276 lines
6.3 KiB
C++
276 lines
6.3 KiB
C++
#include <LibC/assert.h>
|
|
#include <LibM/math.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
|
|
template<size_t>
|
|
constexpr double e_to_power();
|
|
template<>
|
|
constexpr double e_to_power<0>() { return 1; }
|
|
template<size_t exponent>
|
|
constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
|
|
|
|
template<size_t>
|
|
constexpr size_t factorial();
|
|
template<>
|
|
constexpr size_t factorial<0>() { return 1; }
|
|
template<size_t value>
|
|
constexpr size_t factorial() { return value * factorial<value - 1>(); }
|
|
|
|
template<size_t>
|
|
constexpr size_t product_even();
|
|
template<>
|
|
constexpr size_t product_even<2>() { return 2; }
|
|
template<size_t value>
|
|
constexpr size_t product_even() { return value * product_even<value - 2>(); }
|
|
|
|
template<size_t>
|
|
constexpr size_t product_odd();
|
|
template<>
|
|
constexpr size_t product_odd<1>() { return 1; }
|
|
template<size_t value>
|
|
constexpr size_t product_odd() { return value * product_odd<value - 2>(); }
|
|
|
|
extern "C" {
|
|
double trunc(double x)
|
|
{
|
|
return (int64_t)x;
|
|
}
|
|
|
|
double cos(double angle)
|
|
{
|
|
return sin(angle + M_PI_2);
|
|
}
|
|
|
|
double ampsin(double angle)
|
|
{
|
|
double looped_angle = fmod(M_PI + angle, M_TAU) - M_PI;
|
|
double looped_angle_squared = looped_angle * looped_angle;
|
|
|
|
double quadratic_term;
|
|
if (looped_angle > 0) {
|
|
quadratic_term = -looped_angle_squared;
|
|
} else {
|
|
quadratic_term = looped_angle_squared;
|
|
}
|
|
|
|
double linear_term = M_PI * looped_angle;
|
|
|
|
return quadratic_term + linear_term;
|
|
}
|
|
|
|
double sin(double angle)
|
|
{
|
|
double vertical_scaling = M_PI_2 * M_PI_2;
|
|
return ampsin(angle) / vertical_scaling;
|
|
}
|
|
|
|
double pow(double x, double y)
|
|
{
|
|
(void)x;
|
|
(void)y;
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
double ldexp(double, int exp)
|
|
{
|
|
(void)exp;
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
double tanh(double x)
|
|
{
|
|
if (x > 0) {
|
|
double exponentiated = exp(2 * x);
|
|
return (exponentiated - 1) / (exponentiated + 1);
|
|
}
|
|
double plusX = exp(x);
|
|
double minusX = 1 / plusX;
|
|
return (plusX - minusX) / (plusX + minusX);
|
|
}
|
|
|
|
double tan(double angle)
|
|
{
|
|
return ampsin(angle) / ampsin(M_PI_2 + angle);
|
|
}
|
|
|
|
double sqrt(double x)
|
|
{
|
|
double res;
|
|
__asm__("fsqrt"
|
|
: "=t"(res)
|
|
: "0"(x));
|
|
return res;
|
|
}
|
|
|
|
double sinh(double x)
|
|
{
|
|
double exponentiated = exp(x);
|
|
if (x > 0)
|
|
return (exponentiated * exponentiated - 1) / 2 / exponentiated;
|
|
return (exponentiated - 1 / exponentiated) / 2;
|
|
}
|
|
|
|
double log10(double x)
|
|
{
|
|
return log(x) / M_LN10;
|
|
}
|
|
|
|
double log(double x)
|
|
{
|
|
if (x < 0)
|
|
return __builtin_nan("");
|
|
if (x == 0)
|
|
return -__builtin_huge_val();
|
|
double y = 1 + 2 * (x - 1) / (x + 1);
|
|
double exponentiated = exp(y);
|
|
y = y + 2 * (x - exponentiated) / (x + exponentiated);
|
|
exponentiated = exp(y);
|
|
y = y + 2 * (x - exponentiated) / (x + exponentiated);
|
|
exponentiated = exp(y);
|
|
return y + 2 * (x - exponentiated) / (x + exponentiated);
|
|
}
|
|
|
|
double fmod(double index, double period)
|
|
{
|
|
return index - trunc(index / period) * period;
|
|
}
|
|
|
|
double exp(double exponent)
|
|
{
|
|
double result = 1;
|
|
if (exponent >= 1) {
|
|
size_t integer_part = (size_t)exponent;
|
|
if (integer_part & 1)
|
|
result *= e_to_power<1>();
|
|
if (integer_part & 2)
|
|
result *= e_to_power<2>();
|
|
if (integer_part > 3) {
|
|
if (integer_part & 4)
|
|
result *= e_to_power<4>();
|
|
if (integer_part & 8)
|
|
result *= e_to_power<8>();
|
|
if (integer_part & 16)
|
|
result *= e_to_power<16>();
|
|
if (integer_part & 32)
|
|
result *= e_to_power<32>();
|
|
if (integer_part >= 64)
|
|
return __builtin_huge_val();
|
|
}
|
|
exponent -= integer_part;
|
|
} else if (exponent < 0)
|
|
return 1 / exp(-exponent);
|
|
double taylor_series_result = 1 + exponent;
|
|
double taylor_series_numerator = exponent * exponent;
|
|
taylor_series_result += taylor_series_numerator / factorial<2>();
|
|
taylor_series_numerator *= exponent;
|
|
taylor_series_result += taylor_series_numerator / factorial<3>();
|
|
taylor_series_numerator *= exponent;
|
|
taylor_series_result += taylor_series_numerator / factorial<4>();
|
|
taylor_series_numerator *= exponent;
|
|
taylor_series_result += taylor_series_numerator / factorial<5>();
|
|
return result * taylor_series_result;
|
|
}
|
|
|
|
double cosh(double x)
|
|
{
|
|
double exponentiated = exp(-x);
|
|
if (x < 0)
|
|
return (1 + exponentiated * exponentiated) / 2 / exponentiated;
|
|
return (1 / exponentiated + exponentiated) / 2;
|
|
}
|
|
|
|
double atan2(double y, double x)
|
|
{
|
|
if (x > 0)
|
|
return atan(y / x);
|
|
if (x == 0) {
|
|
if (y > 0)
|
|
return M_PI_2;
|
|
if (y < 0)
|
|
return -M_PI_2;
|
|
return 0;
|
|
}
|
|
if (y >= 0)
|
|
return atan(y / x) + M_PI;
|
|
return atan(y / x) - M_PI;
|
|
}
|
|
|
|
double atan(double x)
|
|
{
|
|
if (x < 0)
|
|
return -atan(-x);
|
|
if (x > 1)
|
|
return M_PI_2 - atan(1 / x);
|
|
double squared = x * x;
|
|
return x / (1 + 1 * 1 * squared / (3 + 2 * 2 * squared / (5 + 3 * 3 * squared / (7 + 4 * 4 * squared / (9 + 5 * 5 * squared / (11 + 6 * 6 * squared / (13 + 7 * 7 * squared)))))));
|
|
}
|
|
|
|
double asin(double x)
|
|
{
|
|
if (x > 1 || x < -1)
|
|
return __builtin_nan("");
|
|
if (x > 0.5 || x < -0.5)
|
|
return 2 * atan(x / (1 + sqrt(1 - x * x)));
|
|
double squared = x * x;
|
|
double value = x;
|
|
double i = x * squared;
|
|
value += i * product_odd<1>() / product_even<2>() / 3;
|
|
i *= squared;
|
|
value += i * product_odd<3>() / product_even<4>() / 5;
|
|
i *= squared;
|
|
value += i * product_odd<5>() / product_even<6>() / 7;
|
|
i *= squared;
|
|
value += i * product_odd<7>() / product_even<8>() / 9;
|
|
i *= squared;
|
|
value += i * product_odd<9>() / product_even<10>() / 11;
|
|
i *= squared;
|
|
value += i * product_odd<11>() / product_even<12>() / 13;
|
|
return value;
|
|
}
|
|
|
|
double acos(double x)
|
|
{
|
|
return M_PI_2 - asin(x);
|
|
}
|
|
|
|
double fabs(double value)
|
|
{
|
|
return value < 0 ? -value : value;
|
|
}
|
|
|
|
double log2(double x)
|
|
{
|
|
return log(x) / M_LN2;
|
|
}
|
|
|
|
float log2f(float x)
|
|
{
|
|
return log2(x);
|
|
}
|
|
|
|
long double log2l(long double x)
|
|
{
|
|
return log2(x);
|
|
}
|
|
|
|
double frexp(double, int*)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
float frexpf(float, int*)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
long double frexpl(long double, int*)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
}
|