
This will temporarily bloat the size of PrimitiveString as LibJS is transitioned to use String throughout, but will make doing so piecemeal much easier.
419 lines
13 KiB
C++
419 lines
13 KiB
C++
/*
|
|
* Copyright (c) 2020-2022, Andreas Kling <kling@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Badge.h>
|
|
#include <AK/Debug.h>
|
|
#include <AK/HashTable.h>
|
|
#include <AK/StackInfo.h>
|
|
#include <AK/TemporaryChange.h>
|
|
#include <LibCore/ElapsedTimer.h>
|
|
#include <LibJS/Heap/CellAllocator.h>
|
|
#include <LibJS/Heap/Handle.h>
|
|
#include <LibJS/Heap/Heap.h>
|
|
#include <LibJS/Heap/HeapBlock.h>
|
|
#include <LibJS/Interpreter.h>
|
|
#include <LibJS/Runtime/Object.h>
|
|
#include <LibJS/Runtime/WeakContainer.h>
|
|
#include <LibJS/SafeFunction.h>
|
|
#include <setjmp.h>
|
|
|
|
#ifdef AK_OS_SERENITY
|
|
# include <serenity.h>
|
|
#endif
|
|
|
|
namespace JS {
|
|
|
|
#ifdef AK_OS_SERENITY
|
|
static int gc_perf_string_id;
|
|
#endif
|
|
|
|
// NOTE: We keep a per-thread list of custom ranges. This hinges on the assumption that there is one JS VM per thread.
|
|
static __thread HashMap<FlatPtr*, size_t>* s_custom_ranges_for_conservative_scan = nullptr;
|
|
|
|
Heap::Heap(VM& vm)
|
|
: m_vm(vm)
|
|
{
|
|
#ifdef AK_OS_SERENITY
|
|
auto gc_signpost_string = "Garbage collection"sv;
|
|
gc_perf_string_id = perf_register_string(gc_signpost_string.characters_without_null_termination(), gc_signpost_string.length());
|
|
#endif
|
|
|
|
if constexpr (HeapBlock::min_possible_cell_size <= 16) {
|
|
m_allocators.append(make<CellAllocator>(16));
|
|
}
|
|
static_assert(HeapBlock::min_possible_cell_size <= 24, "Heap Cell tracking uses too much data!");
|
|
m_allocators.append(make<CellAllocator>(32));
|
|
m_allocators.append(make<CellAllocator>(64));
|
|
m_allocators.append(make<CellAllocator>(96));
|
|
m_allocators.append(make<CellAllocator>(128));
|
|
m_allocators.append(make<CellAllocator>(256));
|
|
m_allocators.append(make<CellAllocator>(512));
|
|
m_allocators.append(make<CellAllocator>(1024));
|
|
m_allocators.append(make<CellAllocator>(3072));
|
|
}
|
|
|
|
Heap::~Heap()
|
|
{
|
|
vm().string_cache().clear();
|
|
vm().deprecated_string_cache().clear();
|
|
collect_garbage(CollectionType::CollectEverything);
|
|
}
|
|
|
|
ALWAYS_INLINE CellAllocator& Heap::allocator_for_size(size_t cell_size)
|
|
{
|
|
for (auto& allocator : m_allocators) {
|
|
if (allocator->cell_size() >= cell_size)
|
|
return *allocator;
|
|
}
|
|
dbgln("Cannot get CellAllocator for cell size {}, largest available is {}!", cell_size, m_allocators.last()->cell_size());
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
Cell* Heap::allocate_cell(size_t size)
|
|
{
|
|
if (should_collect_on_every_allocation()) {
|
|
collect_garbage();
|
|
} else if (m_allocations_since_last_gc > m_max_allocations_between_gc) {
|
|
m_allocations_since_last_gc = 0;
|
|
collect_garbage();
|
|
} else {
|
|
++m_allocations_since_last_gc;
|
|
}
|
|
|
|
auto& allocator = allocator_for_size(size);
|
|
return allocator.allocate_cell(*this);
|
|
}
|
|
|
|
void Heap::collect_garbage(CollectionType collection_type, bool print_report)
|
|
{
|
|
VERIFY(!m_collecting_garbage);
|
|
TemporaryChange change(m_collecting_garbage, true);
|
|
|
|
#ifdef AK_OS_SERENITY
|
|
static size_t global_gc_counter = 0;
|
|
perf_event(PERF_EVENT_SIGNPOST, gc_perf_string_id, global_gc_counter++);
|
|
#endif
|
|
|
|
Core::ElapsedTimer collection_measurement_timer;
|
|
if (print_report)
|
|
collection_measurement_timer.start();
|
|
|
|
if (collection_type == CollectionType::CollectGarbage) {
|
|
if (m_gc_deferrals) {
|
|
m_should_gc_when_deferral_ends = true;
|
|
return;
|
|
}
|
|
HashTable<Cell*> roots;
|
|
gather_roots(roots);
|
|
mark_live_cells(roots);
|
|
}
|
|
finalize_unmarked_cells();
|
|
sweep_dead_cells(print_report, collection_measurement_timer);
|
|
}
|
|
|
|
void Heap::gather_roots(HashTable<Cell*>& roots)
|
|
{
|
|
vm().gather_roots(roots);
|
|
gather_conservative_roots(roots);
|
|
|
|
for (auto& handle : m_handles)
|
|
roots.set(handle.cell());
|
|
|
|
for (auto& vector : m_marked_vectors)
|
|
vector.gather_roots(roots);
|
|
|
|
if constexpr (HEAP_DEBUG) {
|
|
dbgln("gather_roots:");
|
|
for (auto* root : roots)
|
|
dbgln(" + {}", root);
|
|
}
|
|
}
|
|
|
|
__attribute__((no_sanitize("address"))) void Heap::gather_conservative_roots(HashTable<Cell*>& roots)
|
|
{
|
|
FlatPtr dummy;
|
|
|
|
dbgln_if(HEAP_DEBUG, "gather_conservative_roots:");
|
|
|
|
jmp_buf buf;
|
|
setjmp(buf);
|
|
|
|
HashTable<FlatPtr> possible_pointers;
|
|
|
|
auto* raw_jmp_buf = reinterpret_cast<FlatPtr const*>(buf);
|
|
|
|
auto add_possible_value = [&](FlatPtr data) {
|
|
if constexpr (sizeof(FlatPtr*) == sizeof(Value)) {
|
|
// Because Value stores pointers in non-canonical form we have to check if the top bytes
|
|
// match any pointer-backed tag, in that case we have to extract the pointer to its
|
|
// canonical form and add that as a possible pointer.
|
|
if ((data & SHIFTED_IS_CELL_PATTERN) == SHIFTED_IS_CELL_PATTERN)
|
|
possible_pointers.set(Value::extract_pointer_bits(data));
|
|
else
|
|
possible_pointers.set(data);
|
|
} else {
|
|
static_assert((sizeof(Value) % sizeof(FlatPtr*)) == 0);
|
|
// In the 32-bit case we will look at the top and bottom part of Value separately we just
|
|
// add both the upper and lower bytes as possible pointers.
|
|
possible_pointers.set(data);
|
|
}
|
|
};
|
|
|
|
for (size_t i = 0; i < ((size_t)sizeof(buf)) / sizeof(FlatPtr); i += sizeof(FlatPtr))
|
|
add_possible_value(raw_jmp_buf[i]);
|
|
|
|
auto stack_reference = bit_cast<FlatPtr>(&dummy);
|
|
auto& stack_info = m_vm.stack_info();
|
|
|
|
for (FlatPtr stack_address = stack_reference; stack_address < stack_info.top(); stack_address += sizeof(FlatPtr)) {
|
|
auto data = *reinterpret_cast<FlatPtr*>(stack_address);
|
|
add_possible_value(data);
|
|
}
|
|
|
|
// NOTE: If we have any custom ranges registered, scan those as well.
|
|
// This is where JS::SafeFunction closures get marked.
|
|
if (s_custom_ranges_for_conservative_scan) {
|
|
for (auto& custom_range : *s_custom_ranges_for_conservative_scan) {
|
|
for (size_t i = 0; i < (custom_range.value / sizeof(FlatPtr)); ++i) {
|
|
add_possible_value(custom_range.key[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
HashTable<HeapBlock*> all_live_heap_blocks;
|
|
for_each_block([&](auto& block) {
|
|
all_live_heap_blocks.set(&block);
|
|
return IterationDecision::Continue;
|
|
});
|
|
|
|
for (auto possible_pointer : possible_pointers) {
|
|
if (!possible_pointer)
|
|
continue;
|
|
dbgln_if(HEAP_DEBUG, " ? {}", (void const*)possible_pointer);
|
|
auto* possible_heap_block = HeapBlock::from_cell(reinterpret_cast<Cell const*>(possible_pointer));
|
|
if (all_live_heap_blocks.contains(possible_heap_block)) {
|
|
if (auto* cell = possible_heap_block->cell_from_possible_pointer(possible_pointer)) {
|
|
if (cell->state() == Cell::State::Live) {
|
|
dbgln_if(HEAP_DEBUG, " ?-> {}", (void const*)cell);
|
|
roots.set(cell);
|
|
} else {
|
|
dbgln_if(HEAP_DEBUG, " #-> {}", (void const*)cell);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
class MarkingVisitor final : public Cell::Visitor {
|
|
public:
|
|
explicit MarkingVisitor(HashTable<Cell*> const& roots)
|
|
{
|
|
for (auto* root : roots) {
|
|
visit(root);
|
|
}
|
|
}
|
|
|
|
virtual void visit_impl(Cell& cell) override
|
|
{
|
|
if (cell.is_marked())
|
|
return;
|
|
dbgln_if(HEAP_DEBUG, " ! {}", &cell);
|
|
|
|
cell.set_marked(true);
|
|
m_work_queue.append(cell);
|
|
}
|
|
|
|
void mark_all_live_cells()
|
|
{
|
|
while (!m_work_queue.is_empty()) {
|
|
m_work_queue.take_last().visit_edges(*this);
|
|
}
|
|
}
|
|
|
|
private:
|
|
Vector<Cell&> m_work_queue;
|
|
};
|
|
|
|
void Heap::mark_live_cells(HashTable<Cell*> const& roots)
|
|
{
|
|
dbgln_if(HEAP_DEBUG, "mark_live_cells:");
|
|
|
|
MarkingVisitor visitor(roots);
|
|
visitor.mark_all_live_cells();
|
|
|
|
for (auto& inverse_root : m_uprooted_cells)
|
|
inverse_root->set_marked(false);
|
|
|
|
m_uprooted_cells.clear();
|
|
}
|
|
|
|
bool Heap::cell_must_survive_garbage_collection(Cell const& cell)
|
|
{
|
|
if (!cell.overrides_must_survive_garbage_collection({}))
|
|
return false;
|
|
return cell.must_survive_garbage_collection();
|
|
}
|
|
|
|
void Heap::finalize_unmarked_cells()
|
|
{
|
|
for_each_block([&](auto& block) {
|
|
block.template for_each_cell_in_state<Cell::State::Live>([](Cell* cell) {
|
|
if (!cell->is_marked() && !cell_must_survive_garbage_collection(*cell))
|
|
cell->finalize();
|
|
});
|
|
return IterationDecision::Continue;
|
|
});
|
|
}
|
|
|
|
void Heap::sweep_dead_cells(bool print_report, Core::ElapsedTimer const& measurement_timer)
|
|
{
|
|
dbgln_if(HEAP_DEBUG, "sweep_dead_cells:");
|
|
Vector<HeapBlock*, 32> empty_blocks;
|
|
Vector<HeapBlock*, 32> full_blocks_that_became_usable;
|
|
|
|
size_t collected_cells = 0;
|
|
size_t live_cells = 0;
|
|
size_t collected_cell_bytes = 0;
|
|
size_t live_cell_bytes = 0;
|
|
|
|
for_each_block([&](auto& block) {
|
|
bool block_has_live_cells = false;
|
|
bool block_was_full = block.is_full();
|
|
block.template for_each_cell_in_state<Cell::State::Live>([&](Cell* cell) {
|
|
if (!cell->is_marked() && !cell_must_survive_garbage_collection(*cell)) {
|
|
dbgln_if(HEAP_DEBUG, " ~ {}", cell);
|
|
block.deallocate(cell);
|
|
++collected_cells;
|
|
collected_cell_bytes += block.cell_size();
|
|
} else {
|
|
cell->set_marked(false);
|
|
block_has_live_cells = true;
|
|
++live_cells;
|
|
live_cell_bytes += block.cell_size();
|
|
}
|
|
});
|
|
if (!block_has_live_cells)
|
|
empty_blocks.append(&block);
|
|
else if (block_was_full != block.is_full())
|
|
full_blocks_that_became_usable.append(&block);
|
|
return IterationDecision::Continue;
|
|
});
|
|
|
|
for (auto& weak_container : m_weak_containers)
|
|
weak_container.remove_dead_cells({});
|
|
|
|
for (auto* block : empty_blocks) {
|
|
dbgln_if(HEAP_DEBUG, " - HeapBlock empty @ {}: cell_size={}", block, block->cell_size());
|
|
allocator_for_size(block->cell_size()).block_did_become_empty({}, *block);
|
|
}
|
|
|
|
for (auto* block : full_blocks_that_became_usable) {
|
|
dbgln_if(HEAP_DEBUG, " - HeapBlock usable again @ {}: cell_size={}", block, block->cell_size());
|
|
allocator_for_size(block->cell_size()).block_did_become_usable({}, *block);
|
|
}
|
|
|
|
if constexpr (HEAP_DEBUG) {
|
|
for_each_block([&](auto& block) {
|
|
dbgln(" > Live HeapBlock @ {}: cell_size={}", &block, block.cell_size());
|
|
return IterationDecision::Continue;
|
|
});
|
|
}
|
|
|
|
if (print_report) {
|
|
Time const time_spent = measurement_timer.elapsed_time();
|
|
size_t live_block_count = 0;
|
|
for_each_block([&](auto&) {
|
|
++live_block_count;
|
|
return IterationDecision::Continue;
|
|
});
|
|
|
|
dbgln("Garbage collection report");
|
|
dbgln("=============================================");
|
|
dbgln(" Time spent: {} ms", time_spent.to_milliseconds());
|
|
dbgln(" Live cells: {} ({} bytes)", live_cells, live_cell_bytes);
|
|
dbgln("Collected cells: {} ({} bytes)", collected_cells, collected_cell_bytes);
|
|
dbgln(" Live blocks: {} ({} bytes)", live_block_count, live_block_count * HeapBlock::block_size);
|
|
dbgln(" Freed blocks: {} ({} bytes)", empty_blocks.size(), empty_blocks.size() * HeapBlock::block_size);
|
|
dbgln("=============================================");
|
|
}
|
|
}
|
|
|
|
void Heap::did_create_handle(Badge<HandleImpl>, HandleImpl& impl)
|
|
{
|
|
VERIFY(!m_handles.contains(impl));
|
|
m_handles.append(impl);
|
|
}
|
|
|
|
void Heap::did_destroy_handle(Badge<HandleImpl>, HandleImpl& impl)
|
|
{
|
|
VERIFY(m_handles.contains(impl));
|
|
m_handles.remove(impl);
|
|
}
|
|
|
|
void Heap::did_create_marked_vector(Badge<MarkedVectorBase>, MarkedVectorBase& vector)
|
|
{
|
|
VERIFY(!m_marked_vectors.contains(vector));
|
|
m_marked_vectors.append(vector);
|
|
}
|
|
|
|
void Heap::did_destroy_marked_vector(Badge<MarkedVectorBase>, MarkedVectorBase& vector)
|
|
{
|
|
VERIFY(m_marked_vectors.contains(vector));
|
|
m_marked_vectors.remove(vector);
|
|
}
|
|
|
|
void Heap::did_create_weak_container(Badge<WeakContainer>, WeakContainer& set)
|
|
{
|
|
VERIFY(!m_weak_containers.contains(set));
|
|
m_weak_containers.append(set);
|
|
}
|
|
|
|
void Heap::did_destroy_weak_container(Badge<WeakContainer>, WeakContainer& set)
|
|
{
|
|
VERIFY(m_weak_containers.contains(set));
|
|
m_weak_containers.remove(set);
|
|
}
|
|
|
|
void Heap::defer_gc(Badge<DeferGC>)
|
|
{
|
|
++m_gc_deferrals;
|
|
}
|
|
|
|
void Heap::undefer_gc(Badge<DeferGC>)
|
|
{
|
|
VERIFY(m_gc_deferrals > 0);
|
|
--m_gc_deferrals;
|
|
|
|
if (!m_gc_deferrals) {
|
|
if (m_should_gc_when_deferral_ends)
|
|
collect_garbage();
|
|
m_should_gc_when_deferral_ends = false;
|
|
}
|
|
}
|
|
|
|
void Heap::uproot_cell(Cell* cell)
|
|
{
|
|
m_uprooted_cells.append(cell);
|
|
}
|
|
|
|
void register_safe_function_closure(void* base, size_t size)
|
|
{
|
|
if (!s_custom_ranges_for_conservative_scan) {
|
|
// FIXME: This per-thread HashMap is currently leaked on thread exit.
|
|
s_custom_ranges_for_conservative_scan = new HashMap<FlatPtr*, size_t>;
|
|
}
|
|
auto result = s_custom_ranges_for_conservative_scan->set(reinterpret_cast<FlatPtr*>(base), size);
|
|
VERIFY(result == AK::HashSetResult::InsertedNewEntry);
|
|
}
|
|
|
|
void unregister_safe_function_closure(void* base, size_t)
|
|
{
|
|
VERIFY(s_custom_ranges_for_conservative_scan);
|
|
bool did_remove = s_custom_ranges_for_conservative_scan->remove(reinterpret_cast<FlatPtr*>(base));
|
|
VERIFY(did_remove);
|
|
}
|
|
|
|
}
|