
Make sure that userspace is always referencing "system" headers in a way that would build on target :). This means removing the explicit include_directories of Libraries/LibC in favor of having it export its headers as SYSTEM. Also remove a redundant include_directories of Libraries in the 'serenity build' part of the build script. It's already set at the top. This causes issues for the Kernel, and for crt0.o. These special cases are handled individually.
467 lines
11 KiB
C++
467 lines
11 KiB
C++
/*
|
|
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
|
|
template<size_t>
|
|
constexpr double e_to_power();
|
|
template<>
|
|
constexpr double e_to_power<0>() { return 1; }
|
|
template<size_t exponent>
|
|
constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
|
|
|
|
template<size_t>
|
|
constexpr size_t factorial();
|
|
template<>
|
|
constexpr size_t factorial<0>() { return 1; }
|
|
template<size_t value>
|
|
constexpr size_t factorial() { return value * factorial<value - 1>(); }
|
|
|
|
template<size_t>
|
|
constexpr size_t product_even();
|
|
template<>
|
|
constexpr size_t product_even<2>() { return 2; }
|
|
template<size_t value>
|
|
constexpr size_t product_even() { return value * product_even<value - 2>(); }
|
|
|
|
template<size_t>
|
|
constexpr size_t product_odd();
|
|
template<>
|
|
constexpr size_t product_odd<1>() { return 1; }
|
|
template<size_t value>
|
|
constexpr size_t product_odd() { return value * product_odd<value - 2>(); }
|
|
|
|
extern "C" {
|
|
|
|
double trunc(double x)
|
|
{
|
|
return (int64_t)x;
|
|
}
|
|
|
|
double cos(double angle)
|
|
{
|
|
return sin(angle + M_PI_2);
|
|
}
|
|
|
|
float cosf(float angle)
|
|
{
|
|
return sinf(angle + M_PI_2);
|
|
}
|
|
|
|
// This can also be done with a taylor expansion, but for
|
|
// now this works pretty well (and doesn't mess anything up
|
|
// in quake in particular, which is very Floating-Point precision
|
|
// heavy)
|
|
double sin(double angle)
|
|
{
|
|
double ret = 0.0;
|
|
__asm__(
|
|
"fsin"
|
|
: "=t"(ret)
|
|
: "0"(angle));
|
|
|
|
return ret;
|
|
}
|
|
|
|
float sinf(float angle)
|
|
{
|
|
float ret = 0.0f;
|
|
__asm__(
|
|
"fsin"
|
|
: "=t"(ret)
|
|
: "0"(angle));
|
|
return ret;
|
|
}
|
|
|
|
double pow(double x, double y)
|
|
{
|
|
// FIXME: Please fix me. I am naive.
|
|
if (y == 0)
|
|
return 1;
|
|
if (y == 1)
|
|
return x;
|
|
int y_as_int = (int)y;
|
|
if (y == (double)y_as_int) {
|
|
double result = x;
|
|
for (int i = 0; i < abs(y) - 1; ++i)
|
|
result *= x;
|
|
if (y < 0)
|
|
result = 1.0 / result;
|
|
return result;
|
|
}
|
|
return exp(y * log(x));
|
|
}
|
|
|
|
float powf(float x, float y)
|
|
{
|
|
// FIXME: Please fix me. I am naive.
|
|
if (y == 0)
|
|
return 1;
|
|
if (y == 1)
|
|
return x;
|
|
int y_as_int = (int)y;
|
|
if (y == (float)y_as_int) {
|
|
float result = x;
|
|
for (int i = 0; i < abs(y) - 1; ++i)
|
|
result *= x;
|
|
if (y < 0)
|
|
result = 1.0 / result;
|
|
return result;
|
|
}
|
|
return (float)exp((double)y * log((double)x));
|
|
}
|
|
|
|
double ldexp(double x, int exp)
|
|
{
|
|
// FIXME: Please fix me. I am naive.
|
|
double val = pow(2, exp);
|
|
return x * val;
|
|
}
|
|
|
|
double tanh(double x)
|
|
{
|
|
if (x > 0) {
|
|
double exponentiated = exp(2 * x);
|
|
return (exponentiated - 1) / (exponentiated + 1);
|
|
}
|
|
double plusX = exp(x);
|
|
double minusX = 1 / plusX;
|
|
return (plusX - minusX) / (plusX + minusX);
|
|
}
|
|
|
|
double ampsin(double angle)
|
|
{
|
|
double looped_angle = fmod(M_PI + angle, M_TAU) - M_PI;
|
|
double looped_angle_squared = looped_angle * looped_angle;
|
|
|
|
double quadratic_term;
|
|
if (looped_angle > 0) {
|
|
quadratic_term = -looped_angle_squared;
|
|
} else {
|
|
quadratic_term = looped_angle_squared;
|
|
}
|
|
|
|
double linear_term = M_PI * looped_angle;
|
|
|
|
return quadratic_term + linear_term;
|
|
}
|
|
|
|
double tan(double angle)
|
|
{
|
|
return ampsin(angle) / ampsin(M_PI_2 + angle);
|
|
}
|
|
|
|
double sqrt(double x)
|
|
{
|
|
double res;
|
|
__asm__("fsqrt"
|
|
: "=t"(res)
|
|
: "0"(x));
|
|
return res;
|
|
}
|
|
|
|
float sqrtf(float x)
|
|
{
|
|
float res;
|
|
__asm__("fsqrt"
|
|
: "=t"(res)
|
|
: "0"(x));
|
|
return res;
|
|
}
|
|
|
|
double sinh(double x)
|
|
{
|
|
double exponentiated = exp(x);
|
|
if (x > 0)
|
|
return (exponentiated * exponentiated - 1) / 2 / exponentiated;
|
|
return (exponentiated - 1 / exponentiated) / 2;
|
|
}
|
|
|
|
double log10(double x)
|
|
{
|
|
return log(x) / M_LN10;
|
|
}
|
|
|
|
double log(double x)
|
|
{
|
|
if (x < 0)
|
|
return __builtin_nan("");
|
|
if (x == 0)
|
|
return -__builtin_huge_val();
|
|
double y = 1 + 2 * (x - 1) / (x + 1);
|
|
double exponentiated = exp(y);
|
|
y = y + 2 * (x - exponentiated) / (x + exponentiated);
|
|
exponentiated = exp(y);
|
|
y = y + 2 * (x - exponentiated) / (x + exponentiated);
|
|
exponentiated = exp(y);
|
|
return y + 2 * (x - exponentiated) / (x + exponentiated);
|
|
}
|
|
|
|
float logf(float x)
|
|
{
|
|
return (float)log(x);
|
|
}
|
|
|
|
double fmod(double index, double period)
|
|
{
|
|
return index - trunc(index / period) * period;
|
|
}
|
|
|
|
float fmodf(float index, float period)
|
|
{
|
|
return index - trunc(index / period) * period;
|
|
}
|
|
|
|
double exp(double exponent)
|
|
{
|
|
double result = 1;
|
|
if (exponent >= 1) {
|
|
size_t integer_part = (size_t)exponent;
|
|
if (integer_part & 1)
|
|
result *= e_to_power<1>();
|
|
if (integer_part & 2)
|
|
result *= e_to_power<2>();
|
|
if (integer_part > 3) {
|
|
if (integer_part & 4)
|
|
result *= e_to_power<4>();
|
|
if (integer_part & 8)
|
|
result *= e_to_power<8>();
|
|
if (integer_part & 16)
|
|
result *= e_to_power<16>();
|
|
if (integer_part & 32)
|
|
result *= e_to_power<32>();
|
|
if (integer_part >= 64)
|
|
return __builtin_huge_val();
|
|
}
|
|
exponent -= integer_part;
|
|
} else if (exponent < 0)
|
|
return 1 / exp(-exponent);
|
|
double taylor_series_result = 1 + exponent;
|
|
double taylor_series_numerator = exponent * exponent;
|
|
taylor_series_result += taylor_series_numerator / factorial<2>();
|
|
taylor_series_numerator *= exponent;
|
|
taylor_series_result += taylor_series_numerator / factorial<3>();
|
|
taylor_series_numerator *= exponent;
|
|
taylor_series_result += taylor_series_numerator / factorial<4>();
|
|
taylor_series_numerator *= exponent;
|
|
taylor_series_result += taylor_series_numerator / factorial<5>();
|
|
return result * taylor_series_result;
|
|
}
|
|
|
|
float expf(float exponent)
|
|
{
|
|
return (float)exp(exponent);
|
|
}
|
|
|
|
double cosh(double x)
|
|
{
|
|
double exponentiated = exp(-x);
|
|
if (x < 0)
|
|
return (1 + exponentiated * exponentiated) / 2 / exponentiated;
|
|
return (1 / exponentiated + exponentiated) / 2;
|
|
}
|
|
|
|
double atan2(double y, double x)
|
|
{
|
|
if (x > 0)
|
|
return atan(y / x);
|
|
if (x == 0) {
|
|
if (y > 0)
|
|
return M_PI_2;
|
|
if (y < 0)
|
|
return -M_PI_2;
|
|
return 0;
|
|
}
|
|
if (y >= 0)
|
|
return atan(y / x) + M_PI;
|
|
return atan(y / x) - M_PI;
|
|
}
|
|
|
|
float atan2f(float y, float x)
|
|
{
|
|
return (float)atan2(y, x);
|
|
}
|
|
|
|
double atan(double x)
|
|
{
|
|
if (x < 0)
|
|
return -atan(-x);
|
|
if (x > 1)
|
|
return M_PI_2 - atan(1 / x);
|
|
double squared = x * x;
|
|
return x / (1 + 1 * 1 * squared / (3 + 2 * 2 * squared / (5 + 3 * 3 * squared / (7 + 4 * 4 * squared / (9 + 5 * 5 * squared / (11 + 6 * 6 * squared / (13 + 7 * 7 * squared)))))));
|
|
}
|
|
|
|
double asin(double x)
|
|
{
|
|
if (x > 1 || x < -1)
|
|
return __builtin_nan("");
|
|
if (x > 0.5 || x < -0.5)
|
|
return 2 * atan(x / (1 + sqrt(1 - x * x)));
|
|
double squared = x * x;
|
|
double value = x;
|
|
double i = x * squared;
|
|
value += i * product_odd<1>() / product_even<2>() / 3;
|
|
i *= squared;
|
|
value += i * product_odd<3>() / product_even<4>() / 5;
|
|
i *= squared;
|
|
value += i * product_odd<5>() / product_even<6>() / 7;
|
|
i *= squared;
|
|
value += i * product_odd<7>() / product_even<8>() / 9;
|
|
i *= squared;
|
|
value += i * product_odd<9>() / product_even<10>() / 11;
|
|
i *= squared;
|
|
value += i * product_odd<11>() / product_even<12>() / 13;
|
|
return value;
|
|
}
|
|
|
|
float asinf(float x)
|
|
{
|
|
return (float)asin(x);
|
|
}
|
|
|
|
double acos(double x)
|
|
{
|
|
return M_PI_2 - asin(x);
|
|
}
|
|
|
|
float acosf(float x)
|
|
{
|
|
return M_PI_2 - asinf(x);
|
|
}
|
|
|
|
double fabs(double value)
|
|
{
|
|
return value < 0 ? -value : value;
|
|
}
|
|
|
|
double log2(double x)
|
|
{
|
|
return log(x) / M_LN2;
|
|
}
|
|
|
|
float log2f(float x)
|
|
{
|
|
return log2(x);
|
|
}
|
|
|
|
long double log2l(long double x)
|
|
{
|
|
return log2(x);
|
|
}
|
|
|
|
double frexp(double, int*)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
float frexpf(float, int*)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
long double frexpl(long double, int*)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
double round(double value)
|
|
{
|
|
// FIXME: Please fix me. I am naive.
|
|
if (value >= 0.0)
|
|
return (double)(int)(value + 0.5);
|
|
return (double)(int)(value - 0.5);
|
|
}
|
|
|
|
float roundf(float value)
|
|
{
|
|
// FIXME: Please fix me. I am naive.
|
|
if (value >= 0.0f)
|
|
return (float)(int)(value + 0.5f);
|
|
return (float)(int)(value - 0.5f);
|
|
}
|
|
|
|
float floorf(float value)
|
|
{
|
|
if (value >= 0)
|
|
return (int)value;
|
|
int intvalue = (int)value;
|
|
return ((float)intvalue == value) ? intvalue : intvalue - 1;
|
|
}
|
|
|
|
double floor(double value)
|
|
{
|
|
if (value >= 0)
|
|
return (int)value;
|
|
int intvalue = (int)value;
|
|
return ((double)intvalue == value) ? intvalue : intvalue - 1;
|
|
}
|
|
|
|
double rint(double value)
|
|
{
|
|
return (int)roundf(value);
|
|
}
|
|
|
|
float ceilf(float value)
|
|
{
|
|
// FIXME: Please fix me. I am naive.
|
|
int as_int = (int)value;
|
|
if (value == (float)as_int)
|
|
return as_int;
|
|
if (value < 0) {
|
|
if (as_int == 0)
|
|
return -0;
|
|
return as_int;
|
|
}
|
|
return as_int + 1;
|
|
}
|
|
|
|
double ceil(double value)
|
|
{
|
|
// FIXME: Please fix me. I am naive.
|
|
int as_int = (int)value;
|
|
if (value == (double)as_int)
|
|
return as_int;
|
|
if (value < 0) {
|
|
if (as_int == 0)
|
|
return -0;
|
|
return as_int;
|
|
}
|
|
return as_int + 1;
|
|
}
|
|
|
|
double modf(double x, double* intpart)
|
|
{
|
|
*intpart = (double)((int)(x));
|
|
return x - (int)x;
|
|
}
|
|
}
|