 3;
tls_descriptor.segment_present = 1;
tls_descriptor.granularity = 0;
tls_descriptor.operation_size64 = 0;
tls_descriptor.operation_size32 = 1;
tls_descriptor.descriptor_type = 1;
tls_descriptor.type = 2;
write_gdt_entry(GDT_SELECTOR_TLS, tls_descriptor); // tls3
Descriptor gs_descriptor {};
gs_descriptor.set_base(VirtualAddress { this });
gs_descriptor.set_limit(sizeof(Processor) - 1);
gs_descriptor.dpl = 0;
gs_descriptor.segment_present = 1;
gs_descriptor.granularity = 0;
gs_descriptor.operation_size64 = 0;
gs_descriptor.operation_size32 = 1;
gs_descriptor.descriptor_type = 1;
gs_descriptor.type = 2;
write_gdt_entry(GDT_SELECTOR_PROC, gs_descriptor); // gs0
#endif
Descriptor tss_descriptor {};
tss_descriptor.set_base(VirtualAddress { (size_t)&m_tss & 0xffffffff });
tss_descriptor.set_limit(sizeof(TSS) - 1);
tss_descriptor.dpl = 0;
tss_descriptor.segment_present = 1;
tss_descriptor.granularity = 0;
tss_descriptor.operation_size64 = 0;
tss_descriptor.operation_size32 = 1;
tss_descriptor.descriptor_type = 0;
tss_descriptor.type = Descriptor::SystemType::AvailableTSS;
write_gdt_entry(GDT_SELECTOR_TSS, tss_descriptor); // tss
#if ARCH(X86_64)
Descriptor tss_descriptor_part2 {};
tss_descriptor_part2.low = (size_t)&m_tss >> 32;
write_gdt_entry(GDT_SELECTOR_TSS_PART2, tss_descriptor_part2);
#endif
flush_gdt();
load_task_register(GDT_SELECTOR_TSS);
#if ARCH(X86_64)
MSR gs_base(MSR_GS_BASE);
gs_base.set((u64)this);
#else
asm volatile(
"mov %%ax, %%ds\n"
"mov %%ax, %%es\n"
"mov %%ax, %%fs\n"
"mov %%ax, %%ss\n" ::"a"(GDT_SELECTOR_DATA0)
: "memory");
set_gs(GDT_SELECTOR_PROC);
#endif
#if ARCH(I386)
// Make sure CS points to the kernel code descriptor.
// clang-format off
asm volatile(
"ljmpl $" __STRINGIFY(GDT_SELECTOR_CODE0) ", $sanity\n"
"sanity:\n");
// clang-format on
#endif
}
extern "C" void context_first_init([[maybe_unused]] Thread* from_thread, [[maybe_unused]] Thread* to_thread, [[maybe_unused]] TrapFrame* trap)
{
VERIFY(!are_interrupts_enabled());
VERIFY(is_kernel_mode());
dbgln_if(CONTEXT_SWITCH_DEBUG, "switch_context <-- from {} {} to {} {} (context_first_init)", VirtualAddress(from_thread), *from_thread, VirtualAddress(to_thread), *to_thread);
VERIFY(to_thread == Thread::current());
Scheduler::enter_current(*from_thread);
auto in_critical = to_thread->saved_critical();
VERIFY(in_critical > 0);
Processor::restore_in_critical(in_critical);
// Since we got here and don't have Scheduler::context_switch in the
// call stack (because this is the first time we switched into this
// context), we need to notify the scheduler so that it can release
// the scheduler lock. We don't want to enable interrupts at this point
// as we're still in the middle of a context switch. Doing so could
// trigger a context switch within a context switch, leading to a crash.
FlatPtr flags = trap->regs->flags();
Scheduler::leave_on_first_switch(flags & ~0x200);
}
extern "C" void enter_thread_context(Thread* from_thread, Thread* to_thread)
{
VERIFY(from_thread == to_thread || from_thread->state() != Thread::State::Running);
VERIFY(to_thread->state() == Thread::State::Running);
bool has_fxsr = Processor::current().has_feature(CPUFeature::FXSR);
bool has_xsave_avx_support = Processor::current().has_feature(CPUFeature::XSAVE) && Processor::current().has_feature(CPUFeature::AVX);
Processor::set_current_thread(*to_thread);
auto& from_regs = from_thread->regs();
auto& to_regs = to_thread->regs();
// NOTE: IOPL should never be non-zero in any situation, so let's panic immediately
// instead of carrying on with elevated I/O privileges.
VERIFY(get_iopl_from_eflags(to_regs.flags()) == 0);
if (has_xsave_avx_support) {
// The specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the logical-AND of EDX:EAX and XCR0.
// https://www.moritz.systems/blog/how-debuggers-work-getting-and-setting-x86-registers-part-2/
asm volatile("xsave %0\n"
: "=m"(from_thread->fpu_state())
: "a"(static_cast<u32>(SIMD::StateComponent::AVX | SIMD::StateComponent::SSE | SIMD::StateComponent::X87)), "d"(0u));
} else if (has_fxsr) {
asm volatile("fxsave %0"
: "=m"(from_thread->fpu_state()));
} else {
asm volatile("fnsave %0"
: "=m"(from_thread->fpu_state()));
}
#if ARCH(I386)
from_regs.fs = get_fs();
from_regs.gs = get_gs();
set_fs(to_regs.fs);
set_gs(to_regs.gs);
#endif
if (from_thread->process().is_traced())
read_debug_registers_into(from_thread->debug_register_state());
if (to_thread->process().is_traced()) {
write_debug_registers_from(to_thread->debug_register_state());
} else {
clear_debug_registers();
}
auto& processor = Processor::current();
#if ARCH(I386)
auto& tls_descriptor = processor.get_gdt_entry(GDT_SELECTOR_TLS);
tls_descriptor.set_base(to_thread->thread_specific_data());
tls_descriptor.set_limit(to_thread->thread_specific_region_size());
#else
MSR fs_base_msr(MSR_FS_BASE);
fs_base_msr.set(to_thread->thread_specific_data().get());
#endif
if (from_regs.cr3 != to_regs.cr3)
write_cr3(to_regs.cr3);
to_thread->set_cpu(processor.id());
auto in_critical = to_thread->saved_critical();
VERIFY(in_critical > 0);
Processor::restore_in_critical(in_critical);
if (has_xsave_avx_support)
asm volatile("xrstor %0" ::"m"(to_thread->fpu_state()), "a"(static_cast<u32>(SIMD::StateComponent::AVX | SIMD::StateComponent::SSE | SIMD::StateComponent::X87)), "d"(0u));
else if (has_fxsr)
asm volatile("fxrstor %0" ::"m"(to_thread->fpu_state()));
else
asm volatile("frstor %0" ::"m"(to_thread->fpu_state()));
}
extern "C" FlatPtr do_init_context(Thread* thread, u32 flags)
{
VERIFY_INTERRUPTS_DISABLED();
thread->regs().set_flags(flags);
return Processor::current().init_context(*thread, true);
}
void Processor::assume_context(Thread& thread, FlatPtr flags)
{
dbgln_if(CONTEXT_SWITCH_DEBUG, "Assume context for thread {} {}", VirtualAddress(&thread), thread);
VERIFY_INTERRUPTS_DISABLED();
Scheduler::prepare_after_exec();
// in_critical() should be 2 here. The critical section in Process::exec
// and then the scheduler lock
VERIFY(Processor::in_critical() == 2);
do_assume_context(&thread, flags);
VERIFY_NOT_REACHED();
}
u64 Processor::time_spent_idle() const
{
return m_idle_thread->time_in_user() + m_idle_thread->time_in_kernel();
}
}