ladybird/Userland/Libraries/LibGfx/ImageFormats/TIFFLoader.cpp
Lucas CHOLLET 335097e446 LibGfx/TIFF: Modify the image according to the Orientation tag
Let's use the already existing logic (ExifOrientedBitmap) to modify the
bitmap to honor the orientation tag.
2024-01-08 00:07:44 +01:00

610 lines
22 KiB
C++

/*
* Copyright (c) 2023, Lucas Chollet <lucas.chollet@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "TIFFLoader.h"
#include <AK/ConstrainedStream.h>
#include <AK/Debug.h>
#include <AK/Endian.h>
#include <AK/String.h>
#include <LibCompress/LZWDecoder.h>
#include <LibCompress/PackBitsDecoder.h>
#include <LibCompress/Zlib.h>
#include <LibGfx/ImageFormats/CCITTDecoder.h>
#include <LibGfx/ImageFormats/ExifOrientedBitmap.h>
#include <LibGfx/ImageFormats/TIFFMetadata.h>
namespace Gfx {
namespace TIFF {
class TIFFLoadingContext {
public:
enum class State {
NotDecoded = 0,
Error,
HeaderDecoded,
FrameDecoded,
};
TIFFLoadingContext(NonnullOwnPtr<FixedMemoryStream> stream)
: m_stream(move(stream))
{
}
ErrorOr<void> decode_image_header()
{
TRY(read_image_file_header());
TRY(read_next_image_file_directory());
m_state = State::HeaderDecoded;
return {};
}
ErrorOr<void> ensure_baseline_tags_correctness() const
{
if (m_metadata.strip_offsets()->size() != m_metadata.strip_byte_counts()->size())
return Error::from_string_literal("TIFFImageDecoderPlugin: StripsOffset and StripByteCount have different sizes");
if (any_of(*m_metadata.bits_per_sample(), [](auto bit_depth) { return bit_depth == 0 || bit_depth > 32; }))
return Error::from_string_literal("TIFFImageDecoderPlugin: Invalid value in BitsPerSample");
return {};
}
ErrorOr<void> decode_frame()
{
TRY(ensure_baseline_tags_presence(m_metadata));
TRY(ensure_baseline_tags_correctness());
auto maybe_error = decode_frame_impl();
if (maybe_error.is_error()) {
m_state = State::Error;
return maybe_error.release_error();
}
return {};
}
IntSize size() const
{
return ExifOrientedBitmap::oriented_size({ *m_metadata.image_width(), *m_metadata.image_height() }, *m_metadata.orientation());
}
Metadata const& metadata() const
{
return m_metadata;
}
State state() const
{
return m_state;
}
RefPtr<Bitmap> bitmap() const
{
return m_bitmap;
}
private:
enum class ByteOrder {
LittleEndian,
BigEndian,
};
static ErrorOr<u8> read_component(BigEndianInputBitStream& stream, u8 bits)
{
// FIXME: This function truncates everything to 8-bits
auto const value = TRY(stream.read_bits<u32>(bits));
if (bits > 8)
return value >> (bits - 8);
return NumericLimits<u8>::max() * value / ((1 << bits) - 1);
}
u8 samples_for_photometric_interpretation() const
{
switch (*m_metadata.photometric_interpretation()) {
case PhotometricInterpretation::WhiteIsZero:
case PhotometricInterpretation::BlackIsZero:
case PhotometricInterpretation::RGBPalette:
return 1;
case PhotometricInterpretation::RGB:
return 3;
default:
TODO();
}
}
Optional<u8> alpha_channel_index() const
{
if (m_metadata.extra_samples().has_value()) {
auto const extra_samples = m_metadata.extra_samples().value();
for (u8 i = 0; i < extra_samples.size(); ++i) {
if (extra_samples[i] == ExtraSample::UnassociatedAlpha)
return i + samples_for_photometric_interpretation();
}
}
return OptionalNone {};
}
ErrorOr<Color> read_color(BigEndianInputBitStream& stream)
{
auto bits_per_sample = *m_metadata.bits_per_sample();
// Section 7: Additional Baseline TIFF Requirements
// Some TIFF files may have more components per pixel than you think. A Baseline TIFF reader must skip over
// them gracefully, using the values of the SamplesPerPixel and BitsPerSample fields.
auto manage_extra_channels = [&]() -> ErrorOr<u8> {
// Both unknown and alpha channels are considered as extra channels, so let's iterate over
// them, conserve the alpha value (if any) and discard everything else.
auto const number_base_channels = samples_for_photometric_interpretation();
auto const alpha_index = alpha_channel_index();
Optional<u8> alpha {};
for (u8 i = number_base_channels; i < bits_per_sample.size(); ++i) {
if (alpha_index == i)
alpha = TRY(read_component(stream, bits_per_sample[i]));
else
TRY(read_component(stream, bits_per_sample[i]));
}
return alpha.value_or(NumericLimits<u8>::max());
};
if (m_metadata.photometric_interpretation() == PhotometricInterpretation::RGB) {
auto const first_component = TRY(read_component(stream, bits_per_sample[0]));
auto const second_component = TRY(read_component(stream, bits_per_sample[1]));
auto const third_component = TRY(read_component(stream, bits_per_sample[2]));
auto const alpha = TRY(manage_extra_channels());
return Color(first_component, second_component, third_component, alpha);
}
if (m_metadata.photometric_interpretation() == PhotometricInterpretation::RGBPalette) {
auto const index = TRY(stream.read_bits<u16>(bits_per_sample[0]));
auto const alpha = TRY(manage_extra_channels());
// SamplesPerPixel == 1 is a requirement for RGBPalette
// From description of PhotometricInterpretation in Section 8: Baseline Field Reference Guide
// "In a TIFF ColorMap, all the Red values come first, followed by the Green values,
// then the Blue values."
auto const size = 1 << (*m_metadata.bits_per_sample())[0];
auto const red_offset = 0 * size;
auto const green_offset = 1 * size;
auto const blue_offset = 2 * size;
auto const color_map = *m_metadata.color_map();
// FIXME: ColorMap's values are always 16-bits, stop truncating them when we support 16 bits bitmaps
return Color(
color_map[red_offset + index] >> 8,
color_map[green_offset + index] >> 8,
color_map[blue_offset + index] >> 8,
alpha);
}
if (*m_metadata.photometric_interpretation() == PhotometricInterpretation::WhiteIsZero
|| *m_metadata.photometric_interpretation() == PhotometricInterpretation::BlackIsZero) {
auto luminosity = TRY(read_component(stream, bits_per_sample[0]));
if (m_metadata.photometric_interpretation() == PhotometricInterpretation::WhiteIsZero)
luminosity = ~luminosity;
auto const alpha = TRY(manage_extra_channels());
return Color(luminosity, luminosity, luminosity, alpha);
}
return Error::from_string_literal("Unsupported value for PhotometricInterpretation");
}
template<CallableAs<ErrorOr<ReadonlyBytes>, u32> StripDecoder>
ErrorOr<void> loop_over_pixels(StripDecoder&& strip_decoder)
{
auto const strips_offset = *m_metadata.strip_offsets();
auto const strip_byte_counts = *m_metadata.strip_byte_counts();
auto oriented_bitmap = TRY(ExifOrientedBitmap::create(BitmapFormat::BGRA8888, { *metadata().image_width(), *metadata().image_height() }, *metadata().orientation()));
for (u32 strip_index = 0; strip_index < strips_offset.size(); ++strip_index) {
TRY(m_stream->seek(strips_offset[strip_index]));
auto const decoded_bytes = TRY(strip_decoder(strip_byte_counts[strip_index]));
auto decoded_strip = make<FixedMemoryStream>(decoded_bytes);
auto decoded_stream = make<BigEndianInputBitStream>(move(decoded_strip));
for (u32 row = 0; row < *m_metadata.rows_per_strip(); row++) {
auto const scanline = row + *m_metadata.rows_per_strip() * strip_index;
if (scanline >= *m_metadata.image_height())
break;
Optional<Color> last_color {};
for (u32 column = 0; column < *m_metadata.image_width(); ++column) {
auto color = TRY(read_color(*decoded_stream));
if (m_metadata.predictor() == Predictor::HorizontalDifferencing && last_color.has_value()) {
color.set_red(last_color->red() + color.red());
color.set_green(last_color->green() + color.green());
color.set_blue(last_color->blue() + color.blue());
}
last_color = color;
oriented_bitmap.set_pixel(column, scanline, color);
}
decoded_stream->align_to_byte_boundary();
}
}
m_bitmap = oriented_bitmap.bitmap();
return {};
}
ErrorOr<void> decode_frame_impl()
{
switch (*m_metadata.compression()) {
case Compression::NoCompression: {
auto identity = [&](u32 num_bytes) {
return m_stream->read_in_place<u8 const>(num_bytes);
};
TRY(loop_over_pixels(move(identity)));
break;
}
case Compression::CCITT: {
if (m_metadata.bits_per_sample()->size() > 1)
return Error::from_string_literal("TIFFImageDecoderPlugin: CCITT image with BitsPerSample greater than one, aborting...");
ByteBuffer decoded_bytes {};
auto decode_ccitt_1D_strip = [&](u32 num_bytes) -> ErrorOr<ReadonlyBytes> {
auto const encoded_bytes = TRY(m_stream->read_in_place<u8 const>(num_bytes));
decoded_bytes = TRY(CCITT::decode_ccitt3_1d(encoded_bytes, *m_metadata.image_width(), *m_metadata.rows_per_strip()));
return decoded_bytes;
};
TRY(loop_over_pixels(move(decode_ccitt_1D_strip)));
break;
}
case Compression::LZW: {
ByteBuffer decoded_bytes {};
auto decode_lzw_strip = [&](u32 num_bytes) -> ErrorOr<ReadonlyBytes> {
auto const encoded_bytes = TRY(m_stream->read_in_place<u8 const>(num_bytes));
if (encoded_bytes.is_empty())
return Error::from_string_literal("TIFFImageDecoderPlugin: Unable to read from empty LZW strip");
// Note: AFAIK, there are two common ways to use LZW compression:
// - With a LittleEndian stream and no Early-Change, this is used in the GIF format
// - With a BigEndian stream and an EarlyChange of 1, this is used in the PDF format
// The fun begins when they decided to change from the former to the latter when moving
// from TIFF 5.0 to 6.0, and without including a way for files to be identified.
// Fortunately, as the first byte of a LZW stream is a constant we can guess the endianess
// and deduce the version from it. The first code is 0x100 (9-bits).
if (encoded_bytes[0] == 0x00)
decoded_bytes = TRY(Compress::LZWDecoder<LittleEndianInputBitStream>::decode_all(encoded_bytes, 8, 0));
else
decoded_bytes = TRY(Compress::LZWDecoder<BigEndianInputBitStream>::decode_all(encoded_bytes, 8, -1));
return decoded_bytes;
};
TRY(loop_over_pixels(move(decode_lzw_strip)));
break;
}
case Compression::AdobeDeflate: {
// This is an extension from the Technical Notes from 2002:
// https://web.archive.org/web/20160305055905/http://partners.adobe.com/public/developer/en/tiff/TIFFphotoshop.pdf
ByteBuffer decoded_bytes {};
auto decode_zlib = [&](u32 num_bytes) -> ErrorOr<ReadonlyBytes> {
auto stream = make<ConstrainedStream>(MaybeOwned<Stream>(*m_stream), num_bytes);
auto decompressed_stream = TRY(Compress::ZlibDecompressor::create(move(stream)));
decoded_bytes = TRY(decompressed_stream->read_until_eof(4096));
return decoded_bytes;
};
TRY(loop_over_pixels(move(decode_zlib)));
break;
}
case Compression::PackBits: {
// Section 9: PackBits Compression
ByteBuffer decoded_bytes {};
auto decode_packbits_strip = [&](u32 num_bytes) -> ErrorOr<ReadonlyBytes> {
auto const encoded_bytes = TRY(m_stream->read_in_place<u8 const>(num_bytes));
decoded_bytes = TRY(Compress::PackBits::decode_all(encoded_bytes));
return decoded_bytes;
};
TRY(loop_over_pixels(move(decode_packbits_strip)));
break;
}
default:
return Error::from_string_literal("This compression type is not supported yet :^)");
}
return {};
}
template<typename T>
ErrorOr<T> read_value()
{
if (m_byte_order == ByteOrder::LittleEndian)
return TRY(m_stream->read_value<LittleEndian<T>>());
if (m_byte_order == ByteOrder::BigEndian)
return TRY(m_stream->read_value<BigEndian<T>>());
VERIFY_NOT_REACHED();
}
ErrorOr<void> read_next_idf_offset()
{
auto const next_block_position = TRY(read_value<u32>());
if (next_block_position != 0)
m_next_ifd = Optional<u32> { next_block_position };
else
m_next_ifd = OptionalNone {};
dbgln_if(TIFF_DEBUG, "Setting image file directory pointer to {}", m_next_ifd);
return {};
}
ErrorOr<void> read_image_file_header()
{
// Section 2: TIFF Structure - Image File Header
auto const byte_order = TRY(m_stream->read_value<u16>());
switch (byte_order) {
case 0x4949:
m_byte_order = ByteOrder::LittleEndian;
break;
case 0x4D4D:
m_byte_order = ByteOrder::BigEndian;
break;
default:
return Error::from_string_literal("TIFFImageDecoderPlugin: Invalid byte order");
}
auto const magic_number = TRY(read_value<u16>());
if (magic_number != 42)
return Error::from_string_literal("TIFFImageDecoderPlugin: Invalid magic number");
TRY(read_next_idf_offset());
return {};
}
ErrorOr<void> read_next_image_file_directory()
{
// Section 2: TIFF Structure - Image File Directory
if (!m_next_ifd.has_value())
return Error::from_string_literal("TIFFImageDecoderPlugin: Missing an Image File Directory");
TRY(m_stream->seek(m_next_ifd.value()));
auto const number_of_field = TRY(read_value<u16>());
auto next_tag_offset = TRY(m_stream->tell());
for (u16 i = 0; i < number_of_field; ++i) {
TRY(m_stream->seek(next_tag_offset));
if (auto maybe_error = read_tag(); maybe_error.is_error() && TIFF_DEBUG)
dbgln("Unable to decode tag {}/{}", i + 1, number_of_field);
// Section 2: TIFF Structure
// IFD Entry
// Size of tag(u16) + type(u16) + count(u32) + value_or_offset(u32) = 12
next_tag_offset += 12;
}
TRY(read_next_idf_offset());
return {};
}
ErrorOr<Type> read_type()
{
switch (TRY(read_value<u16>())) {
case to_underlying(Type::Byte):
return Type::Byte;
case to_underlying(Type::ASCII):
return Type::ASCII;
case to_underlying(Type::UnsignedShort):
return Type::UnsignedShort;
case to_underlying(Type::UnsignedLong):
return Type::UnsignedLong;
case to_underlying(Type::UnsignedRational):
return Type::UnsignedRational;
case to_underlying(Type::Undefined):
return Type::Undefined;
case to_underlying(Type::SignedLong):
return Type::SignedLong;
case to_underlying(Type::SignedRational):
return Type::SignedRational;
case to_underlying(Type::UTF8):
return Type::UTF8;
default:
return Error::from_string_literal("TIFFImageDecoderPlugin: Unknown type");
}
}
static constexpr u8 size_of_type(Type type)
{
switch (type) {
case Type::Byte:
return 1;
case Type::ASCII:
return 1;
case Type::UnsignedShort:
return 2;
case Type::UnsignedLong:
return 4;
case Type::UnsignedRational:
return 8;
case Type::Undefined:
return 1;
case Type::SignedLong:
return 4;
case Type::SignedRational:
return 8;
case Type::Float:
return 4;
case Type::Double:
return 8;
case Type::UTF8:
return 1;
default:
VERIFY_NOT_REACHED();
}
}
ErrorOr<Vector<Value, 1>> read_tiff_value(Type type, u32 count, u32 offset)
{
auto const old_offset = TRY(m_stream->tell());
ScopeGuard reset_offset { [this, old_offset]() { MUST(m_stream->seek(old_offset)); } };
TRY(m_stream->seek(offset));
if (size_of_type(type) * count > m_stream->remaining())
return Error::from_string_literal("TIFFImageDecoderPlugin: Tag size claims to be bigger that remaining bytes");
auto const read_every_values = [this, count]<typename T>() -> ErrorOr<Vector<Value>> {
Vector<Value, 1> result {};
TRY(result.try_ensure_capacity(count));
if constexpr (IsSpecializationOf<T, Rational>) {
for (u32 i = 0; i < count; ++i)
result.empend(T { TRY(read_value<typename T::Type>()), TRY(read_value<typename T::Type>()) });
} else {
for (u32 i = 0; i < count; ++i)
result.empend(typename TypePromoter<T>::Type(TRY(read_value<T>())));
}
return result;
};
switch (type) {
case Type::Byte:
case Type::Undefined: {
Vector<Value, 1> result;
auto buffer = TRY(ByteBuffer::create_uninitialized(count));
TRY(m_stream->read_until_filled(buffer));
result.append(move(buffer));
return result;
}
case Type::ASCII:
case Type::UTF8: {
Vector<Value, 1> result;
// NOTE: No need to include the null terminator
if (count > 0)
--count;
auto string_data = TRY(ByteBuffer::create_uninitialized(count));
TRY(m_stream->read_until_filled(string_data));
result.empend(TRY(String::from_utf8(StringView { string_data.bytes() })));
return result;
}
case Type::UnsignedShort:
return read_every_values.template operator()<u16>();
case Type::UnsignedLong:
return read_every_values.template operator()<u32>();
case Type::UnsignedRational:
return read_every_values.template operator()<Rational<u32>>();
case Type::SignedLong:
return read_every_values.template operator()<i32>();
;
case Type::SignedRational:
return read_every_values.template operator()<Rational<i32>>();
default:
VERIFY_NOT_REACHED();
}
}
ErrorOr<void> read_tag()
{
auto const tag = TRY(read_value<u16>());
auto const type = TRY(read_type());
auto const count = TRY(read_value<u32>());
Checked<u32> checked_size = size_of_type(type);
checked_size *= count;
if (checked_size.has_overflow())
return Error::from_string_literal("TIFFImageDecoderPlugin: Invalid tag with too large data");
auto tiff_value = TRY(([=, this]() -> ErrorOr<Vector<Value>> {
if (checked_size.value() <= 4) {
auto value = TRY(read_tiff_value(type, count, TRY(m_stream->tell())));
TRY(m_stream->discard(4));
return value;
}
auto const offset = TRY(read_value<u32>());
return read_tiff_value(type, count, offset);
}()));
TRY(handle_tag(m_metadata, tag, type, count, move(tiff_value)));
return {};
}
NonnullOwnPtr<FixedMemoryStream> m_stream;
State m_state {};
RefPtr<Bitmap> m_bitmap {};
ByteOrder m_byte_order {};
Optional<u32> m_next_ifd {};
Metadata m_metadata {};
};
}
TIFFImageDecoderPlugin::TIFFImageDecoderPlugin(NonnullOwnPtr<FixedMemoryStream> stream)
{
m_context = make<TIFF::TIFFLoadingContext>(move(stream));
}
bool TIFFImageDecoderPlugin::sniff(ReadonlyBytes bytes)
{
if (bytes.size() < 4)
return false;
bool const valid_little_endian = bytes[0] == 0x49 && bytes[1] == 0x49 && bytes[2] == 0x2A && bytes[3] == 0x00;
bool const valid_big_endian = bytes[0] == 0x4D && bytes[1] == 0x4D && bytes[2] == 0x00 && bytes[3] == 0x2A;
return valid_little_endian || valid_big_endian;
}
IntSize TIFFImageDecoderPlugin::size()
{
return m_context->size();
}
ErrorOr<NonnullOwnPtr<ImageDecoderPlugin>> TIFFImageDecoderPlugin::create(ReadonlyBytes data)
{
auto stream = TRY(try_make<FixedMemoryStream>(data));
auto plugin = TRY(adopt_nonnull_own_or_enomem(new (nothrow) TIFFImageDecoderPlugin(move(stream))));
TRY(plugin->m_context->decode_image_header());
return plugin;
}
ErrorOr<ImageFrameDescriptor> TIFFImageDecoderPlugin::frame(size_t index, Optional<IntSize>)
{
if (index > 0)
return Error::from_string_literal("TIFFImageDecoderPlugin: Invalid frame index");
if (m_context->state() == TIFF::TIFFLoadingContext::State::Error)
return Error::from_string_literal("TIFFImageDecoderPlugin: Decoding failed");
if (m_context->state() < TIFF::TIFFLoadingContext::State::FrameDecoded)
TRY(m_context->decode_frame());
return ImageFrameDescriptor { m_context->bitmap(), 0 };
}
ErrorOr<Optional<ReadonlyBytes>> TIFFImageDecoderPlugin::icc_data()
{
return m_context->metadata().icc_profile().map([](auto const& buffer) -> ReadonlyBytes { return buffer.bytes(); });
}
}