
No noticeable difference a bit faster. This is still arbitrary and should be somehow derived from the curve.
629 lines
21 KiB
C++
629 lines
21 KiB
C++
/*
|
|
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Function.h>
|
|
#include <AK/HashTable.h>
|
|
#include <AK/Math.h>
|
|
#include <AK/QuickSort.h>
|
|
#include <AK/StringBuilder.h>
|
|
#include <AK/TypeCasts.h>
|
|
#include <LibGfx/BoundingBox.h>
|
|
#include <LibGfx/Font/ScaledFont.h>
|
|
#include <LibGfx/Painter.h>
|
|
#include <LibGfx/Path.h>
|
|
#include <LibGfx/TextLayout.h>
|
|
|
|
namespace Gfx {
|
|
|
|
void Path::approximate_elliptical_arc_with_cubic_beziers(FloatPoint center, FloatSize radii, float x_axis_rotation, float theta, float theta_delta)
|
|
{
|
|
float sin_x_rotation;
|
|
float cos_x_rotation;
|
|
AK::sincos(x_axis_rotation, sin_x_rotation, cos_x_rotation);
|
|
auto arc_point_and_derivative = [&](float t, FloatPoint& point, FloatPoint& derivative) {
|
|
float sin_angle;
|
|
float cos_angle;
|
|
AK::sincos(t, sin_angle, cos_angle);
|
|
point = FloatPoint {
|
|
center.x()
|
|
+ radii.width() * cos_x_rotation * cos_angle
|
|
- radii.height() * sin_x_rotation * sin_angle,
|
|
center.y()
|
|
+ radii.width() * sin_x_rotation * cos_angle
|
|
+ radii.height() * cos_x_rotation * sin_angle,
|
|
};
|
|
derivative = FloatPoint {
|
|
-radii.width() * cos_x_rotation * sin_angle
|
|
- radii.height() * sin_x_rotation * cos_angle,
|
|
-radii.width() * sin_x_rotation * sin_angle
|
|
+ radii.height() * cos_x_rotation * cos_angle,
|
|
};
|
|
};
|
|
auto approximate_arc_between = [&](float start_angle, float end_angle) {
|
|
auto t = AK::tan((end_angle - start_angle) / 2);
|
|
auto alpha = AK::sin(end_angle - start_angle) * ((AK::sqrt(4 + 3 * t * t) - 1) / 3);
|
|
FloatPoint p1, d1;
|
|
FloatPoint p2, d2;
|
|
arc_point_and_derivative(start_angle, p1, d1);
|
|
arc_point_and_derivative(end_angle, p2, d2);
|
|
auto q1 = p1 + d1.scaled(alpha, alpha);
|
|
auto q2 = p2 - d2.scaled(alpha, alpha);
|
|
cubic_bezier_curve_to(q1, q2, p2);
|
|
};
|
|
// FIXME: Come up with a more mathematically sound step size (using some error calculation).
|
|
auto step = theta_delta;
|
|
int step_count = 1;
|
|
while (fabs(step) > AK::Pi<float> / 4) {
|
|
step /= 2;
|
|
step_count *= 2;
|
|
}
|
|
float prev = theta;
|
|
float t = prev + step;
|
|
for (int i = 0; i < step_count; i++, prev = t, t += step)
|
|
approximate_arc_between(prev, t);
|
|
}
|
|
|
|
void Path::elliptical_arc_to(FloatPoint point, FloatSize radii, float x_axis_rotation, bool large_arc, bool sweep)
|
|
{
|
|
auto next_point = point;
|
|
|
|
double rx = radii.width();
|
|
double ry = radii.height();
|
|
|
|
double x_axis_rotation_s;
|
|
double x_axis_rotation_c;
|
|
AK::sincos(static_cast<double>(x_axis_rotation), x_axis_rotation_s, x_axis_rotation_c);
|
|
FloatPoint last_point = this->last_point();
|
|
|
|
// Step 1 of out-of-range radii correction
|
|
if (rx == 0.0 || ry == 0.0) {
|
|
append_segment<LineSegment>(next_point);
|
|
return;
|
|
}
|
|
|
|
// Step 2 of out-of-range radii correction
|
|
if (rx < 0)
|
|
rx *= -1.0;
|
|
if (ry < 0)
|
|
ry *= -1.0;
|
|
|
|
// POSSIBLY HACK: Handle the case where both points are the same.
|
|
auto same_endpoints = next_point == last_point;
|
|
if (same_endpoints) {
|
|
if (!large_arc) {
|
|
// Nothing is going to be drawn anyway.
|
|
return;
|
|
}
|
|
|
|
// Move the endpoint by a small amount to avoid division by zero.
|
|
next_point.translate_by(0.01f, 0.01f);
|
|
}
|
|
|
|
// Find (cx, cy), theta_1, theta_delta
|
|
// Step 1: Compute (x1', y1')
|
|
auto x_avg = static_cast<double>(last_point.x() - next_point.x()) / 2.0;
|
|
auto y_avg = static_cast<double>(last_point.y() - next_point.y()) / 2.0;
|
|
auto x1p = x_axis_rotation_c * x_avg + x_axis_rotation_s * y_avg;
|
|
auto y1p = -x_axis_rotation_s * x_avg + x_axis_rotation_c * y_avg;
|
|
|
|
// Step 2: Compute (cx', cy')
|
|
double x1p_sq = x1p * x1p;
|
|
double y1p_sq = y1p * y1p;
|
|
double rx_sq = rx * rx;
|
|
double ry_sq = ry * ry;
|
|
|
|
// Step 3 of out-of-range radii correction
|
|
double lambda = x1p_sq / rx_sq + y1p_sq / ry_sq;
|
|
double multiplier;
|
|
|
|
if (lambda > 1.0) {
|
|
auto lambda_sqrt = AK::sqrt(lambda);
|
|
rx *= lambda_sqrt;
|
|
ry *= lambda_sqrt;
|
|
multiplier = 0.0;
|
|
} else {
|
|
double numerator = rx_sq * ry_sq - rx_sq * y1p_sq - ry_sq * x1p_sq;
|
|
double denominator = rx_sq * y1p_sq + ry_sq * x1p_sq;
|
|
multiplier = AK::sqrt(AK::max(0., numerator) / denominator);
|
|
}
|
|
|
|
if (large_arc == sweep)
|
|
multiplier *= -1.0;
|
|
|
|
double cxp = multiplier * rx * y1p / ry;
|
|
double cyp = multiplier * -ry * x1p / rx;
|
|
|
|
// Step 3: Compute (cx, cy) from (cx', cy')
|
|
x_avg = (last_point.x() + next_point.x()) / 2.0f;
|
|
y_avg = (last_point.y() + next_point.y()) / 2.0f;
|
|
double cx = x_axis_rotation_c * cxp - x_axis_rotation_s * cyp + x_avg;
|
|
double cy = x_axis_rotation_s * cxp + x_axis_rotation_c * cyp + y_avg;
|
|
|
|
double theta_1 = AK::atan2((y1p - cyp) / ry, (x1p - cxp) / rx);
|
|
double theta_2 = AK::atan2((-y1p - cyp) / ry, (-x1p - cxp) / rx);
|
|
|
|
auto theta_delta = theta_2 - theta_1;
|
|
|
|
if (!sweep && theta_delta > 0.0) {
|
|
theta_delta -= 2 * AK::Pi<double>;
|
|
} else if (sweep && theta_delta < 0) {
|
|
theta_delta += 2 * AK::Pi<double>;
|
|
}
|
|
|
|
approximate_elliptical_arc_with_cubic_beziers(
|
|
{ cx, cy },
|
|
{ rx, ry },
|
|
x_axis_rotation,
|
|
theta_1,
|
|
theta_delta);
|
|
}
|
|
|
|
void Path::text(Utf8View text, Font const& font)
|
|
{
|
|
if (!is<ScaledFont>(font)) {
|
|
// FIXME: This API only accepts Gfx::Font for ease of use.
|
|
dbgln("Cannot path-ify bitmap fonts!");
|
|
return;
|
|
}
|
|
|
|
auto& scaled_font = static_cast<ScaledFont const&>(font);
|
|
auto font_list = Gfx::FontCascadeList::create();
|
|
font_list->add(scaled_font);
|
|
for_each_glyph_position(
|
|
last_point(), text, font_list, [&](DrawGlyphOrEmoji glyph_or_emoji) {
|
|
if (glyph_or_emoji.has<DrawGlyph>()) {
|
|
auto& glyph = glyph_or_emoji.get<DrawGlyph>();
|
|
move_to(glyph.position);
|
|
auto glyph_id = scaled_font.glyph_id_for_code_point(glyph.code_point);
|
|
scaled_font.append_glyph_path_to(*this, glyph_id);
|
|
}
|
|
},
|
|
IncludeLeftBearing::Yes);
|
|
}
|
|
|
|
Path Path::place_text_along(Utf8View text, Font const& font) const
|
|
{
|
|
if (!is<ScaledFont>(font)) {
|
|
// FIXME: This API only accepts Gfx::Font for ease of use.
|
|
dbgln("Cannot path-ify bitmap fonts!");
|
|
return {};
|
|
}
|
|
|
|
auto& lines = split_lines();
|
|
auto next_point_for_offset = [&, line_index = 0U, distance_along_path = 0.0f, last_line_length = 0.0f](float offset) mutable -> Optional<FloatPoint> {
|
|
while (line_index < lines.size() && offset > distance_along_path) {
|
|
last_line_length = lines[line_index++].length();
|
|
distance_along_path += last_line_length;
|
|
}
|
|
if (offset > distance_along_path)
|
|
return {};
|
|
if (last_line_length > 1) {
|
|
// If the last line segment was fairly long, compute the point in the line.
|
|
float p = (last_line_length + offset - distance_along_path) / last_line_length;
|
|
auto current_line = lines[line_index - 1];
|
|
return current_line.a() + (current_line.b() - current_line.a()).scaled(p);
|
|
}
|
|
if (line_index >= lines.size())
|
|
return {};
|
|
return lines[line_index].a();
|
|
};
|
|
|
|
auto font_list = Gfx::FontCascadeList::create();
|
|
font_list->add(font);
|
|
auto& scaled_font = static_cast<Gfx::ScaledFont const&>(font);
|
|
|
|
Gfx::Path result_path;
|
|
Gfx::for_each_glyph_position(
|
|
{}, text, font_list, [&](Gfx::DrawGlyphOrEmoji glyph_or_emoji) {
|
|
auto* glyph = glyph_or_emoji.get_pointer<Gfx::DrawGlyph>();
|
|
if (!glyph)
|
|
return;
|
|
auto offset = glyph->position.x();
|
|
auto width = font.glyph_width(glyph->code_point);
|
|
auto start = next_point_for_offset(offset);
|
|
if (!start.has_value())
|
|
return;
|
|
auto end = next_point_for_offset(offset + width);
|
|
if (!end.has_value())
|
|
return;
|
|
// Find the angle between the start and end points on the path.
|
|
auto delta = *end - *start;
|
|
auto angle = AK::atan2(delta.y(), delta.x());
|
|
Gfx::Path glyph_path;
|
|
// Rotate the glyph then move it to start point.
|
|
auto glyph_id = scaled_font.glyph_id_for_code_point(glyph->code_point);
|
|
scaled_font.append_glyph_path_to(glyph_path, glyph_id);
|
|
auto transform = Gfx::AffineTransform {}
|
|
.translate(*start)
|
|
.multiply(Gfx::AffineTransform {}.rotate_radians(angle))
|
|
.multiply(Gfx::AffineTransform {}.translate({ 0, -scaled_font.pixel_metrics().ascent }));
|
|
glyph_path = glyph_path.copy_transformed(transform);
|
|
result_path.append_path(glyph_path);
|
|
},
|
|
Gfx::IncludeLeftBearing::Yes);
|
|
return result_path;
|
|
}
|
|
|
|
FloatPoint Path::last_point()
|
|
{
|
|
FloatPoint last_point { 0, 0 };
|
|
if (!m_segments.is_empty())
|
|
last_point = m_segments.last()->point();
|
|
return last_point;
|
|
}
|
|
|
|
void Path::close()
|
|
{
|
|
if (m_segments.size() <= 1)
|
|
return;
|
|
|
|
auto last_point = m_segments.last()->point();
|
|
|
|
for (ssize_t i = m_segments.size() - 1; i >= 0; --i) {
|
|
auto& segment = m_segments[i];
|
|
if (segment->type() == Segment::Type::MoveTo) {
|
|
if (last_point == segment->point())
|
|
return;
|
|
append_segment<LineSegment>(segment->point());
|
|
invalidate_split_lines();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Path::close_all_subpaths()
|
|
{
|
|
if (m_segments.size() <= 1)
|
|
return;
|
|
|
|
invalidate_split_lines();
|
|
|
|
Optional<FloatPoint> cursor, start_of_subpath;
|
|
bool is_first_point_in_subpath { false };
|
|
|
|
auto close_previous_subpath = [&] {
|
|
if (cursor.has_value() && !is_first_point_in_subpath) {
|
|
// This is a move from a subpath to another
|
|
// connect the two ends of this subpath before
|
|
// moving on to the next one
|
|
VERIFY(start_of_subpath.has_value());
|
|
|
|
append_segment<MoveSegment>(cursor.value());
|
|
append_segment<LineSegment>(start_of_subpath.value());
|
|
}
|
|
};
|
|
|
|
auto segment_count = m_segments.size();
|
|
for (size_t i = 0; i < segment_count; i++) {
|
|
// Note: We need to use m_segments[i] as append_segment() may invalidate any references.
|
|
switch (m_segments[i]->type()) {
|
|
case Segment::Type::MoveTo: {
|
|
close_previous_subpath();
|
|
is_first_point_in_subpath = true;
|
|
cursor = m_segments[i]->point();
|
|
break;
|
|
}
|
|
case Segment::Type::LineTo:
|
|
case Segment::Type::QuadraticBezierCurveTo:
|
|
case Segment::Type::CubicBezierCurveTo:
|
|
if (is_first_point_in_subpath) {
|
|
start_of_subpath = cursor;
|
|
is_first_point_in_subpath = false;
|
|
}
|
|
cursor = m_segments[i]->point();
|
|
break;
|
|
case Segment::Type::Invalid:
|
|
VERIFY_NOT_REACHED();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (m_segments.last()->type() != Segment::Type::MoveTo)
|
|
close_previous_subpath();
|
|
}
|
|
|
|
ByteString Path::to_byte_string() const
|
|
{
|
|
StringBuilder builder;
|
|
builder.append("Path { "sv);
|
|
for (auto& segment : m_segments) {
|
|
switch (segment->type()) {
|
|
case Segment::Type::MoveTo:
|
|
builder.append("MoveTo"sv);
|
|
break;
|
|
case Segment::Type::LineTo:
|
|
builder.append("LineTo"sv);
|
|
break;
|
|
case Segment::Type::QuadraticBezierCurveTo:
|
|
builder.append("QuadraticBezierCurveTo"sv);
|
|
break;
|
|
case Segment::Type::CubicBezierCurveTo:
|
|
builder.append("CubicBezierCurveTo"sv);
|
|
break;
|
|
case Segment::Type::Invalid:
|
|
builder.append("Invalid"sv);
|
|
break;
|
|
}
|
|
builder.appendff("({}", segment->point());
|
|
|
|
switch (segment->type()) {
|
|
case Segment::Type::QuadraticBezierCurveTo:
|
|
builder.append(", "sv);
|
|
builder.append(static_cast<QuadraticBezierCurveSegment const&>(*segment).through().to_byte_string());
|
|
break;
|
|
case Segment::Type::CubicBezierCurveTo:
|
|
builder.append(", "sv);
|
|
builder.append(static_cast<CubicBezierCurveSegment const&>(*segment).through_0().to_byte_string());
|
|
builder.append(", "sv);
|
|
builder.append(static_cast<CubicBezierCurveSegment const&>(*segment).through_1().to_byte_string());
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
builder.append(") "sv);
|
|
}
|
|
builder.append('}');
|
|
return builder.to_byte_string();
|
|
}
|
|
|
|
void Path::segmentize_path()
|
|
{
|
|
Vector<FloatLine> segments;
|
|
FloatBoundingBox bounding_box;
|
|
|
|
auto add_line = [&](auto const& p0, auto const& p1) {
|
|
segments.append({ p0, p1 });
|
|
bounding_box.add_point(p1);
|
|
};
|
|
|
|
FloatPoint cursor { 0, 0 };
|
|
for (auto& segment : m_segments) {
|
|
switch (segment->type()) {
|
|
case Segment::Type::MoveTo:
|
|
bounding_box.add_point(segment->point());
|
|
cursor = segment->point();
|
|
break;
|
|
case Segment::Type::LineTo: {
|
|
add_line(cursor, segment->point());
|
|
cursor = segment->point();
|
|
break;
|
|
}
|
|
case Segment::Type::QuadraticBezierCurveTo: {
|
|
auto control = static_cast<QuadraticBezierCurveSegment const&>(*segment).through();
|
|
Painter::for_each_line_segment_on_bezier_curve(control, cursor, segment->point(), [&](FloatPoint p0, FloatPoint p1) {
|
|
add_line(p0, p1);
|
|
});
|
|
cursor = segment->point();
|
|
break;
|
|
}
|
|
case Segment::Type::CubicBezierCurveTo: {
|
|
auto& curve = static_cast<CubicBezierCurveSegment const&>(*segment);
|
|
auto control_0 = curve.through_0();
|
|
auto control_1 = curve.through_1();
|
|
Painter::for_each_line_segment_on_cubic_bezier_curve(control_0, control_1, cursor, segment->point(), [&](FloatPoint p0, FloatPoint p1) {
|
|
add_line(p0, p1);
|
|
});
|
|
cursor = segment->point();
|
|
break;
|
|
}
|
|
case Segment::Type::Invalid:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
m_split_lines = move(segments);
|
|
m_bounding_box = bounding_box;
|
|
}
|
|
|
|
Path Path::copy_transformed(Gfx::AffineTransform const& transform) const
|
|
{
|
|
Path result;
|
|
|
|
for (auto const& segment : m_segments) {
|
|
switch (segment->type()) {
|
|
case Segment::Type::MoveTo:
|
|
result.move_to(transform.map(segment->point()));
|
|
break;
|
|
case Segment::Type::LineTo: {
|
|
result.line_to(transform.map(segment->point()));
|
|
break;
|
|
}
|
|
case Segment::Type::QuadraticBezierCurveTo: {
|
|
auto const& quadratic_segment = static_cast<QuadraticBezierCurveSegment const&>(*segment);
|
|
result.quadratic_bezier_curve_to(transform.map(quadratic_segment.through()), transform.map(segment->point()));
|
|
break;
|
|
}
|
|
case Segment::Type::CubicBezierCurveTo: {
|
|
auto const& cubic_segment = static_cast<CubicBezierCurveSegment const&>(*segment);
|
|
result.cubic_bezier_curve_to(transform.map(cubic_segment.through_0()), transform.map(cubic_segment.through_1()), transform.map(segment->point()));
|
|
break;
|
|
}
|
|
case Segment::Type::Invalid:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void Path::add_path(Path const& other)
|
|
{
|
|
m_segments.extend(other.m_segments);
|
|
invalidate_split_lines();
|
|
}
|
|
|
|
void Path::ensure_subpath(FloatPoint point)
|
|
{
|
|
if (m_need_new_subpath && m_segments.is_empty()) {
|
|
move_to(point);
|
|
m_need_new_subpath = false;
|
|
}
|
|
}
|
|
template<typename T>
|
|
struct RoundTrip {
|
|
RoundTrip(ReadonlySpan<T> span)
|
|
: m_span(span)
|
|
{
|
|
}
|
|
|
|
size_t size() const
|
|
{
|
|
return m_span.size() * 2 - 1;
|
|
}
|
|
|
|
T const& operator[](size_t index) const
|
|
{
|
|
// Follow the path:
|
|
if (index < m_span.size())
|
|
return m_span[index];
|
|
// Then in reverse:
|
|
if (index < size())
|
|
return m_span[size() - index - 1];
|
|
// Then wrap around again:
|
|
return m_span[index - size() + 1];
|
|
}
|
|
|
|
private:
|
|
ReadonlySpan<T> m_span;
|
|
};
|
|
|
|
Path Path::stroke_to_fill(float thickness) const
|
|
{
|
|
// Note: This convolves a polygon with the path using the algorithm described
|
|
// in https://keithp.com/~keithp/talks/cairo2003.pdf (3.1 Stroking Splines via Convolution)
|
|
|
|
VERIFY(thickness > 0);
|
|
|
|
auto& lines = split_lines();
|
|
if (lines.is_empty())
|
|
return Path {};
|
|
|
|
// Paths can be disconnected, which a pain to deal with, so split it up.
|
|
Vector<Vector<FloatPoint>> segments;
|
|
segments.append({ lines.first().a() });
|
|
for (auto& line : lines) {
|
|
if (line.a() == segments.last().last()) {
|
|
segments.last().append(line.b());
|
|
} else {
|
|
segments.append({ line.a(), line.b() });
|
|
}
|
|
}
|
|
|
|
// Note: This is the same as the tolerance from bezier curve splitting.
|
|
constexpr auto flatness = 0.5f;
|
|
auto pen_vertex_count = (thickness >= 2 * flatness) ? max(
|
|
static_cast<int>(ceilf(AK::Pi<float> / acosf(1 - (2 * flatness) / thickness))), 4)
|
|
: 4;
|
|
if (pen_vertex_count % 2 == 1)
|
|
pen_vertex_count += 1;
|
|
|
|
Vector<FloatPoint, 128> pen_vertices;
|
|
pen_vertices.ensure_capacity(pen_vertex_count);
|
|
|
|
// Generate vertices for the pen (going counterclockwise). The pen does not necessarily need
|
|
// to be a circle (or an approximation of one), but other shapes are untested.
|
|
float theta = 0;
|
|
float theta_delta = (AK::Pi<float> * 2) / pen_vertex_count;
|
|
for (int i = 0; i < pen_vertex_count; i++) {
|
|
float sin_theta;
|
|
float cos_theta;
|
|
AK::sincos(theta, sin_theta, cos_theta);
|
|
pen_vertices.unchecked_append({ cos_theta * thickness / 2, sin_theta * thickness / 2 });
|
|
theta -= theta_delta;
|
|
}
|
|
|
|
auto wrapping_index = [](auto& vertices, auto index) {
|
|
return vertices[(index + vertices.size()) % vertices.size()];
|
|
};
|
|
|
|
auto angle_between = [](auto p1, auto p2) {
|
|
auto delta = p2 - p1;
|
|
return atan2f(delta.y(), delta.x());
|
|
};
|
|
|
|
struct ActiveRange {
|
|
float start;
|
|
float end;
|
|
|
|
bool in_range(float angle) const
|
|
{
|
|
// Note: Since active ranges go counterclockwise start > end unless we wrap around at 180 degrees
|
|
return ((angle <= start && angle >= end)
|
|
|| (start < end && angle <= start)
|
|
|| (start < end && angle >= end));
|
|
}
|
|
};
|
|
|
|
Vector<ActiveRange, 128> active_ranges;
|
|
active_ranges.ensure_capacity(pen_vertices.size());
|
|
for (auto i = 0; i < pen_vertex_count; i++) {
|
|
active_ranges.unchecked_append({ angle_between(wrapping_index(pen_vertices, i - 1), pen_vertices[i]),
|
|
angle_between(pen_vertices[i], wrapping_index(pen_vertices, i + 1)) });
|
|
}
|
|
|
|
auto clockwise = [](float current_angle, float target_angle) {
|
|
if (target_angle < 0)
|
|
target_angle += AK::Pi<float> * 2;
|
|
if (current_angle < 0)
|
|
current_angle += AK::Pi<float> * 2;
|
|
if (target_angle < current_angle)
|
|
target_angle += AK::Pi<float> * 2;
|
|
return (target_angle - current_angle) <= AK::Pi<float>;
|
|
};
|
|
|
|
Path convolution;
|
|
for (auto& segment : segments) {
|
|
RoundTrip<FloatPoint> shape { segment };
|
|
|
|
bool first = true;
|
|
auto add_vertex = [&](auto v) {
|
|
if (first) {
|
|
convolution.move_to(v);
|
|
first = false;
|
|
} else {
|
|
convolution.line_to(v);
|
|
}
|
|
};
|
|
|
|
auto shape_idx = 0u;
|
|
|
|
auto slope = [&] {
|
|
return angle_between(shape[shape_idx], shape[shape_idx + 1]);
|
|
};
|
|
|
|
auto start_slope = slope();
|
|
// Note: At least one range must be active.
|
|
auto active = *active_ranges.find_first_index_if([&](auto& range) {
|
|
return range.in_range(start_slope);
|
|
});
|
|
|
|
while (shape_idx < shape.size()) {
|
|
add_vertex(shape[shape_idx] + pen_vertices[active]);
|
|
auto slope_now = slope();
|
|
auto range = active_ranges[active];
|
|
if (range.in_range(slope_now)) {
|
|
shape_idx++;
|
|
} else {
|
|
if (clockwise(slope_now, range.end)) {
|
|
if (active == static_cast<size_t>(pen_vertex_count - 1))
|
|
active = 0;
|
|
else
|
|
active++;
|
|
} else {
|
|
if (active == 0)
|
|
active = pen_vertex_count - 1;
|
|
else
|
|
active--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return convolution;
|
|
}
|
|
|
|
}
|