ladybird/Userland/Libraries/LibGfx/ImageFormats/WebPLoaderLossy.cpp
Zaggy1024 24ae35086d LibGfx/LibVideo: Check for overreads only at end of a VPX range decode
Errors are now deferred until `finish_decode()` is finished, meaning
branches to return errors only need to occur at the end of a ranged
decode. If VPX_DEBUG is enabled, a debug message will be printed
immediately when an overread occurs.

Average decoding times for `Tests/LibGfx/test-inputs/4.webp` improve
by about 4.7% with this change, absolute decode times changing from
27.4ms±1.1ms down to 26.1ms±1.0ms.
2023-06-10 07:17:12 +02:00

1295 lines
59 KiB
C++

/*
* Copyright (c) 2023, Nico Weber <thakis@chromium.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/Endian.h>
#include <AK/Format.h>
#include <AK/MemoryStream.h>
#include <AK/Vector.h>
#include <LibGfx/ImageFormats/BooleanDecoder.h>
#include <LibGfx/ImageFormats/WebPLoaderLossy.h>
#include <LibGfx/ImageFormats/WebPLoaderLossyTables.h>
// Lossy format: https://datatracker.ietf.org/doc/html/rfc6386
// Summary:
// A lossy webp image is a VP8 keyframe.
// A VP8 keyframe consists of 16x16 pixel tiles called macroblocks. Each macroblock is subdivided into 4x4 pixel tiles called subblocks.
// Pixel values are stored as YUV 4:2:0. That is, each 4x4 luma pixels are covered by 1 pixel U chroma and 1 pixel V chroma.
// This means one macroblock is covered by 4x4 Y subblocks and 2x2 U and V subblocks each.
// VP8 data consists of:
// * A tiny bit of uncompressed data, storing image dimensions and the size of the first compressed chunk of data, called the first partition
// * The first partition, which is a entropy-coded bitstream storing:
// 1. A fixed-size header.
// The main piece of data this stores is a probability distribution for how pixel values of each macroblock are predicted from previously decoded data.
// It also stores how may independent entropy-coded bitstreams are used to store the actual pixel data (for all images I've seen so far, just one).
// 2. For each macroblock, it stores how that macroblock's pixel values are predicted from previously decoded data (and some more per-macroblock metadata).
// There are independent prediction modes for Y, U, V.
// U and V store a single prediction mode per macroblock.
// Y can store a single prediction mode per macroblock, or it can store one subblock prediction mode for each of the 4x4 luma subblocks.
// * One or more additional entropy-coded bitstreams ("partitions") that store the discrete cosine transform ("DCT") coefficients for the actual pixel data for each macroblock.
// Each macroblock is subdivided into 4x4 tiles called "subblocks". A 16x16 pixel macroblock consists of:
// 0. If the macroblock stores 4x4 luma subblock prediction modes, the 4x4 DC coefficients of each subblock's DCT are stored at the start of the macroblock's data,
// as coefficients of an inverse Walsh-Hadamard Transform (WHT).
// 1. 4x4 luma subblocks
// 2. 2x2 U chrome subblocks
// 3. 2x2 U chrome subblocks
// That is, each macroblock stores 24 or 25 sets of coefficients.
// Each set of coefficients stores 16 numbers, using a combination of a custom prefix tree and dequantization.
// The inverse DCT output is added to the output of the prediction.
namespace Gfx {
// https://developers.google.com/speed/webp/docs/riff_container#simple_file_format_lossy
// https://datatracker.ietf.org/doc/html/rfc6386#section-19 "Annex A: Bitstream Syntax"
ErrorOr<VP8Header> decode_webp_chunk_VP8_header(ReadonlyBytes vp8_data)
{
if (vp8_data.size() < 10)
return Error::from_string_literal("WebPImageDecoderPlugin: 'VP8 ' chunk too small");
// FIXME: Eventually, this should probably call into LibVideo/VP8,
// and image decoders should move into LibImageDecoders which depends on both LibGfx and LibVideo.
// (LibVideo depends on LibGfx, so LibGfx can't depend on LibVideo itself.)
// https://datatracker.ietf.org/doc/html/rfc6386#section-4 "Overview of Compressed Data Format"
// "The decoder is simply presented with a sequence of compressed frames [...]
// The first frame presented to the decompressor is [...] a key frame. [...]
// [E]very compressed frame has three or more pieces. It begins with an uncompressed data chunk comprising 10 bytes in the case of key frames"
u8 const* data = vp8_data.data();
// https://datatracker.ietf.org/doc/html/rfc6386#section-9.1 "Uncompressed Data Chunk"
u32 frame_tag = data[0] | (data[1] << 8) | (data[2] << 16);
bool is_key_frame = (frame_tag & 1) == 0; // https://www.rfc-editor.org/errata/eid5534
u8 version = (frame_tag & 0xe) >> 1;
bool show_frame = (frame_tag & 0x10) != 0;
u32 size_of_first_partition = frame_tag >> 5;
if (!is_key_frame)
return Error::from_string_literal("WebPImageDecoderPlugin: 'VP8 ' chunk not a key frame");
if (!show_frame)
return Error::from_string_literal("WebPImageDecoderPlugin: 'VP8 ' chunk has invalid visibility for webp image");
if (version > 3)
return Error::from_string_literal("WebPImageDecoderPlugin: unknown version number in 'VP8 ' chunk");
u32 start_code = data[3] | (data[4] << 8) | (data[5] << 16);
if (start_code != 0x2a019d) // https://www.rfc-editor.org/errata/eid7370
return Error::from_string_literal("WebPImageDecoderPlugin: 'VP8 ' chunk invalid start_code");
// "The scaling specifications for each dimension are encoded as follows.
// 0 | No upscaling (the most common case).
// 1 | Upscale by 5/4.
// 2 | Upscale by 5/3.
// 3 | Upscale by 2."
// This is a display-time operation and doesn't affect decoding."
u16 width_and_horizontal_scale = data[6] | (data[7] << 8);
u16 width = width_and_horizontal_scale & 0x3fff;
u8 horizontal_scale = width_and_horizontal_scale >> 14;
u16 heigth_and_vertical_scale = data[8] | (data[9] << 8);
u16 height = heigth_and_vertical_scale & 0x3fff;
u8 vertical_scale = heigth_and_vertical_scale >> 14;
dbgln_if(WEBP_DEBUG, "version {}, show_frame {}, size_of_first_partition {}, width {}, horizontal_scale {}, height {}, vertical_scale {}",
version, show_frame, size_of_first_partition, width, horizontal_scale, height, vertical_scale);
if (vp8_data.size() < 10 + size_of_first_partition)
return Error::from_string_literal("WebPImageDecoderPlugin: 'VP8 ' chunk too small for full first partition");
return VP8Header { version, show_frame, size_of_first_partition, width, horizontal_scale, height, vertical_scale, vp8_data.slice(10, size_of_first_partition), vp8_data.slice(10 + size_of_first_partition) };
}
namespace {
// Reads n bits followed by a sign bit (0: positive, 1: negative).
i8 read_signed_literal(BooleanDecoder& decoder, u8 n)
{
VERIFY(n <= 7);
i8 i = decoder.read_literal(n);
if (decoder.read_literal(1))
i = -i;
return i;
}
// https://datatracker.ietf.org/doc/html/rfc6386#section-19 "Annex A: Bitstream Syntax"
#define L(n) decoder.read_literal(n)
#define B(prob) decoder.read_bool(prob)
#define L_signed(n) read_signed_literal(decoder, n)
// https://datatracker.ietf.org/doc/html/rfc6386#section-9.3 Segment-Based Adjustments"
// https://datatracker.ietf.org/doc/html/rfc6386#section-19.2 "Frame Header"
enum class SegmentFeatureMode {
// Spec 19.2 says 0 is delta, 1 absolute; spec 9.3 has it the other way round. 19.2 is correct.
// https://www.rfc-editor.org/errata/eid7519
DeltaValueMode = 0,
AbsoluteValueMode = 1,
};
struct Segmentation {
bool update_macroblock_segmentation_map { false };
SegmentFeatureMode segment_feature_mode { SegmentFeatureMode::DeltaValueMode };
i8 quantizer_update_value[4] {};
i8 loop_filter_update_value[4] {};
u8 macroblock_segment_tree_probabilities[3] = { 255, 255, 255 };
};
Segmentation decode_VP8_frame_header_segmentation(BooleanDecoder&);
// Also https://datatracker.ietf.org/doc/html/rfc6386#section-9.6 "Dequantization Indices"
struct QuantizationIndices {
u8 y_ac { 0 };
i8 y_dc_delta { 0 };
i8 y2_dc_delta { 0 };
i8 y2_ac_delta { 0 };
i8 uv_dc_delta { 0 };
i8 uv_ac_delta { 0 };
};
QuantizationIndices decode_VP8_frame_header_quantization_indices(BooleanDecoder&);
struct LoopFilterAdjustment {
bool enable_loop_filter_adjustment { false };
i8 ref_frame_delta[4] {};
i8 mb_mode_delta[4] {};
};
LoopFilterAdjustment decode_VP8_frame_header_loop_filter_adjustment(BooleanDecoder&);
using CoefficientProbabilities = Prob[4][8][3][num_dct_tokens - 1];
ErrorOr<void> decode_VP8_frame_header_coefficient_probabilities(BooleanDecoder&, CoefficientProbabilities);
// https://datatracker.ietf.org/doc/html/rfc6386#section-15 "Loop Filter"
// "The first is a flag (filter_type) selecting the type of filter (normal or simple)"
enum class FilterType {
Normal = 0,
Simple = 1,
};
// https://datatracker.ietf.org/doc/html/rfc6386#section-9.2 "Color Space and Pixel Type (Key Frames Only)"
enum class ColorSpaceAndPixelType {
YUV = 0,
ReservedForFutureUse = 1,
};
enum class ClampingSpecification {
DecoderMustClampTo0To255 = 0,
NoClampingNecessary = 1,
};
// https://datatracker.ietf.org/doc/html/rfc6386#section-19.2 "Frame Header"
struct FrameHeader {
ColorSpaceAndPixelType color_space {};
ClampingSpecification clamping_type {};
bool is_segmentation_enabled {};
Segmentation segmentation {};
FilterType filter_type {};
u8 loop_filter_level {};
u8 sharpness_level {};
LoopFilterAdjustment loop_filter_adjustment {};
u8 number_of_dct_partitions {};
QuantizationIndices quantization_indices {};
CoefficientProbabilities coefficient_probabilities;
bool enable_skipping_of_macroblocks_containing_only_zero_coefficients {};
u8 probability_skip_false;
};
ErrorOr<FrameHeader> decode_VP8_frame_header(BooleanDecoder& decoder)
{
// https://datatracker.ietf.org/doc/html/rfc6386#section-19.2 "Frame Header"
FrameHeader header;
// In the VP8 spec, this is in an `if (key_frames)`, but webp files only have key frames.
header.color_space = ColorSpaceAndPixelType { L(1) };
header.clamping_type = ClampingSpecification { L(1) };
dbgln_if(WEBP_DEBUG, "color_space {} clamping_type {}", (int)header.color_space, (int)header.clamping_type);
// https://datatracker.ietf.org/doc/html/rfc6386#section-9.3 "Segment-Based Adjustments"
header.is_segmentation_enabled = L(1);
dbgln_if(WEBP_DEBUG, "segmentation_enabled {}", header.is_segmentation_enabled);
if (header.is_segmentation_enabled)
header.segmentation = decode_VP8_frame_header_segmentation(decoder);
header.filter_type = FilterType { L(1) };
header.loop_filter_level = L(6);
header.sharpness_level = L(3);
dbgln_if(WEBP_DEBUG, "filter_type {} loop_filter_level {} sharpness_level {}", (int)header.filter_type, header.loop_filter_level, header.sharpness_level);
header.loop_filter_adjustment = decode_VP8_frame_header_loop_filter_adjustment(decoder);
u8 log2_nbr_of_dct_partitions = L(2);
dbgln_if(WEBP_DEBUG, "log2_nbr_of_dct_partitions {}", log2_nbr_of_dct_partitions);
header.number_of_dct_partitions = 1 << log2_nbr_of_dct_partitions;
header.quantization_indices = decode_VP8_frame_header_quantization_indices(decoder);
// In the VP8 spec, this is in an `if (key_frames)` followed by a lengthy `else`, but webp files only have key frames.
u8 refresh_entropy_probs = L(1); // Has no effect in webp files.
dbgln_if(WEBP_DEBUG, "refresh_entropy_probs {}", refresh_entropy_probs);
memcpy(header.coefficient_probabilities, DEFAULT_COEFFICIENT_PROBABILITIES, sizeof(header.coefficient_probabilities));
TRY(decode_VP8_frame_header_coefficient_probabilities(decoder, header.coefficient_probabilities));
// https://datatracker.ietf.org/doc/html/rfc6386#section-9.11 "Remaining Frame Header Data (Key Frame)"
header.enable_skipping_of_macroblocks_containing_only_zero_coefficients = L(1);
dbgln_if(WEBP_DEBUG, "mb_no_skip_coeff {}", header.enable_skipping_of_macroblocks_containing_only_zero_coefficients);
if (header.enable_skipping_of_macroblocks_containing_only_zero_coefficients) {
header.probability_skip_false = L(8);
dbgln_if(WEBP_DEBUG, "prob_skip_false {}", header.probability_skip_false);
}
// In the VP8 spec, there is a length `if (!key_frames)` here, but webp files only have key frames.
return header;
}
Segmentation decode_VP8_frame_header_segmentation(BooleanDecoder& decoder)
{
// Corresponds to "update_segmentation()" in section 19.2 of the spec.
Segmentation segmentation;
segmentation.update_macroblock_segmentation_map = L(1);
u8 update_segment_feature_data = L(1);
dbgln_if(WEBP_DEBUG, "update_mb_segmentation_map {} update_segment_feature_data {}",
segmentation.update_macroblock_segmentation_map, update_segment_feature_data);
if (update_segment_feature_data) {
segmentation.segment_feature_mode = static_cast<SegmentFeatureMode>(L(1));
dbgln_if(WEBP_DEBUG, "segment_feature_mode {}", (int)segmentation.segment_feature_mode);
for (int i = 0; i < 4; ++i) {
u8 quantizer_update = L(1);
dbgln_if(WEBP_DEBUG, "quantizer_update {}", quantizer_update);
if (quantizer_update) {
i8 quantizer_update_value = L_signed(7);
dbgln_if(WEBP_DEBUG, "quantizer_update_value {}", quantizer_update_value);
segmentation.quantizer_update_value[i] = quantizer_update_value;
}
}
for (int i = 0; i < 4; ++i) {
u8 loop_filter_update = L(1);
dbgln_if(WEBP_DEBUG, "loop_filter_update {}", loop_filter_update);
if (loop_filter_update) {
i8 loop_filter_update_value = L_signed(6);
dbgln_if(WEBP_DEBUG, "loop_filter_update_value {}", loop_filter_update_value);
segmentation.loop_filter_update_value[i] = loop_filter_update_value;
}
}
}
if (segmentation.update_macroblock_segmentation_map) {
// This reads mb_segment_tree_probs for https://datatracker.ietf.org/doc/html/rfc6386#section-10.
for (int i = 0; i < 3; ++i) {
u8 segment_prob_update = L(1);
dbgln_if(WEBP_DEBUG, "segment_prob_update {}", segment_prob_update);
if (segment_prob_update) {
u8 segment_prob = L(8);
dbgln_if(WEBP_DEBUG, "segment_prob {}", segment_prob);
segmentation.macroblock_segment_tree_probabilities[i] = segment_prob;
}
}
}
return segmentation;
}
QuantizationIndices decode_VP8_frame_header_quantization_indices(BooleanDecoder& decoder)
{
// Corresponds to "quant_indices()" in section 19.2 of the spec.
QuantizationIndices quantization_indices;
// "The first 7-bit index gives the dequantization table index for
// Y-plane AC coefficients, called yac_qi. It is always coded and acts
// as a baseline for the other 5 quantization indices, each of which is
// represented by a delta from this baseline index."
quantization_indices.y_ac = L(7);
dbgln_if(WEBP_DEBUG, "y_ac_qi {}", quantization_indices.y_ac);
auto read_delta = [&decoder](StringView name, i8* destination) -> void {
u8 is_present = L(1);
dbgln_if(WEBP_DEBUG, "{}_present {}", name, is_present);
if (is_present) {
i8 delta = L_signed(4);
dbgln_if(WEBP_DEBUG, "{} {}", name, delta);
*destination = delta;
}
};
read_delta("y_dc_delta"sv, &quantization_indices.y_dc_delta);
read_delta("y2_dc_delta"sv, &quantization_indices.y2_dc_delta);
read_delta("y2_ac_delta"sv, &quantization_indices.y2_ac_delta);
read_delta("uv_dc_delta"sv, &quantization_indices.uv_dc_delta);
read_delta("uv_ac_delta"sv, &quantization_indices.uv_ac_delta);
return quantization_indices;
}
LoopFilterAdjustment decode_VP8_frame_header_loop_filter_adjustment(BooleanDecoder& decoder)
{
// Corresponds to "mb_lf_adjustments()" in section 19.2 of the spec.
LoopFilterAdjustment adjustment;
adjustment.enable_loop_filter_adjustment = L(1);
if (adjustment.enable_loop_filter_adjustment) {
u8 mode_ref_lf_delta_update = L(1);
dbgln_if(WEBP_DEBUG, "mode_ref_lf_delta_update {}", mode_ref_lf_delta_update);
if (mode_ref_lf_delta_update) {
for (int i = 0; i < 4; ++i) {
u8 ref_frame_delta_update_flag = L(1);
dbgln_if(WEBP_DEBUG, "ref_frame_delta_update_flag {}", ref_frame_delta_update_flag);
if (ref_frame_delta_update_flag) {
i8 delta = L_signed(6);
dbgln_if(WEBP_DEBUG, "delta {}", delta);
adjustment.ref_frame_delta[i] = delta;
}
}
for (int i = 0; i < 4; ++i) {
u8 mb_mode_delta_update_flag = L(1);
dbgln_if(WEBP_DEBUG, "mb_mode_delta_update_flag {}", mb_mode_delta_update_flag);
if (mb_mode_delta_update_flag) {
i8 delta = L_signed(6);
dbgln_if(WEBP_DEBUG, "delta {}", delta);
adjustment.mb_mode_delta[i] = delta;
}
}
}
}
return adjustment;
}
ErrorOr<void> decode_VP8_frame_header_coefficient_probabilities(BooleanDecoder& decoder, CoefficientProbabilities coefficient_probabilities)
{
// Corresponds to "token_prob_update()" in section 19.2 of the spec.
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 8; j++) {
for (int k = 0; k < 3; k++) {
for (int l = 0; l < 11; l++) {
// token_prob_update() says L(1) and L(8), but it's actually B(p) and L(8).
// https://datatracker.ietf.org/doc/html/rfc6386#section-13.4 "Token Probability Updates" describes it correctly.
if (B(COEFFICIENT_UPDATE_PROBABILITIES[i][j][k][l]))
coefficient_probabilities[i][j][k][l] = L(8);
}
}
}
}
return {};
}
// https://datatracker.ietf.org/doc/html/rfc6386#section-8.1 "Tree Coding Implementation"
u8 tree_decode(BooleanDecoder& decoder, ReadonlySpan<TreeIndex> tree, ReadonlyBytes probabilities, TreeIndex initial_i = 0)
{
TreeIndex i = initial_i;
while (true) {
u8 b = B(probabilities[i >> 1]);
i = tree[i + b];
if (i <= 0)
return -i;
}
}
// Similar to BlockContext in LibVideo/VP9/Context.h
struct MacroblockMetadata {
// https://datatracker.ietf.org/doc/html/rfc6386#section-10 "Segment-Based Feature Adjustments"
// Read only if `update_mb_segmentation_map` is set.
u8 segment_id { 0 }; // 0, 1, 2, or 3. Fits in two bits.
// https://datatracker.ietf.org/doc/html/rfc6386#section-11.1 "mb_skip_coeff"
bool skip_coefficients { false };
IntraMacroblockMode intra_y_mode;
IntraMacroblockMode uv_mode;
IntraBlockMode intra_b_modes[16];
};
ErrorOr<Vector<MacroblockMetadata>> decode_VP8_macroblock_metadata(BooleanDecoder& decoder, FrameHeader const& header, int macroblock_width, int macroblock_height)
{
// https://datatracker.ietf.org/doc/html/rfc6386#section-19.3
// Corresponds to "macroblock_header()" in section 19.3 of the spec.
Vector<MacroblockMetadata> macroblock_metadata;
// Key frames must use intra prediction, that is new macroblocks are predicted from old macroblocks in the same frame.
// (Inter prediction on the other hand predicts new macroblocks from the corresponding macroblock in the previous frame.)
// https://datatracker.ietf.org/doc/html/rfc6386#section-11.3 "Subblock Mode Contexts"
// "For macroblocks on the top row or left edge of the image, some of
// the predictors will be non-existent. Such predictors are taken
// to have had the value B_DC_PRED, which, perhaps conveniently,
// takes the value 0 in the enumeration above.
// A simple management scheme for these contexts might maintain a row
// of above predictors and four left predictors. Before decoding the
// frame, the entire row is initialized to B_DC_PRED; before decoding
// each row of macroblocks, the four left predictors are also set to
// B_DC_PRED. After decoding a macroblock, the bottom four subblock
// modes are copied into the row predictor (at the current position,
// which then advances to be above the next macroblock), and the
// right four subblock modes are copied into the left predictor."
Vector<IntraBlockMode> above;
TRY(above.try_resize(macroblock_width * 4)); // One per 4x4 subblock.
// It's possible to not decode all macroblock metadata at once. Instead, this could for example decode one row of metadata,
// then decode the coefficients for one row of macroblocks, convert that row to pixels, and then go on to the next row of macroblocks.
// That'd require slightly less memory. But MacroblockMetadata is fairly small, and this way we can keep the context
// (`above`, `left`) in stack variables instead of having to have a class for that. So keep it simple for now.
for (int mb_y = 0; mb_y < macroblock_height; ++mb_y) {
IntraBlockMode left[4] {};
for (int mb_x = 0; mb_x < macroblock_width; ++mb_x) {
MacroblockMetadata metadata;
if (header.segmentation.update_macroblock_segmentation_map)
metadata.segment_id = tree_decode(decoder, MACROBLOCK_SEGMENT_TREE, header.segmentation.macroblock_segment_tree_probabilities);
if (header.enable_skipping_of_macroblocks_containing_only_zero_coefficients)
metadata.skip_coefficients = B(header.probability_skip_false);
int intra_y_mode = tree_decode(decoder, KEYFRAME_YMODE_TREE, KEYFRAME_YMODE_PROBABILITIES);
metadata.intra_y_mode = (IntraMacroblockMode)intra_y_mode;
// "If the Ymode is B_PRED, it is followed by a (tree-coded) mode for each of the 16 Y subblocks."
if (intra_y_mode == B_PRED) {
for (int y = 0; y < 4; ++y) {
for (int x = 0; x < 4; ++x) {
// "The outer two dimensions of this array are indexed by the already-
// coded subblock modes above and to the left of the current block,
// respectively."
int A = above[mb_x * 4 + x];
int L = left[y];
auto intra_b_mode = static_cast<IntraBlockMode>(tree_decode(decoder, BLOCK_MODE_TREE, KEYFRAME_BLOCK_MODE_PROBABILITIES[A][L]));
metadata.intra_b_modes[y * 4 + x] = intra_b_mode;
above[mb_x * 4 + x] = intra_b_mode;
left[y] = intra_b_mode;
}
}
} else {
VERIFY(intra_y_mode < B_PRED);
constexpr IntraBlockMode b_mode_from_y_mode[] = { B_DC_PRED, B_VE_PRED, B_HE_PRED, B_TM_PRED };
IntraBlockMode intra_b_mode = b_mode_from_y_mode[intra_y_mode];
for (int i = 0; i < 4; ++i) {
above[mb_x * 4 + i] = intra_b_mode;
left[i] = intra_b_mode;
}
}
metadata.uv_mode = (IntraMacroblockMode)tree_decode(decoder, UV_MODE_TREE, KEYFRAME_UV_MODE_PROBABILITIES);
TRY(macroblock_metadata.try_append(metadata));
}
}
return macroblock_metadata;
}
// Every macroblock stores:
// - One optional set of coefficients for Y2
// - 16 sets of Y coefficients for the 4x4 Y subblocks of the macroblock
// - 4 sets of U coefficients for the 2x2 U subblocks of the macroblock
// - 4 sets of V coefficients for the 2x2 V subblocks of the macroblock
// That's 24 or 25 sets of coefficients total. This struct identifies one of these sets by index.
// If a macroblock does not have Y2, then i goes from [1..25], else it goes [0..25].
struct CoefficientBlockIndex {
int i;
CoefficientBlockIndex(int i)
: i(i)
{
VERIFY(i >= 0);
VERIFY(i <= 25);
}
bool is_y2() const { return i == 0; }
bool is_y() const { return i >= 1 && i <= 16; }
bool is_u() const { return i >= 17 && i <= 20; }
bool is_v() const { return i >= 21; }
u8 sub_x() const
{
VERIFY(i > 0);
if (i <= 16)
return (i - 1) % 4;
if (i <= 20)
return (i - 17) % 2;
return (i - 21) % 2;
}
u8 sub_y() const
{
VERIFY(i > 0);
if (i <= 16)
return (i - 1) / 4;
if (i <= 20)
return (i - 17) / 2;
return (i - 21) / 2;
}
};
int plane_index(CoefficientBlockIndex index, bool have_y2)
{
// https://datatracker.ietf.org/doc/html/rfc6386#section-13.3 "Token Probabilities"
// "o 0 - Y beginning at coefficient 1 (i.e., Y after Y2)
// o 1 - Y2
// o 2 - U or V
// o 3 - Y beginning at coefficient 0 (i.e., Y in the absence of Y2)."
if (index.is_y2())
return 1;
if (index.is_u() || index.is_v())
return 2;
if (have_y2)
return 0;
return 3;
}
i16 coefficient_value_for_token(BooleanDecoder& decoder, u8 token)
{
// Implements the second half of https://datatracker.ietf.org/doc/html/rfc6386#section-13.2 "Coding of Individual Coefficient Values"
i16 v = static_cast<i16>(token); // For DCT_0 to DCT4
if (token >= dct_cat1 && token <= dct_cat6) {
static int constexpr starts[] = { 5, 7, 11, 19, 35, 67 };
static int constexpr bits[] = { 1, 2, 3, 4, 5, 11 };
static Prob constexpr Pcat1[] = { 159 };
static Prob constexpr Pcat2[] = { 165, 145 };
static Prob constexpr Pcat3[] = { 173, 148, 140 };
static Prob constexpr Pcat4[] = { 176, 155, 140, 135 };
static Prob constexpr Pcat5[] = { 180, 157, 141, 134, 130 };
static Prob constexpr Pcat6[] = { 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129 };
static Prob const* const Pcats[] = { Pcat1, Pcat2, Pcat3, Pcat4, Pcat5, Pcat6 };
v = 0;
// This loop corresponds to `DCTextra` in the spec in section 13.2.
for (int i = 0; i < bits[token - dct_cat1]; ++i)
v = (v << 1) | decoder.read_bool(Pcats[token - dct_cat1][i]);
v += starts[token - dct_cat1];
}
if (v) {
if (decoder.read_bool(128))
v = -v;
}
return v;
}
i16 dequantize_value(i16 value, bool is_dc, QuantizationIndices const& quantization_indices, Segmentation const& segmentation, int segment_id, CoefficientBlockIndex index)
{
// https://datatracker.ietf.org/doc/html/rfc6386#section-9.6 "Dequantization Indices"
// "before inverting the transform, each decoded coefficient
// is multiplied by one of six dequantization factors, the choice of
// which depends on the plane (Y, chroma = U or V, Y2) and coefficient
// position (DC = coefficient 0, AC = coefficients 1-15). The six
// values are specified using 7-bit indices into six corresponding fixed
// tables (the tables are given in Section 14)."
// Section 14 then lists two (!) fixed tables (which are in WebPLoaderLossyTables.h)
// "Lookup values from the above two tables are directly used in the DC
// and AC coefficients in Y1, respectively. For Y2 and chroma, values
// from the above tables undergo either scaling or clamping before the
// multiplies. Details regarding these scaling and clamping processes
// can be found in related lookup functions in dixie.c (Section 20.4)."
// Apparently spec writing became too much work at this point. In section 20.4, in dequant_init():
// * For y2, the output (!) of dc_qlookup is multiplied by 2, the output of ac_qlookup is multiplied by 155 / 100
// * Also for y2, ac_qlookup is at least 8 for lower table entries
// * For uv, the dc_qlookup index is clamped to 117 (instead of 127 for everything else)
// (or, alternatively, the value is clamped to 132 at most)
int y_ac_base = quantization_indices.y_ac;
if (segmentation.update_macroblock_segmentation_map) {
if (segmentation.segment_feature_mode == SegmentFeatureMode::DeltaValueMode)
y_ac_base += segmentation.quantizer_update_value[segment_id];
else
y_ac_base = segmentation.quantizer_update_value[segment_id];
}
int dequantization_index;
if (index.is_y2())
dequantization_index = y_ac_base + (is_dc ? quantization_indices.y2_dc_delta : quantization_indices.y2_ac_delta);
else if (index.is_u() || index.is_v())
dequantization_index = y_ac_base + (is_dc ? quantization_indices.uv_dc_delta : quantization_indices.uv_ac_delta);
else
dequantization_index = is_dc ? (y_ac_base + quantization_indices.y_dc_delta) : y_ac_base;
// clamp index
if ((index.is_u() || index.is_v()) && is_dc)
dequantization_index = clamp(dequantization_index, 0, 117);
else
dequantization_index = clamp(dequantization_index, 0, 127);
// "the multiplies are computed and stored using 16-bit signed integers."
i16 dequantization_factor;
if (is_dc)
dequantization_factor = (i16)dc_qlookup[dequantization_index];
else
dequantization_factor = (i16)ac_qlookup[dequantization_index];
if (index.is_y2()) {
if (is_dc)
dequantization_factor *= 2;
else
dequantization_factor = max((dequantization_factor * 155) / 100, 8);
}
return dequantization_factor * value;
}
// Reading macroblock coefficients requires needing to know if the block to the left and above the current macroblock
// has non-zero coefficients. This stores that state.
struct CoefficientReadingContext {
// Store if each plane has nonzero coefficients in the block above and to the left of the current block.
Vector<bool> y2_above;
Vector<bool> y_above;
Vector<bool> u_above;
Vector<bool> v_above;
bool y2_left {};
bool y_left[4] {};
bool u_left[2] {};
bool v_left[2] {};
ErrorOr<void> initialize(int macroblock_width)
{
TRY(y2_above.try_resize(macroblock_width));
TRY(y_above.try_resize(macroblock_width * 4));
TRY(u_above.try_resize(macroblock_width * 2));
TRY(v_above.try_resize(macroblock_width * 2));
return {};
}
void start_new_row()
{
y2_left = false;
for (bool& b : y_left)
b = false;
for (bool& b : u_left)
b = false;
for (bool& b : v_left)
b = false;
}
bool& was_above_nonzero(CoefficientBlockIndex index, int mb_x)
{
if (index.is_y2())
return y2_above[mb_x];
if (index.is_u())
return u_above[mb_x * 2 + index.sub_x()];
if (index.is_v())
return v_above[mb_x * 2 + index.sub_x()];
return y_above[mb_x * 4 + index.sub_x()];
}
bool was_above_nonzero(CoefficientBlockIndex index, int mb_x) const { return const_cast<CoefficientReadingContext&>(*this).was_above_nonzero(index, mb_x); }
bool& was_left_nonzero(CoefficientBlockIndex index)
{
if (index.is_y2())
return y2_left;
if (index.is_u())
return u_left[index.sub_y()];
if (index.is_v())
return v_left[index.sub_y()];
return y_left[index.sub_y()];
}
bool was_left_nonzero(CoefficientBlockIndex index) const { return const_cast<CoefficientReadingContext&>(*this).was_left_nonzero(index); }
void update(CoefficientBlockIndex index, int mb_x, bool subblock_has_nonzero_coefficients)
{
was_above_nonzero(index, mb_x) = subblock_has_nonzero_coefficients;
was_left_nonzero(index) = subblock_has_nonzero_coefficients;
}
};
using Coefficients = i16[16];
// Returns if any non-zero coefficients were read.
bool read_coefficent_block(BooleanDecoder& decoder, Coefficients out_coefficients, CoefficientBlockIndex block_index, CoefficientReadingContext& coefficient_reading_context, int mb_x, bool have_y2, int segment_id, FrameHeader const& header)
{
// Corresponds to `residual_block()` in https://datatracker.ietf.org/doc/html/rfc6386#section-19.3,
// but also does dequantization of the stored values.
// "firstCoeff is 1 for luma blocks of macroblocks containing Y2 subblock; otherwise 0"
int firstCoeff = have_y2 && block_index.is_y() ? 1 : 0;
i16 last_decoded_value = num_dct_tokens; // Start with an invalid value
bool subblock_has_nonzero_coefficients = false;
for (int j = firstCoeff; j < 16; ++j) {
// https://datatracker.ietf.org/doc/html/rfc6386#section-13.2 "Coding of Individual Coefficient Values"
// https://datatracker.ietf.org/doc/html/rfc6386#section-13.3 "Token Probabilities"
// "Working from the outside in, the outermost dimension is indexed by
// the type of plane being decoded"
int plane = plane_index(block_index, have_y2);
// "The next dimension is selected by the position of the coefficient
// being decoded. That position, c, steps by ones up to 15, starting
// from zero for block types 1, 2, or 3 and starting from one for block
// type 0. The second array index is then"
// "block type" here seems to refer to the "type of plane" in the previous paragraph.
static int constexpr coeff_bands[16] = { 0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7 };
int band = coeff_bands[j];
// "The third dimension is the trickiest."
int tricky = 0;
// "For the first coefficient (DC, unless the block type is 0), we
// consider the (already encoded) blocks within the same plane (Y2, Y,
// U, or V) above and to the left of the current block. The context
// index is then the number (0, 1, or 2) of these blocks that had at
// least one non-zero coefficient in their residue record. Specifically
// for Y2, because macroblocks above and to the left may or may not have
// a Y2 block, the block above is determined by the most recent
// macroblock in the same column that has a Y2 block, and the block to
// the left is determined by the most recent macroblock in the same row
// that has a Y2 block.
// [...]
// As with other contexts used by VP8, the "neighboring block" context
// described here needs a special definition for subblocks lying along
// the top row or left edge of the frame. These "non-existent"
// predictors above and to the left of the image are simply taken to be
// empty -- that is, taken to contain no non-zero coefficients."
if (j == firstCoeff) {
bool was_left_nonzero = coefficient_reading_context.was_left_nonzero(block_index);
bool was_above_nonzero = coefficient_reading_context.was_above_nonzero(block_index, mb_x);
tricky = static_cast<int>(was_left_nonzero) + static_cast<int>(was_above_nonzero);
}
// "Beyond the first coefficient, the context index is determined by the
// absolute value of the most recently decoded coefficient (necessarily
// within the current block) and is 0 if the last coefficient was a
// zero, 1 if it was plus or minus one, and 2 if its absolute value
// exceeded one."
else {
if (last_decoded_value == 0)
tricky = 0;
else if (last_decoded_value == 1 || last_decoded_value == -1)
tricky = 1;
else
tricky = 2;
}
// "In general, all DCT coefficients are decoded using the same tree.
// However, if the preceding coefficient is a DCT_0, decoding will skip
// the first branch, since it is not possible for dct_eob to follow a
// DCT_0."
u8 token = tree_decode(decoder, COEFFICIENT_TREE, header.coefficient_probabilities[plane][band][tricky], last_decoded_value == DCT_0 ? 2 : 0);
if (token == dct_eob)
break;
i16 v = coefficient_value_for_token(decoder, token);
if (v) {
// Subblock has non-0 coefficients. Store that, so that `tricky` on the next subblock is initialized correctly.
subblock_has_nonzero_coefficients = true;
}
// last_decoded_value is used for setting `tricky`. It needs to be set to the last decoded token, not to the last dequantized value.
last_decoded_value = v;
i16 dequantized_value = dequantize_value(v, j == 0, header.quantization_indices, header.segmentation, segment_id, block_index);
static int constexpr Zigzag[] = { 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15 };
out_coefficients[Zigzag[j]] = dequantized_value;
}
return subblock_has_nonzero_coefficients;
}
struct MacroblockCoefficients {
Coefficients y_coeffs[16] {};
Coefficients u_coeffs[4] {};
Coefficients v_coeffs[4] {};
};
MacroblockCoefficients read_macroblock_coefficients(BooleanDecoder& decoder, FrameHeader const& header, CoefficientReadingContext& coefficient_reading_context, MacroblockMetadata const& metadata, int mb_x)
{
// Corresponds to `residual_data()` in https://datatracker.ietf.org/doc/html/rfc6386#section-19.3,
// but also does the inverse walsh-hadamard transform if a Y2 block is present.
MacroblockCoefficients coefficients;
Coefficients y2_coeffs {};
// "firstCoeff is 1 for luma blocks of macroblocks containing Y2 subblock; otherwise 0"
// https://datatracker.ietf.org/doc/html/rfc6386#section-13
// "For all intra- and inter-prediction modes apart from B_PRED (intra:
// whose Y subblocks are independently predicted) and SPLITMV (inter),
// each macroblock's residue record begins with the Y2 component of the
// residue, coded using a WHT. B_PRED and SPLITMV coded macroblocks
// omit this WHT and specify the 0th DCT coefficient in each of the 16 Y
// subblocks."
bool have_y2 = metadata.intra_y_mode != B_PRED;
// "for Y2, because macroblocks above and to the left may or may not have
// a Y2 block, the block above is determined by the most recent
// macroblock in the same column that has a Y2 block, and the block to
// the left is determined by the most recent macroblock in the same row
// that has a Y2 block."
// We only write to y2_above / y2_left when it's present, so we don't need to do any explicit work to get the right behavior.
// "After the optional Y2 block, the residue record continues with 16
// DCTs for the Y subblocks, followed by 4 DCTs for the U subblocks,
// ending with 4 DCTs for the V subblocks. The subblocks occur in the
// usual order."
/* (1 Y2)?, 16 Y, 4 U, 4 V */
for (int i = have_y2 ? 0 : 1; i < 25; ++i) {
CoefficientBlockIndex block_index { i };
bool subblock_has_nonzero_coefficients = false;
if (!metadata.skip_coefficients) {
i16* to_read;
if (block_index.is_y2())
to_read = y2_coeffs;
else if (block_index.is_u())
to_read = coefficients.u_coeffs[i - 17];
else if (block_index.is_v())
to_read = coefficients.v_coeffs[i - 21];
else // Y
to_read = coefficients.y_coeffs[i - 1];
subblock_has_nonzero_coefficients = read_coefficent_block(decoder, to_read, block_index, coefficient_reading_context, mb_x, have_y2, metadata.segment_id, header);
}
coefficient_reading_context.update(block_index, mb_x, subblock_has_nonzero_coefficients);
}
// https://datatracker.ietf.org/doc/html/rfc6386#section-14.2 "Inverse Transforms"
// "If the Y2 residue block exists (i.e., the macroblock luma mode is not
// SPLITMV or B_PRED), it is inverted first (using the inverse WHT) and
// the element of the result at row i, column j is used as the 0th
// coefficient of the Y subblock at position (i, j), that is, the Y
// subblock whose index is (i * 4) + j."
if (have_y2) {
Coefficients wht_output;
vp8_short_inv_walsh4x4_c(y2_coeffs, wht_output);
for (size_t i = 0; i < 16; ++i)
coefficients.y_coeffs[i][0] = wht_output[i];
}
return coefficients;
}
template<int N>
void predict_macroblock(Bytes prediction, IntraMacroblockMode mode, int mb_x, int mb_y, ReadonlyBytes left, ReadonlyBytes above, u8 truemotion_corner)
{
// https://datatracker.ietf.org/doc/html/rfc6386#section-12.2 "Chroma Prediction"
// (Also used for the DC_PRED, H_PRED, V_PRED, TM_PRED for luma prediction.)
if (mode == DC_PRED) {
if (mb_x == 0 && mb_y == 0) {
for (size_t i = 0; i < N * N; ++i)
prediction[i] = 128;
} else {
int sum = 0, n = 0;
if (mb_x > 0) {
for (int i = 0; i < N; ++i)
sum += left[i];
n += N;
}
if (mb_y > 0) {
for (int i = 0; i < N; ++i)
sum += above[mb_x * N + i];
n += N;
}
u8 average = (sum + n / 2) / n;
for (size_t i = 0; i < N * N; ++i)
prediction[i] = average;
}
} else if (mode == H_PRED) {
for (int y = 0; y < N; ++y)
for (int x = 0; x < N; ++x)
prediction[y * N + x] = left[y];
} else if (mode == V_PRED) {
for (int y = 0; y < N; ++y)
for (int x = 0; x < N; ++x)
prediction[y * N + x] = above[mb_x * N + x];
} else {
VERIFY(mode == TM_PRED);
for (int y = 0; y < N; ++y)
for (int x = 0; x < N; ++x)
prediction[y * N + x] = clamp(left[y] + above[mb_x * N + x] - truemotion_corner, 0, 255);
}
}
void predict_y_subblock(Bytes y_prediction, IntraBlockMode mode, int x, int y, ReadonlyBytes left, ReadonlyBytes above, u8 corner)
{
// https://datatracker.ietf.org/doc/html/rfc6386#section-12.3 "Luma Prediction"
// Roughly corresponds to "subblock_intra_predict()" in the spec.
auto weighted_average = [](u8 x, u8 y, u8 z) { return (x + 2 * y + z + 2) / 4; };
auto average = [](u8 x, u8 y) { return (x + y + 1) / 2; };
auto at = [&y_prediction, y, x](int px, int py) -> u8& { return y_prediction[(4 * y + py) * 16 + 4 * x + px]; };
if (mode == B_DC_PRED) {
// The spec text says this is like DC_PRED, but predict_dc_nxn() in the sample implementation doesn't do the "oob isn't read" part.
int sum = 0, n = 8;
for (int i = 0; i < 4; ++i)
sum += left[i] + above[i];
u8 average = (sum + n / 2) / n;
for (int py = 0; py < 4; ++py)
for (int px = 0; px < 4; ++px)
y_prediction[(4 * y + py) * 16 + 4 * x + px] = average;
} else if (mode == B_TM_PRED) {
for (int py = 0; py < 4; ++py)
for (int px = 0; px < 4; ++px)
y_prediction[(4 * y + py) * 16 + 4 * x + px] = clamp(left[py] + above[px] - corner, 0, 255);
} else if (mode == B_VE_PRED) {
// The spec text says this is like V_PRED, but the sample implementation shows it does weighted averages (unlike V_PRED).
for (int py = 0; py < 4; ++py)
for (int px = 0; px < 4; ++px) {
auto top_left = (px > 0 ? above[px - 1] : corner);
y_prediction[(4 * y + py) * 16 + 4 * x + px] = weighted_average(top_left, above[px], above[px + 1]);
}
} else if (mode == B_HE_PRED) {
// The spec text says this is like H_PRED, but the sample implementation shows it does weighted averages (unlike H_PRED).
for (int py = 0; py < 4; ++py)
for (int px = 0; px < 4; ++px) {
if (py == 0) {
y_prediction[(4 * y + py) * 16 + 4 * x + px] = weighted_average(corner, left[py], left[py + 1]);
} else if (py == 3) {
/* Bottom row is exceptional because L[4] does not exist */
y_prediction[(4 * y + py) * 16 + 4 * x + px] = weighted_average(left[2], left[3], left[3]);
} else {
y_prediction[(4 * y + py) * 16 + 4 * x + px] = weighted_average(left[py - 1], left[py], left[py + 1]);
}
}
} else if (mode == B_LD_PRED) {
// this is 45-deg prediction from above, going left-down (i.e. isochromes on -1/+1 diags)
at(0, 0) = weighted_average(above[0], above[1], above[2]);
at(0, 1) = at(1, 0) = weighted_average(above[1], above[2], above[3]);
at(0, 2) = at(1, 1) = at(2, 0) = weighted_average(above[2], above[3], above[4]);
at(0, 3) = at(1, 2) = at(2, 1) = at(3, 0) = weighted_average(above[3], above[4], above[5]);
at(1, 3) = at(2, 2) = at(3, 1) = weighted_average(above[4], above[5], above[6]);
at(2, 3) = at(3, 2) = weighted_average(above[5], above[6], above[7]);
at(3, 3) = weighted_average(above[6], above[7], above[7]); // intentionally 6, 7, 7
} else if (mode == B_RD_PRED) {
// this is 45-deg prediction from above / left, going right-down (i.e. isochromes on +1/+1 diags)
at(0, 3) = weighted_average(left[3], left[2], left[1]);
at(0, 2) = at(1, 3) = weighted_average(left[2], left[1], left[0]);
at(0, 1) = at(1, 2) = at(2, 3) = weighted_average(left[1], left[0], corner);
at(0, 0) = at(1, 1) = at(2, 2) = at(3, 3) = weighted_average(left[0], corner, above[0]);
at(1, 0) = at(2, 1) = at(3, 2) = weighted_average(corner, above[0], above[1]);
at(2, 0) = at(3, 1) = weighted_average(above[0], above[1], above[2]);
at(3, 0) = weighted_average(above[1], above[2], above[3]);
} else if (mode == B_VR_PRED) {
// this is 22.5-deg prediction
at(0, 3) = weighted_average(left[2], left[1], left[0]);
at(0, 2) = weighted_average(left[1], left[0], corner);
at(1, 3) = at(0, 1) = weighted_average(left[0], corner, above[0]);
at(1, 2) = at(0, 0) = average(corner, above[0]);
at(2, 3) = at(1, 1) = weighted_average(corner, above[0], above[1]);
at(2, 2) = at(1, 0) = average(above[0], above[1]);
at(3, 3) = at(2, 1) = weighted_average(above[0], above[1], above[2]);
at(3, 2) = at(2, 0) = average(above[1], above[2]);
at(3, 1) = weighted_average(above[1], above[2], above[3]);
at(3, 0) = average(above[2], above[3]);
} else if (mode == B_VL_PRED) {
// this is 22.5-deg prediction
at(0, 0) = average(above[0], above[1]);
at(0, 1) = weighted_average(above[0], above[1], above[2]);
at(0, 2) = at(1, 0) = average(above[1], above[2]);
at(1, 1) = at(0, 3) = weighted_average(above[1], above[2], above[3]);
at(1, 2) = at(2, 0) = average(above[2], above[3]);
at(1, 3) = at(2, 1) = weighted_average(above[2], above[3], above[4]);
at(2, 2) = at(3, 0) = average(above[3], above[4]);
at(2, 3) = at(3, 1) = weighted_average(above[3], above[4], above[5]);
/* Last two values do not strictly follow the pattern. */
at(3, 2) = weighted_average(above[4], above[5], above[6]);
at(3, 3) = weighted_average(above[5], above[6], above[7]);
} else if (mode == B_HD_PRED) {
// this is 22.5-deg prediction
at(0, 3) = average(left[3], left[2]);
at(1, 3) = weighted_average(left[3], left[2], left[1]);
at(0, 2) = at(2, 3) = average(left[2], left[1]);
at(1, 2) = at(3, 3) = weighted_average(left[2], left[1], left[0]);
at(2, 2) = at(0, 1) = average(left[1], left[0]);
at(3, 2) = at(1, 1) = weighted_average(left[1], left[0], corner);
at(2, 1) = at(0, 0) = average(left[0], corner);
at(3, 1) = at(1, 0) = weighted_average(left[0], corner, above[0]);
at(2, 0) = weighted_average(corner, above[0], above[1]);
at(3, 0) = weighted_average(above[0], above[1], above[2]);
} else {
VERIFY(mode == B_HU_PRED);
// this is 22.5-deg prediction
at(0, 0) = average(left[0], left[1]);
at(1, 0) = weighted_average(left[0], left[1], left[2]);
at(2, 0) = at(0, 1) = average(left[1], left[2]);
at(3, 0) = at(1, 1) = weighted_average(left[1], left[2], left[3]);
at(2, 1) = at(0, 2) = average(left[2], left[3]);
at(3, 1) = at(1, 2) = weighted_average(left[2], left[3], left[3]); // Intentionally 2, 3, 3
/* Not possible to follow pattern for much of the bottom
row because no (nearby) already-constructed pixels lie
on the diagonals in question. */
at(2, 2) = at(3, 2) = at(0, 3) = at(1, 3) = at(2, 3) = at(3, 3) = left[3];
}
}
template<int N>
void add_idct_to_prediction(Bytes prediction, Coefficients coefficients, int x, int y)
{
Coefficients idct_output;
short_idct4x4llm_c(coefficients, idct_output, 4 * sizeof(i16));
// https://datatracker.ietf.org/doc/html/rfc6386#section-14.5 "Summation of Predictor and Residue"
// FIXME: Could omit the clamp() call if FrameHeader.clamping_type == ClampingSpecification::NoClampingNecessary.
for (int py = 0; py < 4; ++py) {
for (int px = 0; px < 4; ++px) {
u8& p = prediction[(4 * y + py) * N + (4 * x + px)];
p = clamp(p + idct_output[py * 4 + px], 0, 255);
}
}
}
template<int N>
void process_macroblock(Bytes output, IntraMacroblockMode mode, int mb_x, int mb_y, ReadonlyBytes left, ReadonlyBytes above, u8 truemotion_corner, Coefficients coefficients_array[])
{
predict_macroblock<4 * N>(output, mode, mb_x, mb_y, left, above, truemotion_corner);
// https://datatracker.ietf.org/doc/html/rfc6386#section-14.4 "Implementation of the DCT Inversion"
// Loop over the 4x4 subblocks
for (int y = 0, i = 0; y < N; ++y)
for (int x = 0; x < N; ++x, ++i)
add_idct_to_prediction<4 * N>(output, coefficients_array[i], x, y);
}
void process_subblocks(Bytes y_output, MacroblockMetadata const& metadata, int mb_x, ReadonlyBytes predicted_y_left, ReadonlyBytes predicted_y_above, u8 y_truemotion_corner, Coefficients coefficients_array[], int macroblock_width)
{
// Loop over the 4x4 subblocks
for (int y = 0, i = 0; y < 4; ++y) {
for (int x = 0; x < 4; ++x, ++i) {
u8 corner = y_truemotion_corner;
if (x > 0 && y == 0)
corner = predicted_y_above[mb_x * 16 + 4 * x - 1];
else if (x > 0 && y > 0)
corner = y_output[(4 * y - 1) * 16 + 4 * x - 1];
else if (x == 0 && y > 0)
corner = predicted_y_left[4 * y - 1];
u8 left[4], above[8];
for (int i = 0; i < 4; ++i) {
if (x == 0)
left[i] = predicted_y_left[4 * y + i];
else
left[i] = y_output[(4 * y + i) * 16 + 4 * x - 1];
}
// Subblock prediction can read 8 pixels above the block.
// For rightmost subblocks, the right 4 pixels there aren't initialized yet, so those get the 4 pixels to the right above the macroblock.
// For the rightmost macroblock, there's no macroblock to its right, so there they get the rightmost pixel above.
// But in the 0th row, there's no pixel above, so there they become 127.
for (int i = 0; i < 8; ++i) {
if (x == 3 && i >= 4) { // rightmost subblock, 4 right pixels?
if (mb_x == macroblock_width - 1) { // rightmost macroblock
// predicted_y_above is initialized to 127 above the first row, so no need for an explicit branch for mb_y == 0.
above[i] = predicted_y_above[mb_x * 16 + 4 * x + 3];
} else {
above[i] = predicted_y_above[mb_x * 16 + 4 * x + i];
}
} else if (y == 0) {
above[i] = predicted_y_above[mb_x * 16 + 4 * x + i];
} else {
above[i] = y_output[(4 * y - 1) * 16 + 4 * x + i];
}
}
predict_y_subblock(y_output, metadata.intra_b_modes[y * 4 + x], x, y, left, above, corner);
// Have to do IDCT summation here, since its results affect prediction of next subblock already.
add_idct_to_prediction<16>(y_output, coefficients_array[4 * y + x], x, y);
}
}
}
void convert_yuv_to_rgb(Bitmap& bitmap, int mb_x, int mb_y, ReadonlyBytes y_data, ReadonlyBytes u_data, ReadonlyBytes v_data)
{
for (int y = 0; y < 16; ++y) {
for (int x = 0; x < 16; ++x) {
u8 Y = y_data[y * 16 + x];
// FIXME: Could do nicer upsampling than just nearest neighbor
u8 U = u_data[(y / 2) * 8 + x / 2];
u8 V = v_data[(y / 2) * 8 + x / 2];
// XXX: These numbers are from the fixed-point values in libwebp's yuv.h. There's probably a better reference somewhere.
int r = 1.1655 * Y + 1.596 * V - 222.4;
int g = 1.1655 * Y - 0.3917 * U - 0.8129 * V + 136.0625;
int b = 1.1655 * Y + 2.0172 * U - 276.33;
bitmap.scanline(mb_y * 16 + y)[mb_x * 16 + x] = Color(clamp(r, 0, 255), clamp(g, 0, 255), clamp(b, 0, 255)).value();
}
}
}
ErrorOr<void> decode_VP8_image_data(Gfx::Bitmap& bitmap, FrameHeader const& header, Vector<ReadonlyBytes> data_partitions, int macroblock_width, int macroblock_height, Vector<MacroblockMetadata> const& macroblock_metadata)
{
Vector<BooleanDecoder> streams;
for (auto data : data_partitions) {
auto decoder = TRY(BooleanDecoder::initialize(data));
TRY(streams.try_append(move(decoder)));
}
CoefficientReadingContext coefficient_reading_context;
TRY(coefficient_reading_context.initialize(macroblock_width));
Vector<u8> predicted_y_above;
TRY(predicted_y_above.try_resize(macroblock_width * 16));
for (size_t i = 0; i < predicted_y_above.size(); ++i)
predicted_y_above[i] = 127;
Vector<u8> predicted_u_above;
TRY(predicted_u_above.try_resize(macroblock_width * 8));
for (size_t i = 0; i < predicted_u_above.size(); ++i)
predicted_u_above[i] = 127;
Vector<u8> predicted_v_above;
TRY(predicted_v_above.try_resize(macroblock_width * 8));
for (size_t i = 0; i < predicted_v_above.size(); ++i)
predicted_v_above[i] = 127;
for (int mb_y = 0, macroblock_index = 0; mb_y < macroblock_height; ++mb_y) {
BooleanDecoder& decoder = streams[mb_y % streams.size()];
coefficient_reading_context.start_new_row();
u8 predicted_y_left[16] { 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129 };
u8 predicted_u_left[8] { 129, 129, 129, 129, 129, 129, 129, 129 };
u8 predicted_v_left[8] { 129, 129, 129, 129, 129, 129, 129, 129 };
// The spec doesn't say if this should be 127, 129, or something else.
// But ReconstructRow in frame_dec.c in libwebp suggests 129.
u8 y_truemotion_corner = 129;
u8 u_truemotion_corner = 129;
u8 v_truemotion_corner = 129;
for (int mb_x = 0; mb_x < macroblock_width; ++mb_x, ++macroblock_index) {
auto const& metadata = macroblock_metadata[macroblock_index];
auto coefficients = read_macroblock_coefficients(decoder, header, coefficient_reading_context, metadata, mb_x);
u8 y_data[16 * 16] {};
if (metadata.intra_y_mode == B_PRED)
process_subblocks(y_data, metadata, mb_x, predicted_y_left, predicted_y_above, y_truemotion_corner, coefficients.y_coeffs, macroblock_width);
else
process_macroblock<4>(y_data, metadata.intra_y_mode, mb_x, mb_y, predicted_y_left, predicted_y_above, y_truemotion_corner, coefficients.y_coeffs);
u8 u_data[8 * 8] {};
process_macroblock<2>(u_data, metadata.uv_mode, mb_x, mb_y, predicted_u_left, predicted_u_above, u_truemotion_corner, coefficients.u_coeffs);
u8 v_data[8 * 8] {};
process_macroblock<2>(v_data, metadata.uv_mode, mb_x, mb_y, predicted_v_left, predicted_v_above, v_truemotion_corner, coefficients.v_coeffs);
// FIXME: insert loop filtering here
convert_yuv_to_rgb(bitmap, mb_x, mb_y, y_data, u_data, v_data);
y_truemotion_corner = predicted_y_above[mb_x * 16 + 15];
for (int i = 0; i < 16; ++i)
predicted_y_left[i] = y_data[15 + i * 16];
for (int i = 0; i < 16; ++i)
predicted_y_above[mb_x * 16 + i] = y_data[15 * 16 + i];
u_truemotion_corner = predicted_u_above[mb_x * 8 + 7];
for (int i = 0; i < 8; ++i)
predicted_u_left[i] = u_data[7 + i * 8];
for (int i = 0; i < 8; ++i)
predicted_u_above[mb_x * 8 + i] = u_data[7 * 8 + i];
v_truemotion_corner = predicted_v_above[mb_x * 8 + 7];
for (int i = 0; i < 8; ++i)
predicted_v_left[i] = v_data[7 + i * 8];
for (int i = 0; i < 8; ++i)
predicted_v_above[mb_x * 8 + i] = v_data[7 * 8 + i];
}
}
for (auto& decoder : streams)
TRY(decoder.finish_decode());
return {};
}
static ErrorOr<Vector<ReadonlyBytes>> split_data_partitions(ReadonlyBytes second_partition, u8 number_of_dct_partitions)
{
Vector<ReadonlyBytes> data_partitions;
// https://datatracker.ietf.org/doc/html/rfc6386#section-9.5 "Token Partition and Partition Data Offsets"
// "If the number of data partitions is
// greater than 1, the size of each partition (except the last) is
// written in 3 bytes (24 bits). The size of the last partition is the
// remainder of the data not used by any of the previous partitions.
// The partitioned data are consecutive in the bitstream, so the size
// can also be used to calculate the offset of each partition."
// In practice, virtually all lossy webp files have a single data partition.
VERIFY(number_of_dct_partitions >= 1);
VERIFY(number_of_dct_partitions <= 8);
size_t sizes_size = (number_of_dct_partitions - 1) * 3;
if (second_partition.size() < sizes_size)
return Error::from_string_literal("WebPImageDecoderPlugin: not enough data for partition sizes");
ReadonlyBytes sizes = second_partition.slice(0, sizes_size);
ReadonlyBytes data = second_partition.slice(sizes_size);
for (int i = 0; i < number_of_dct_partitions - 1; ++i) {
u32 partition_size = sizes[0] | (sizes[1] << 8) | (sizes[2] << 16);
dbgln_if(WEBP_DEBUG, "partition_size {}", partition_size);
sizes = sizes.slice(3);
if (partition_size > data.size())
return Error::from_string_literal("WebPImageDecoderPlugin: not enough data for partition data");
TRY(data_partitions.try_append(data.slice(0, partition_size)));
data = data.slice(partition_size);
}
TRY(data_partitions.try_append(data));
return data_partitions;
}
}
ErrorOr<NonnullRefPtr<Bitmap>> decode_webp_chunk_VP8_contents(VP8Header const& vp8_header, bool include_alpha_channel)
{
// The first partition stores header, per-segment state, and macroblock metadata.
auto decoder = TRY(BooleanDecoder::initialize(vp8_header.first_partition));
auto header = TRY(decode_VP8_frame_header(decoder));
// https://datatracker.ietf.org/doc/html/rfc6386#section-2 "Format Overview"
// "Internally, VP8 decomposes each output frame into an array of
// macroblocks. A macroblock is a square array of pixels whose Y
// dimensions are 16x16 and whose U and V dimensions are 8x8."
int macroblock_width = ceil_div(vp8_header.width, 16);
int macroblock_height = ceil_div(vp8_header.height, 16);
auto macroblock_metadata = TRY(decode_VP8_macroblock_metadata(decoder, header, macroblock_width, macroblock_height));
TRY(decoder.finish_decode());
// Done with the first partition!
auto bitmap_format = include_alpha_channel ? BitmapFormat::BGRA8888 : BitmapFormat::BGRx8888;
auto bitmap = TRY(Bitmap::create(bitmap_format, { macroblock_width * 16, macroblock_height * 16 }));
auto data_partitions = TRY(split_data_partitions(vp8_header.second_partition, header.number_of_dct_partitions));
TRY(decode_VP8_image_data(*bitmap, header, move(data_partitions), macroblock_width, macroblock_height, macroblock_metadata));
auto width = static_cast<int>(vp8_header.width);
auto height = static_cast<int>(vp8_header.height);
if (bitmap->physical_size() == IntSize { width, height })
return bitmap;
return bitmap->cropped({ 0, 0, width, height });
}
}