ladybird/Libraries/LibWeb/Crypto/CryptoAlgorithms.cpp
Jelle Raaijmakers b290c180e0 LibWeb: Move PBKDF2::import_key() up in the file
Let's try to keep algorithm implementations together. No functional
changes.
2024-11-15 12:32:04 +01:00

3700 lines
186 KiB
C++

/*
* Copyright (c) 2024, Andrew Kaster <akaster@serenityos.org>
* Copyright (c) 2024, stelar7 <dudedbz@gmail.com>
* Copyright (c) 2024, Jelle Raaijmakers <jelle@ladybird.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Base64.h>
#include <AK/HashTable.h>
#include <AK/QuickSort.h>
#include <LibCrypto/ASN1/ASN1.h>
#include <LibCrypto/ASN1/DER.h>
#include <LibCrypto/Authentication/HMAC.h>
#include <LibCrypto/Cipher/AES.h>
#include <LibCrypto/Curves/Ed25519.h>
#include <LibCrypto/Curves/SECPxxxr1.h>
#include <LibCrypto/Curves/X25519.h>
#include <LibCrypto/Hash/HKDF.h>
#include <LibCrypto/Hash/HashManager.h>
#include <LibCrypto/Hash/MGF.h>
#include <LibCrypto/Hash/PBKDF2.h>
#include <LibCrypto/Hash/SHA1.h>
#include <LibCrypto/Hash/SHA2.h>
#include <LibCrypto/PK/RSA.h>
#include <LibCrypto/Padding/OAEP.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/ArrayBuffer.h>
#include <LibJS/Runtime/DataView.h>
#include <LibJS/Runtime/TypedArray.h>
#include <LibTLS/Certificate.h>
#include <LibWeb/Crypto/CryptoAlgorithms.h>
#include <LibWeb/Crypto/KeyAlgorithms.h>
#include <LibWeb/Crypto/SubtleCrypto.h>
#include <LibWeb/WebIDL/AbstractOperations.h>
namespace Web::Crypto {
static JS::ThrowCompletionOr<HashAlgorithmIdentifier> hash_algorithm_identifier_from_value(JS::VM& vm, JS::Value hash_value)
{
if (hash_value.is_string()) {
auto hash_string = TRY(hash_value.to_string(vm));
return HashAlgorithmIdentifier { hash_string };
}
auto hash_object = TRY(hash_value.to_object(vm));
return HashAlgorithmIdentifier { hash_object };
}
// https://w3c.github.io/webcrypto/#concept-usage-intersection
static Vector<Bindings::KeyUsage> usage_intersection(ReadonlySpan<Bindings::KeyUsage> a, ReadonlySpan<Bindings::KeyUsage> b)
{
Vector<Bindings::KeyUsage> result;
for (auto const& usage : a) {
if (b.contains_slow(usage))
result.append(usage);
}
quick_sort(result);
return result;
}
// Out of line to ensure this class has a key function
AlgorithmMethods::~AlgorithmMethods() = default;
// https://w3c.github.io/webcrypto/#big-integer
static ::Crypto::UnsignedBigInteger big_integer_from_api_big_integer(JS::GCPtr<JS::Uint8Array> const& big_integer)
{
// The BigInteger typedef is a Uint8Array that holds an arbitrary magnitude unsigned integer
// **in big-endian order**. Values read from the API SHALL have minimal typed array length
// (that is, at most 7 leading zero bits, except the value 0 which shall have length 8 bits).
// The API SHALL accept values with any number of leading zero bits, including the empty array, which represents zero.
auto const& buffer = big_integer->viewed_array_buffer()->buffer();
::Crypto::UnsignedBigInteger result(0);
if (buffer.size() > 0) {
if constexpr (AK::HostIsLittleEndian) {
// We need to reverse the buffer to get it into little-endian order
Vector<u8, 32> reversed_buffer;
reversed_buffer.resize(buffer.size());
for (size_t i = 0; i < buffer.size(); ++i) {
reversed_buffer[buffer.size() - i - 1] = buffer[i];
}
return ::Crypto::UnsignedBigInteger::import_data(reversed_buffer.data(), reversed_buffer.size());
} else {
return ::Crypto::UnsignedBigInteger::import_data(buffer.data(), buffer.size());
}
}
return ::Crypto::UnsignedBigInteger(0);
}
// https://www.rfc-editor.org/rfc/rfc7518#section-2
ErrorOr<String> base64_url_uint_encode(::Crypto::UnsignedBigInteger integer)
{
// The representation of a positive or zero integer value as the
// base64url encoding of the value's unsigned big-endian
// representation as an octet sequence. The octet sequence MUST
// utilize the minimum number of octets needed to represent the
// value. Zero is represented as BASE64URL(single zero-valued
// octet), which is "AA".
auto bytes = TRY(ByteBuffer::create_uninitialized(integer.trimmed_byte_length()));
bool const remove_leading_zeroes = true;
auto data_size = integer.export_data(bytes.span(), remove_leading_zeroes);
auto data_slice_be = bytes.bytes().slice(bytes.size() - data_size, data_size);
String encoded;
if constexpr (AK::HostIsLittleEndian) {
// We need to encode the integer's big endian representation as a base64 string
Vector<u8, 32> data_slice_cpu;
data_slice_cpu.ensure_capacity(data_size);
for (size_t i = 0; i < data_size; ++i) {
data_slice_cpu.append(data_slice_be[data_size - i - 1]);
}
encoded = TRY(encode_base64url(data_slice_cpu));
} else {
encoded = TRY(encode_base64url(data_slice_be));
}
// FIXME: create a version of encode_base64url that omits padding bytes
if (auto first_padding_byte = encoded.find_byte_offset('='); first_padding_byte.has_value())
return encoded.substring_from_byte_offset(0, first_padding_byte.value());
return encoded;
}
WebIDL::ExceptionOr<ByteBuffer> base64_url_bytes_decode(JS::Realm& realm, String const& base64_url_string)
{
auto& vm = realm.vm();
// FIXME: Create a version of decode_base64url that ignores padding inconsistencies
auto padded_string = base64_url_string;
if (padded_string.byte_count() % 4 != 0) {
padded_string = TRY_OR_THROW_OOM(vm, String::formatted("{}{}", padded_string, TRY_OR_THROW_OOM(vm, String::repeated('=', 4 - (padded_string.byte_count() % 4)))));
}
auto base64_bytes_or_error = decode_base64url(padded_string);
if (base64_bytes_or_error.is_error()) {
if (base64_bytes_or_error.error().code() == ENOMEM)
return vm.throw_completion<JS::InternalError>(vm.error_message(::JS::VM::ErrorMessage::OutOfMemory));
return WebIDL::DataError::create(realm, MUST(String::formatted("base64 decode: {}", base64_bytes_or_error.release_error())));
}
return base64_bytes_or_error.release_value();
}
WebIDL::ExceptionOr<::Crypto::UnsignedBigInteger> base64_url_uint_decode(JS::Realm& realm, String const& base64_url_string)
{
auto base64_bytes_be = TRY(base64_url_bytes_decode(realm, base64_url_string));
if constexpr (AK::HostIsLittleEndian) {
// We need to swap the integer's big-endian representation to little endian in order to import it
Vector<u8, 32> base64_bytes_cpu;
base64_bytes_cpu.ensure_capacity(base64_bytes_be.size());
for (size_t i = 0; i < base64_bytes_be.size(); ++i) {
base64_bytes_cpu.append(base64_bytes_be[base64_bytes_be.size() - i - 1]);
}
return ::Crypto::UnsignedBigInteger::import_data(base64_bytes_cpu.data(), base64_bytes_cpu.size());
} else {
return ::Crypto::UnsignedBigInteger::import_data(base64_bytes_be.data(), base64_bytes_be.size());
}
}
// https://w3c.github.io/webcrypto/#concept-parse-an-asn1-structure
template<typename Structure>
static WebIDL::ExceptionOr<Structure> parse_an_ASN1_structure(JS::Realm& realm, ReadonlyBytes data, bool exact_data = true)
{
// 1. Let data be a sequence of bytes to be parsed.
// 2. Let structure be the ASN.1 structure to be parsed.
// 3. Let exactData be an optional boolean value. If it is not supplied, let it be initialized to true.
// 4. Parse data according to the Distinguished Encoding Rules of [X690], using structure as the ASN.1 structure to be decoded.
::Crypto::ASN1::Decoder decoder(data);
Structure structure;
if constexpr (IsSame<Structure, TLS::SubjectPublicKey>) {
auto maybe_subject_public_key = TLS::parse_subject_public_key_info(decoder);
if (maybe_subject_public_key.is_error())
return WebIDL::DataError::create(realm, MUST(String::formatted("Error parsing subjectPublicKeyInfo: {}", maybe_subject_public_key.release_error())));
structure = maybe_subject_public_key.release_value();
} else if constexpr (IsSame<Structure, TLS::PrivateKey>) {
auto maybe_private_key = TLS::parse_private_key_info(decoder);
if (maybe_private_key.is_error())
return WebIDL::DataError::create(realm, MUST(String::formatted("Error parsing privateKeyInfo: {}", maybe_private_key.release_error())));
structure = maybe_private_key.release_value();
} else if constexpr (IsSame<Structure, StringView>) {
auto read_result = decoder.read<StringView>(::Crypto::ASN1::Class::Universal, ::Crypto::ASN1::Kind::OctetString);
if (read_result.is_error())
return WebIDL::DataError::create(realm, MUST(String::formatted("Read of kind OctetString failed: {}", read_result.error())));
structure = read_result.release_value();
} else {
static_assert(DependentFalse<Structure>, "Don't know how to parse ASN.1 structure type");
}
// 5. If exactData was specified, and all of the bytes of data were not consumed during the parsing phase, then throw a DataError.
if (exact_data && !decoder.eof())
return WebIDL::DataError::create(realm, "Not all bytes were consumed during the parsing phase"_string);
// 6. Return the parsed ASN.1 structure.
return structure;
}
// https://w3c.github.io/webcrypto/#concept-parse-a-spki
static WebIDL::ExceptionOr<TLS::SubjectPublicKey> parse_a_subject_public_key_info(JS::Realm& realm, ReadonlyBytes bytes)
{
// When this specification says to parse a subjectPublicKeyInfo, the user agent must parse an ASN.1 structure,
// with data set to the sequence of bytes to be parsed, structure as the ASN.1 structure of subjectPublicKeyInfo,
// as specified in [RFC5280], and exactData set to true.
return parse_an_ASN1_structure<TLS::SubjectPublicKey>(realm, bytes, true);
}
// https://w3c.github.io/webcrypto/#concept-parse-a-privateKeyInfo
static WebIDL::ExceptionOr<TLS::PrivateKey> parse_a_private_key_info(JS::Realm& realm, ReadonlyBytes bytes)
{
// When this specification says to parse a PrivateKeyInfo, the user agent must parse an ASN.1 structure
// with data set to the sequence of bytes to be parsed, structure as the ASN.1 structure of PrivateKeyInfo,
// as specified in [RFC5208], and exactData set to true.
return parse_an_ASN1_structure<TLS::PrivateKey>(realm, bytes, true);
}
static WebIDL::ExceptionOr<::Crypto::PK::RSAPrivateKey<>> parse_jwk_rsa_private_key(JS::Realm& realm, Bindings::JsonWebKey const& jwk)
{
auto n = TRY(base64_url_uint_decode(realm, *jwk.n));
auto d = TRY(base64_url_uint_decode(realm, *jwk.d));
auto e = TRY(base64_url_uint_decode(realm, *jwk.e));
// We know that if any of the extra parameters are provided, all of them must be
if (!jwk.p.has_value())
return ::Crypto::PK::RSAPrivateKey<>(move(n), move(d), move(e), 0, 0);
auto p = TRY(base64_url_uint_decode(realm, *jwk.p));
auto q = TRY(base64_url_uint_decode(realm, *jwk.q));
auto dp = TRY(base64_url_uint_decode(realm, *jwk.dp));
auto dq = TRY(base64_url_uint_decode(realm, *jwk.dq));
auto qi = TRY(base64_url_uint_decode(realm, *jwk.qi));
return ::Crypto::PK::RSAPrivateKey<>(move(n), move(d), move(e), move(p), move(q), move(dp), move(dq), move(qi));
}
static WebIDL::ExceptionOr<::Crypto::PK::RSAPublicKey<>> parse_jwk_rsa_public_key(JS::Realm& realm, Bindings::JsonWebKey const& jwk)
{
auto e = TRY(base64_url_uint_decode(realm, *jwk.e));
auto n = TRY(base64_url_uint_decode(realm, *jwk.n));
return ::Crypto::PK::RSAPublicKey<>(move(n), move(e));
}
static WebIDL::ExceptionOr<ByteBuffer> parse_jwk_symmetric_key(JS::Realm& realm, Bindings::JsonWebKey const& jwk)
{
if (!jwk.k.has_value()) {
return WebIDL::DataError::create(realm, "JWK has no 'k' field"_string);
}
return base64_url_bytes_decode(realm, *jwk.k);
}
// https://www.rfc-editor.org/rfc/rfc7517#section-4.3
static WebIDL::ExceptionOr<void> validate_jwk_key_ops(JS::Realm& realm, Bindings::JsonWebKey const& jwk, Vector<Bindings::KeyUsage> const& usages)
{
// Use of the "key_ops" member is OPTIONAL, unless the application requires its presence.
if (!jwk.key_ops.has_value())
return {};
auto key_operations = *jwk.key_ops;
// Duplicate key operation values MUST NOT be present in the array
HashTable<String> seen_operations;
for (auto const& key_operation : key_operations) {
if (seen_operations.set(key_operation) != HashSetResult::InsertedNewEntry)
return WebIDL::DataError::create(realm, MUST(String::formatted("Duplicate key operation: {}", key_operation)));
}
// Multiple unrelated key operations SHOULD NOT be specified for a key because of the potential
// vulnerabilities associated with using the same key with multiple algorithms. Thus, the
// combinations "sign" with "verify", "encrypt" with "decrypt", and "wrapKey" with "unwrapKey"
// are permitted, but other combinations SHOULD NOT be used.
auto is_used_for_signing = seen_operations.contains("sign"sv) || seen_operations.contains("verify"sv);
auto is_used_for_encryption = seen_operations.contains("encrypt"sv) || seen_operations.contains("decrypt"sv);
auto is_used_for_wrapping = seen_operations.contains("wrapKey"sv) || seen_operations.contains("unwrapKey"sv);
auto number_of_operation_types = is_used_for_signing + is_used_for_encryption + is_used_for_wrapping;
if (number_of_operation_types > 1)
return WebIDL::DataError::create(realm, "Multiple unrelated key operations are specified"_string);
// The "use" and "key_ops" JWK members SHOULD NOT be used together; however, if both are used,
// the information they convey MUST be consistent. Applications should specify which of these
// members they use, if either is to be used by the application.
if (jwk.use.has_value()) {
for (auto const& key_operation : key_operations) {
if (key_operation == "deriveKey"sv || key_operation == "deriveBits"sv)
continue;
if (jwk.use == "sig"sv && key_operation != "sign"sv && key_operation != "verify"sv)
return WebIDL::DataError::create(realm, "use=sig but key_ops does not contain 'sign' or 'verify'"_string);
if (jwk.use == "enc"sv && (key_operation == "sign"sv || key_operation == "verify"sv))
return WebIDL::DataError::create(realm, "use=enc but key_ops contains 'sign' or 'verify'"_string);
}
}
// NOTE: This validation happens in multiple places in the spec, so it is here for convenience.
for (auto const& usage : usages) {
if (!seen_operations.contains(Bindings::idl_enum_to_string(usage)))
return WebIDL::DataError::create(realm, MUST(String::formatted("Missing key_ops usage: {}", Bindings::idl_enum_to_string(usage))));
}
return {};
}
static WebIDL::ExceptionOr<ByteBuffer> generate_random_key(JS::VM& vm, u16 const size_in_bits)
{
auto key_buffer = TRY_OR_THROW_OOM(vm, ByteBuffer::create_uninitialized(size_in_bits / 8));
// FIXME: Use a cryptographically secure random generator
fill_with_random(key_buffer);
return key_buffer;
}
AlgorithmParams::~AlgorithmParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> AlgorithmParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name = TRY(object.get("name"));
auto name_string = TRY(name.to_string(vm));
return adopt_own(*new AlgorithmParams { name_string });
}
AesCbcParams::~AesCbcParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> AesCbcParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto iv_value = TRY(object.get("iv"));
if (!iv_value.is_object() || !(is<JS::TypedArrayBase>(iv_value.as_object()) || is<JS::ArrayBuffer>(iv_value.as_object()) || is<JS::DataView>(iv_value.as_object())))
return vm.throw_completion<JS::TypeError>(JS::ErrorType::NotAnObjectOfType, "BufferSource");
auto iv = TRY_OR_THROW_OOM(vm, WebIDL::get_buffer_source_copy(iv_value.as_object()));
return adopt_own<AlgorithmParams>(*new AesCbcParams { name, iv });
}
AesCtrParams::~AesCtrParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> AesCtrParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto iv_value = TRY(object.get("counter"));
if (!iv_value.is_object() || !(is<JS::TypedArrayBase>(iv_value.as_object()) || is<JS::ArrayBuffer>(iv_value.as_object()) || is<JS::DataView>(iv_value.as_object())))
return vm.throw_completion<JS::TypeError>(JS::ErrorType::NotAnObjectOfType, "BufferSource");
auto iv = TRY_OR_THROW_OOM(vm, WebIDL::get_buffer_source_copy(iv_value.as_object()));
auto length_value = TRY(object.get("length"));
auto length = TRY(length_value.to_u8(vm));
return adopt_own<AlgorithmParams>(*new AesCtrParams { name, iv, length });
}
AesGcmParams::~AesGcmParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> AesGcmParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto iv_value = TRY(object.get("iv"));
if (!iv_value.is_object() || !(is<JS::TypedArrayBase>(iv_value.as_object()) || is<JS::ArrayBuffer>(iv_value.as_object()) || is<JS::DataView>(iv_value.as_object())))
return vm.throw_completion<JS::TypeError>(JS::ErrorType::NotAnObjectOfType, "BufferSource");
auto iv = TRY_OR_THROW_OOM(vm, WebIDL::get_buffer_source_copy(iv_value.as_object()));
auto maybe_additional_data = Optional<ByteBuffer> {};
if (MUST(object.has_property("additionalData"))) {
auto additional_data_value = TRY(object.get("additionalData"));
if (!additional_data_value.is_object() || !(is<JS::TypedArrayBase>(additional_data_value.as_object()) || is<JS::ArrayBuffer>(additional_data_value.as_object()) || is<JS::DataView>(additional_data_value.as_object())))
return vm.throw_completion<JS::TypeError>(JS::ErrorType::NotAnObjectOfType, "BufferSource");
maybe_additional_data = TRY_OR_THROW_OOM(vm, WebIDL::get_buffer_source_copy(additional_data_value.as_object()));
}
auto maybe_tag_length = Optional<u8> {};
if (MUST(object.has_property("tagLength"))) {
auto tag_length_value = TRY(object.get("tagLength"));
maybe_tag_length = TRY(tag_length_value.to_u8(vm));
}
return adopt_own<AlgorithmParams>(*new AesGcmParams { name, iv, maybe_additional_data, maybe_tag_length });
}
HKDFParams::~HKDFParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> HKDFParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto hash_value = TRY(object.get("hash"));
auto hash = TRY(hash_algorithm_identifier_from_value(vm, hash_value));
auto salt_value = TRY(object.get("salt"));
if (!salt_value.is_object() || !(is<JS::TypedArrayBase>(salt_value.as_object()) || is<JS::ArrayBuffer>(salt_value.as_object()) || is<JS::DataView>(salt_value.as_object())))
return vm.throw_completion<JS::TypeError>(JS::ErrorType::NotAnObjectOfType, "BufferSource");
auto salt = TRY_OR_THROW_OOM(vm, WebIDL::get_buffer_source_copy(salt_value.as_object()));
auto info_value = TRY(object.get("info"));
if (!info_value.is_object() || !(is<JS::TypedArrayBase>(info_value.as_object()) || is<JS::ArrayBuffer>(info_value.as_object()) || is<JS::DataView>(info_value.as_object())))
return vm.throw_completion<JS::TypeError>(JS::ErrorType::NotAnObjectOfType, "BufferSource");
auto info = TRY_OR_THROW_OOM(vm, WebIDL::get_buffer_source_copy(info_value.as_object()));
return adopt_own<AlgorithmParams>(*new HKDFParams { name, hash, salt, info });
}
PBKDF2Params::~PBKDF2Params() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> PBKDF2Params::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto salt_value = TRY(object.get("salt"));
if (!salt_value.is_object() || !(is<JS::TypedArrayBase>(salt_value.as_object()) || is<JS::ArrayBuffer>(salt_value.as_object()) || is<JS::DataView>(salt_value.as_object())))
return vm.throw_completion<JS::TypeError>(JS::ErrorType::NotAnObjectOfType, "BufferSource");
auto salt = TRY_OR_THROW_OOM(vm, WebIDL::get_buffer_source_copy(salt_value.as_object()));
auto iterations_value = TRY(object.get("iterations"));
auto iterations = TRY(iterations_value.to_u32(vm));
auto hash_value = TRY(object.get("hash"));
auto hash = TRY(hash_algorithm_identifier_from_value(vm, hash_value));
return adopt_own<AlgorithmParams>(*new PBKDF2Params { name, salt, iterations, hash });
}
RsaKeyGenParams::~RsaKeyGenParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> RsaKeyGenParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto modulus_length_value = TRY(object.get("modulusLength"));
auto modulus_length = TRY(modulus_length_value.to_u32(vm));
auto public_exponent_value = TRY(object.get("publicExponent"));
JS::GCPtr<JS::Uint8Array> public_exponent;
if (!public_exponent_value.is_object() || !is<JS::Uint8Array>(public_exponent_value.as_object()))
return vm.throw_completion<JS::TypeError>(JS::ErrorType::NotAnObjectOfType, "Uint8Array");
public_exponent = static_cast<JS::Uint8Array&>(public_exponent_value.as_object());
return adopt_own<AlgorithmParams>(*new RsaKeyGenParams { name, modulus_length, big_integer_from_api_big_integer(public_exponent) });
}
RsaHashedKeyGenParams::~RsaHashedKeyGenParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> RsaHashedKeyGenParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto modulus_length_value = TRY(object.get("modulusLength"));
auto modulus_length = TRY(modulus_length_value.to_u32(vm));
auto public_exponent_value = TRY(object.get("publicExponent"));
JS::GCPtr<JS::Uint8Array> public_exponent;
if (!public_exponent_value.is_object() || !is<JS::Uint8Array>(public_exponent_value.as_object()))
return vm.throw_completion<JS::TypeError>(JS::ErrorType::NotAnObjectOfType, "Uint8Array");
public_exponent = static_cast<JS::Uint8Array&>(public_exponent_value.as_object());
auto hash_value = TRY(object.get("hash"));
auto hash = TRY(hash_algorithm_identifier_from_value(vm, hash_value));
return adopt_own<AlgorithmParams>(*new RsaHashedKeyGenParams { name, modulus_length, big_integer_from_api_big_integer(public_exponent), hash });
}
RsaHashedImportParams::~RsaHashedImportParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> RsaHashedImportParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto hash_value = TRY(object.get("hash"));
auto hash = TRY(hash_algorithm_identifier_from_value(vm, hash_value));
return adopt_own<AlgorithmParams>(*new RsaHashedImportParams { name, hash });
}
RsaOaepParams::~RsaOaepParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> RsaOaepParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto label_value = TRY(object.get("label"));
ByteBuffer label;
if (!label_value.is_nullish()) {
if (!label_value.is_object() || !(is<JS::TypedArrayBase>(label_value.as_object()) || is<JS::ArrayBuffer>(label_value.as_object()) || is<JS::DataView>(label_value.as_object())))
return vm.throw_completion<JS::TypeError>(JS::ErrorType::NotAnObjectOfType, "BufferSource");
label = TRY_OR_THROW_OOM(vm, WebIDL::get_buffer_source_copy(label_value.as_object()));
}
return adopt_own<AlgorithmParams>(*new RsaOaepParams { name, move(label) });
}
EcdsaParams::~EcdsaParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> EcdsaParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto hash_value = TRY(object.get("hash"));
auto hash = TRY(hash_algorithm_identifier_from_value(vm, hash_value));
return adopt_own<AlgorithmParams>(*new EcdsaParams { name, hash });
}
EcKeyGenParams::~EcKeyGenParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> EcKeyGenParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto curve_value = TRY(object.get("namedCurve"));
auto curve = TRY(curve_value.to_string(vm));
return adopt_own<AlgorithmParams>(*new EcKeyGenParams { name, curve });
}
AesKeyGenParams::~AesKeyGenParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> AesKeyGenParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto length_value = TRY(object.get("length"));
auto length = TRY(length_value.to_u16(vm));
return adopt_own<AlgorithmParams>(*new AesKeyGenParams { name, length });
}
AesDerivedKeyParams::~AesDerivedKeyParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> AesDerivedKeyParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto length_value = TRY(object.get("length"));
auto length = TRY(length_value.to_u16(vm));
return adopt_own<AlgorithmParams>(*new AesDerivedKeyParams { name, length });
}
EcdhKeyDerivePrams::~EcdhKeyDerivePrams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> EcdhKeyDerivePrams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto key_value = TRY(object.get("public"));
auto key_object = TRY(key_value.to_object(vm));
if (!is<CryptoKey>(*key_object)) {
return vm.throw_completion<JS::TypeError>(JS::ErrorType::NotAnObjectOfType, "CryptoKey");
}
auto& key = verify_cast<CryptoKey>(*key_object);
return adopt_own<AlgorithmParams>(*new EcdhKeyDerivePrams { name, key });
}
HmacImportParams::~HmacImportParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> HmacImportParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto hash_value = TRY(object.get("hash"));
auto hash = TRY(hash_algorithm_identifier_from_value(vm, hash_value));
auto maybe_length = Optional<WebIDL::UnsignedLong> {};
if (MUST(object.has_property("length"))) {
auto length_value = TRY(object.get("length"));
maybe_length = TRY(length_value.to_u32(vm));
}
return adopt_own<AlgorithmParams>(*new HmacImportParams { name, hash, maybe_length });
}
HmacKeyGenParams::~HmacKeyGenParams() = default;
JS::ThrowCompletionOr<NonnullOwnPtr<AlgorithmParams>> HmacKeyGenParams::from_value(JS::VM& vm, JS::Value value)
{
auto& object = value.as_object();
auto name_value = TRY(object.get("name"));
auto name = TRY(name_value.to_string(vm));
auto hash_value = TRY(object.get("hash"));
auto hash = TRY(hash_algorithm_identifier_from_value(vm, hash_value));
auto maybe_length = Optional<WebIDL::UnsignedLong> {};
if (MUST(object.has_property("length"))) {
auto length_value = TRY(object.get("length"));
maybe_length = TRY(length_value.to_u32(vm));
}
return adopt_own<AlgorithmParams>(*new HmacKeyGenParams { name, hash, maybe_length });
}
// https://w3c.github.io/webcrypto/#rsa-oaep-operations
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> RSAOAEP::encrypt(AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, ByteBuffer const& plaintext)
{
auto& realm = *m_realm;
auto& vm = realm.vm();
auto const& normalized_algorithm = static_cast<RsaOaepParams const&>(params);
// 1. If the [[type]] internal slot of key is not "public", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Public)
return WebIDL::InvalidAccessError::create(realm, "Key is not a public key"_string);
// 2. Let label be the contents of the label member of normalizedAlgorithm or the empty octet string if the label member of normalizedAlgorithm is not present.
auto const& label = normalized_algorithm.label;
auto const& handle = key->handle();
auto public_key = handle.get<::Crypto::PK::RSAPublicKey<>>();
auto hash = TRY(verify_cast<RsaHashedKeyAlgorithm>(*key->algorithm()).hash().name(vm));
// 3. Perform the encryption operation defined in Section 7.1 of [RFC3447] with the key represented by key as the recipient's RSA public key,
// the contents of plaintext as the message to be encrypted, M and label as the label, L, and with the hash function specified by the hash attribute
// of the [[algorithm]] internal slot of key as the Hash option and MGF1 (defined in Section B.2.1 of [RFC3447]) as the MGF option.
auto error_message = MUST(String::formatted("Invalid hash function '{}'", hash));
ErrorOr<ByteBuffer> maybe_padding = Error::from_string_view(error_message.bytes_as_string_view());
if (hash.equals_ignoring_ascii_case("SHA-1"sv)) {
maybe_padding = ::Crypto::Padding::OAEP::eme_encode<::Crypto::Hash::SHA1, ::Crypto::Hash::MGF>(plaintext, label, public_key.length());
} else if (hash.equals_ignoring_ascii_case("SHA-256"sv)) {
maybe_padding = ::Crypto::Padding::OAEP::eme_encode<::Crypto::Hash::SHA256, ::Crypto::Hash::MGF>(plaintext, label, public_key.length());
} else if (hash.equals_ignoring_ascii_case("SHA-384"sv)) {
maybe_padding = ::Crypto::Padding::OAEP::eme_encode<::Crypto::Hash::SHA384, ::Crypto::Hash::MGF>(plaintext, label, public_key.length());
} else if (hash.equals_ignoring_ascii_case("SHA-512"sv)) {
maybe_padding = ::Crypto::Padding::OAEP::eme_encode<::Crypto::Hash::SHA512, ::Crypto::Hash::MGF>(plaintext, label, public_key.length());
}
// 4. If performing the operation results in an error, then throw an OperationError.
if (maybe_padding.is_error()) {
auto error_message = MUST(String::from_utf8(maybe_padding.error().string_literal()));
return WebIDL::OperationError::create(realm, error_message);
}
auto padding = maybe_padding.release_value();
// 5. Let ciphertext be the value C that results from performing the operation.
auto ciphertext = TRY_OR_THROW_OOM(vm, ByteBuffer::create_uninitialized(public_key.length()));
auto ciphertext_bytes = ciphertext.bytes();
auto rsa = ::Crypto::PK::RSA {};
rsa.set_public_key(public_key);
rsa.encrypt(padding, ciphertext_bytes);
// 6. Return the result of creating an ArrayBuffer containing ciphertext.
return JS::ArrayBuffer::create(realm, move(ciphertext));
}
// https://w3c.github.io/webcrypto/#rsa-oaep-operations
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> RSAOAEP::decrypt(AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, AK::ByteBuffer const& ciphertext)
{
auto& realm = *m_realm;
auto& vm = realm.vm();
auto const& normalized_algorithm = static_cast<RsaOaepParams const&>(params);
// 1. If the [[type]] internal slot of key is not "private", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Private)
return WebIDL::InvalidAccessError::create(realm, "Key is not a private key"_string);
// 2. Let label be the contents of the label member of normalizedAlgorithm or the empty octet string if the label member of normalizedAlgorithm is not present.
auto const& label = normalized_algorithm.label;
auto const& handle = key->handle();
auto private_key = handle.get<::Crypto::PK::RSAPrivateKey<>>();
auto hash = TRY(verify_cast<RsaHashedKeyAlgorithm>(*key->algorithm()).hash().name(vm));
// 3. Perform the decryption operation defined in Section 7.1 of [RFC3447] with the key represented by key as the recipient's RSA private key,
// the contents of ciphertext as the ciphertext to be decrypted, C, and label as the label, L, and with the hash function specified by the hash attribute
// of the [[algorithm]] internal slot of key as the Hash option and MGF1 (defined in Section B.2.1 of [RFC3447]) as the MGF option.
auto rsa = ::Crypto::PK::RSA {};
rsa.set_private_key(private_key);
u32 private_key_length = private_key.length();
auto padding = TRY_OR_THROW_OOM(vm, ByteBuffer::create_uninitialized(private_key_length));
auto padding_bytes = padding.bytes();
rsa.decrypt(ciphertext, padding_bytes);
auto error_message = MUST(String::formatted("Invalid hash function '{}'", hash));
ErrorOr<ByteBuffer> maybe_plaintext = Error::from_string_view(error_message.bytes_as_string_view());
if (hash.equals_ignoring_ascii_case("SHA-1"sv)) {
maybe_plaintext = ::Crypto::Padding::OAEP::eme_decode<::Crypto::Hash::SHA1, ::Crypto::Hash::MGF>(padding, label, private_key_length);
} else if (hash.equals_ignoring_ascii_case("SHA-256"sv)) {
maybe_plaintext = ::Crypto::Padding::OAEP::eme_decode<::Crypto::Hash::SHA256, ::Crypto::Hash::MGF>(padding, label, private_key_length);
} else if (hash.equals_ignoring_ascii_case("SHA-384"sv)) {
maybe_plaintext = ::Crypto::Padding::OAEP::eme_decode<::Crypto::Hash::SHA384, ::Crypto::Hash::MGF>(padding, label, private_key_length);
} else if (hash.equals_ignoring_ascii_case("SHA-512"sv)) {
maybe_plaintext = ::Crypto::Padding::OAEP::eme_decode<::Crypto::Hash::SHA512, ::Crypto::Hash::MGF>(padding, label, private_key_length);
}
// 4. If performing the operation results in an error, then throw an OperationError.
if (maybe_plaintext.is_error()) {
auto error_message = MUST(String::from_utf8(maybe_plaintext.error().string_literal()));
return WebIDL::OperationError::create(realm, error_message);
}
// 5. Let plaintext the value M that results from performing the operation.
auto plaintext = maybe_plaintext.release_value();
// 6. Return the result of creating an ArrayBuffer containing plaintext.
return JS::ArrayBuffer::create(realm, move(plaintext));
}
// https://w3c.github.io/webcrypto/#rsa-oaep-operations
WebIDL::ExceptionOr<Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>>> RSAOAEP::generate_key(AlgorithmParams const& params, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
{
// 1. If usages contains an entry which is not "encrypt", "decrypt", "wrapKey" or "unwrapKey", then throw a SyntaxError.
for (auto const& usage : key_usages) {
if (usage != Bindings::KeyUsage::Encrypt && usage != Bindings::KeyUsage::Decrypt && usage != Bindings::KeyUsage::Wrapkey && usage != Bindings::KeyUsage::Unwrapkey) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
// 2. Generate an RSA key pair, as defined in [RFC3447], with RSA modulus length equal to the modulusLength member of normalizedAlgorithm
// and RSA public exponent equal to the publicExponent member of normalizedAlgorithm.
// 3. If performing the operation results in an error, then throw an OperationError.
auto const& normalized_algorithm = static_cast<RsaHashedKeyGenParams const&>(params);
auto key_pair = ::Crypto::PK::RSA::generate_key_pair(normalized_algorithm.modulus_length, normalized_algorithm.public_exponent);
// 4. Let algorithm be a new RsaHashedKeyAlgorithm object.
auto algorithm = RsaHashedKeyAlgorithm::create(m_realm);
// 5. Set the name attribute of algorithm to "RSA-OAEP".
algorithm->set_name("RSA-OAEP"_string);
// 6. Set the modulusLength attribute of algorithm to equal the modulusLength member of normalizedAlgorithm.
algorithm->set_modulus_length(normalized_algorithm.modulus_length);
// 7. Set the publicExponent attribute of algorithm to equal the publicExponent member of normalizedAlgorithm.
TRY(algorithm->set_public_exponent(normalized_algorithm.public_exponent));
// 8. Set the hash attribute of algorithm to equal the hash member of normalizedAlgorithm.
algorithm->set_hash(normalized_algorithm.hash);
// 9. Let publicKey be a new CryptoKey representing the public key of the generated key pair.
auto public_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { key_pair.public_key });
// 10. Set the [[type]] internal slot of publicKey to "public"
public_key->set_type(Bindings::KeyType::Public);
// 11. Set the [[algorithm]] internal slot of publicKey to algorithm.
public_key->set_algorithm(algorithm);
// 12. Set the [[extractable]] internal slot of publicKey to true.
public_key->set_extractable(true);
// 13. Set the [[usages]] internal slot of publicKey to be the usage intersection of usages and [ "encrypt", "wrapKey" ].
public_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Encrypt, Bindings::KeyUsage::Wrapkey } }));
// 14. Let privateKey be a new CryptoKey representing the private key of the generated key pair.
auto private_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { key_pair.private_key });
// 15. Set the [[type]] internal slot of privateKey to "private"
private_key->set_type(Bindings::KeyType::Private);
// 16. Set the [[algorithm]] internal slot of privateKey to algorithm.
private_key->set_algorithm(algorithm);
// 17. Set the [[extractable]] internal slot of privateKey to extractable.
private_key->set_extractable(extractable);
// 18. Set the [[usages]] internal slot of privateKey to be the usage intersection of usages and [ "decrypt", "unwrapKey" ].
private_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Decrypt, Bindings::KeyUsage::Unwrapkey } }));
// 19. Let result be a new CryptoKeyPair dictionary.
// 20. Set the publicKey attribute of result to be publicKey.
// 21. Set the privateKey attribute of result to be privateKey.
// 22. Return the result of converting result to an ECMAScript Object, as defined by [WebIDL].
return Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>> { CryptoKeyPair::create(m_realm, public_key, private_key) };
}
// https://w3c.github.io/webcrypto/#rsa-oaep-operations
WebIDL::ExceptionOr<JS::NonnullGCPtr<CryptoKey>> RSAOAEP::import_key(Web::Crypto::AlgorithmParams const& params, Bindings::KeyFormat key_format, CryptoKey::InternalKeyData key_data, bool extractable, Vector<Bindings::KeyUsage> const& usages)
{
auto& realm = *m_realm;
// 1. Let keyData be the key data to be imported.
JS::GCPtr<CryptoKey> key = nullptr;
auto const& normalized_algorithm = static_cast<RsaHashedImportParams const&>(params);
// 2. -> If format is "spki":
if (key_format == Bindings::KeyFormat::Spki) {
// 1. If usages contains an entry which is not "encrypt" or "wrapKey", then throw a SyntaxError.
for (auto const& usage : usages) {
if (usage != Bindings::KeyUsage::Encrypt && usage != Bindings::KeyUsage::Wrapkey) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
VERIFY(key_data.has<ByteBuffer>());
// 2. Let spki be the result of running the parse a subjectPublicKeyInfo algorithm over keyData.
// 3. If an error occurred while parsing, then throw a DataError.
auto spki = TRY(parse_a_subject_public_key_info(m_realm, key_data.get<ByteBuffer>()));
// 4. If the algorithm object identifier field of the algorithm AlgorithmIdentifier field of spki
// is not equal to the rsaEncryption object identifier defined in [RFC3447], then throw a DataError.
if (spki.algorithm.identifier != TLS::rsa_encryption_oid)
return WebIDL::DataError::create(m_realm, "Algorithm object identifier is not the rsaEncryption object identifier"_string);
// 5. Let publicKey be the result of performing the parse an ASN.1 structure algorithm,
// with data as the subjectPublicKeyInfo field of spki, structure as the RSAPublicKey structure
// specified in Section A.1.1 of [RFC3447], and exactData set to true.
// NOTE: We already did this in parse_a_subject_public_key_info
auto& public_key = spki.rsa;
// 6. If an error occurred while parsing, or it can be determined that publicKey is not
// a valid public key according to [RFC3447], then throw a DataError.
// FIXME: Validate the public key
// 7. Let key be a new CryptoKey that represents the RSA public key identified by publicKey.
key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { public_key });
// 8. Set the [[type]] internal slot of key to "public"
key->set_type(Bindings::KeyType::Public);
}
// -> If format is "pkcs8":
else if (key_format == Bindings::KeyFormat::Pkcs8) {
// 1. If usages contains an entry which is not "decrypt" or "unwrapKey", then throw a SyntaxError.
for (auto const& usage : usages) {
if (usage != Bindings::KeyUsage::Decrypt && usage != Bindings::KeyUsage::Unwrapkey) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
VERIFY(key_data.has<ByteBuffer>());
// 2. Let privateKeyInfo be the result of running the parse a privateKeyInfo algorithm over keyData.
// 3. If an error occurred while parsing, then throw a DataError.
auto private_key_info = TRY(parse_a_private_key_info(m_realm, key_data.get<ByteBuffer>()));
// 4. If the algorithm object identifier field of the privateKeyAlgorithm PrivateKeyAlgorithm field of privateKeyInfo
// is not equal to the rsaEncryption object identifier defined in [RFC3447], then throw a DataError.
if (private_key_info.algorithm.identifier != TLS::rsa_encryption_oid)
return WebIDL::DataError::create(m_realm, "Algorithm object identifier is not the rsaEncryption object identifier"_string);
// 5. Let rsaPrivateKey be the result of performing the parse an ASN.1 structure algorithm,
// with data as the privateKey field of privateKeyInfo, structure as the RSAPrivateKey structure
// specified in Section A.1.2 of [RFC3447], and exactData set to true.
// NOTE: We already did this in parse_a_private_key_info
auto& rsa_private_key = private_key_info.rsa;
// 6. If an error occurred while parsing, or if rsaPrivateKey is not
// a valid RSA private key according to [RFC3447], then throw a DataError.
// FIXME: Validate the private key
// 7. Let key be a new CryptoKey that represents the RSA private key identified by rsaPrivateKey.
key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { rsa_private_key });
// 8. Set the [[type]] internal slot of key to "private"
key->set_type(Bindings::KeyType::Private);
}
// -> If format is "jwk":
else if (key_format == Bindings::KeyFormat::Jwk) {
// 1. -> If keyData is a JsonWebKey dictionary:
// Let jwk equal keyData.
// -> Otherwise:
// Throw a DataError.
if (!key_data.has<Bindings::JsonWebKey>())
return WebIDL::DataError::create(m_realm, "keyData is not a JsonWebKey dictionary"_string);
auto& jwk = key_data.get<Bindings::JsonWebKey>();
// 2. If the d field of jwk is present and usages contains an entry which is not "decrypt" or "unwrapKey", then throw a SyntaxError.
if (jwk.d.has_value()) {
for (auto const& usage : usages) {
if (usage != Bindings::KeyUsage::Decrypt && usage != Bindings::KeyUsage::Unwrapkey) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", Bindings::idl_enum_to_string(usage))));
}
}
}
// 3. If the d field of jwk is not present and usages contains an entry which is not "encrypt" or "wrapKey", then throw a SyntaxError.
if (!jwk.d.has_value()) {
for (auto const& usage : usages) {
if (usage != Bindings::KeyUsage::Encrypt && usage != Bindings::KeyUsage::Wrapkey) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", Bindings::idl_enum_to_string(usage))));
}
}
}
// 4. If the kty field of jwk is not a case-sensitive string match to "RSA", then throw a DataError.
if (jwk.kty != "RSA"_string)
return WebIDL::DataError::create(m_realm, "Invalid key type"_string);
// 5. If usages is non-empty and the use field of jwk is present and is not a case-sensitive string match to "enc", then throw a DataError.
if (!usages.is_empty() && jwk.use.has_value() && *jwk.use != "enc"_string)
return WebIDL::DataError::create(m_realm, "Invalid use field"_string);
// 6. If the key_ops field of jwk is present, and is invalid according to the requirements of JSON Web Key [JWK]
// or does not contain all of the specified usages values, then throw a DataError.
TRY(validate_jwk_key_ops(realm, jwk, usages));
// 7. If the ext field of jwk is present and has the value false and extractable is true, then throw a DataError.
if (jwk.ext.has_value() && !*jwk.ext && extractable)
return WebIDL::DataError::create(m_realm, "Invalid ext field"_string);
Optional<String> hash = {};
// 8. -> If the alg field of jwk is not present:
if (!jwk.alg.has_value()) {
// Let hash be undefined.
}
// -> If the alg field of jwk is equal to "RSA-OAEP":
else if (jwk.alg == "RSA-OAEP"sv) {
// Let hash be the string "SHA-1".
hash = "SHA-1"_string;
}
// -> If the alg field of jwk is equal to "RSA-OAEP-256":
else if (jwk.alg == "RSA-OAEP-256"sv) {
// Let hash be the string "SHA-256".
hash = "SHA-256"_string;
}
// -> If the alg field of jwk is equal to "RSA-OAEP-384":
else if (jwk.alg == "RSA-OAEP-384"sv) {
// Let hash be the string "SHA-384".
hash = "SHA-384"_string;
}
// -> If the alg field of jwk is equal to "RSA-OAEP-512":
else if (jwk.alg == "RSA-OAEP-512"sv) {
// Let hash be the string "SHA-512".
hash = "SHA-512"_string;
}
// -> Otherwise:
else {
// FIXME: Support 'other applicable specifications'
// 1. Perform any key import steps defined by other applicable specifications, passing format, jwk and obtaining hash.
// 2. If an error occurred or there are no applicable specifications, throw a DataError.
return WebIDL::DataError::create(m_realm, "Invalid alg field"_string);
}
// 9. If hash is not undefined:
if (hash.has_value()) {
// 1. Let normalizedHash be the result of normalize an algorithm with alg set to hash and op set to digest.
auto normalized_hash = TRY(normalize_an_algorithm(m_realm, AlgorithmIdentifier { *hash }, "digest"_string));
// 2. If normalizedHash is not equal to the hash member of normalizedAlgorithm, throw a DataError.
if (normalized_hash.parameter->name != TRY(normalized_algorithm.hash.name(realm.vm())))
return WebIDL::DataError::create(m_realm, "Invalid hash"_string);
}
// 10. -> If the d field of jwk is present:
if (jwk.d.has_value()) {
// 1. If jwk does not meet the requirements of Section 6.3.2 of JSON Web Algorithms [JWA], then throw a DataError.
bool meets_requirements = jwk.e.has_value() && jwk.n.has_value() && jwk.d.has_value();
if (jwk.p.has_value() || jwk.q.has_value() || jwk.dp.has_value() || jwk.dq.has_value() || jwk.qi.has_value())
meets_requirements |= jwk.p.has_value() && jwk.q.has_value() && jwk.dp.has_value() && jwk.dq.has_value() && jwk.qi.has_value();
if (jwk.oth.has_value()) {
// FIXME: We don't support > 2 primes in RSA keys
meets_requirements = false;
}
if (!meets_requirements)
return WebIDL::DataError::create(m_realm, "Invalid JWK private key"_string);
// FIXME: Spec error, it should say 'the RSA private key identified by interpreting jwk according to section 6.3.2'
// 2. Let privateKey represent the RSA public key identified by interpreting jwk according to Section 6.3.1 of JSON Web Algorithms [JWA].
auto private_key = TRY(parse_jwk_rsa_private_key(realm, jwk));
// FIXME: Spec error, it should say 'not to be a valid RSA private key'
// 3. If privateKey can be determined to not be a valid RSA public key according to [RFC3447], then throw a DataError.
// FIXME: Validate the private key
// 4. Let key be a new CryptoKey representing privateKey.
key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { private_key });
// 5. Set the [[type]] internal slot of key to "private"
key->set_type(Bindings::KeyType::Private);
}
// -> Otherwise:
else {
// 1. If jwk does not meet the requirements of Section 6.3.1 of JSON Web Algorithms [JWA], then throw a DataError.
if (!jwk.e.has_value() || !jwk.n.has_value())
return WebIDL::DataError::create(m_realm, "Invalid JWK public key"_string);
// 2. Let publicKey represent the RSA public key identified by interpreting jwk according to Section 6.3.1 of JSON Web Algorithms [JWA].
auto public_key = TRY(parse_jwk_rsa_public_key(realm, jwk));
// 3. If publicKey can be determined to not be a valid RSA public key according to [RFC3447], then throw a DataError.
// FIXME: Validate the public key
// 4. Let key be a new CryptoKey representing publicKey.
key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { public_key });
// 5. Set the [[type]] internal slot of key to "public"
key->set_type(Bindings::KeyType::Public);
}
}
// -> Otherwise: throw a NotSupportedError.
else {
return WebIDL::NotSupportedError::create(m_realm, "Unsupported key format"_string);
}
// 3. Let algorithm be a new RsaHashedKeyAlgorithm.
auto algorithm = RsaHashedKeyAlgorithm::create(m_realm);
// 4. Set the name attribute of algorithm to "RSA-OAEP"
algorithm->set_name("RSA-OAEP"_string);
// 5. Set the modulusLength attribute of algorithm to the length, in bits, of the RSA public modulus.
// 6. Set the publicExponent attribute of algorithm to the BigInteger representation of the RSA public exponent.
TRY(key->handle().visit(
[&](::Crypto::PK::RSAPublicKey<> const& public_key) -> WebIDL::ExceptionOr<void> {
algorithm->set_modulus_length(public_key.modulus().trimmed_byte_length() * 8);
TRY(algorithm->set_public_exponent(public_key.public_exponent()));
return {};
},
[&](::Crypto::PK::RSAPrivateKey<> const& private_key) -> WebIDL::ExceptionOr<void> {
algorithm->set_modulus_length(private_key.modulus().trimmed_byte_length() * 8);
TRY(algorithm->set_public_exponent(private_key.public_exponent()));
return {};
},
[](auto) -> WebIDL::ExceptionOr<void> { VERIFY_NOT_REACHED(); }));
// 7. Set the hash attribute of algorithm to the hash member of normalizedAlgorithm.
algorithm->set_hash(normalized_algorithm.hash);
// 8. Set the [[algorithm]] internal slot of key to algorithm
key->set_algorithm(algorithm);
// 9. Return key.
return JS::NonnullGCPtr { *key };
}
// https://w3c.github.io/webcrypto/#rsa-oaep-operations
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::Object>> RSAOAEP::export_key(Bindings::KeyFormat format, JS::NonnullGCPtr<CryptoKey> key)
{
auto& realm = *m_realm;
auto& vm = realm.vm();
// 1. Let key be the key to be exported.
// 2. If the underlying cryptographic key material represented by the [[handle]] internal slot of key cannot be accessed, then throw an OperationError.
// Note: In our impl this is always accessible
auto const& handle = key->handle();
JS::GCPtr<JS::Object> result = nullptr;
// 3. If format is "spki"
if (format == Bindings::KeyFormat::Spki) {
// 1. If the [[type]] internal slot of key is not "public", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Public)
return WebIDL::InvalidAccessError::create(realm, "Key is not public"_string);
// 2. Let data be an instance of the subjectPublicKeyInfo ASN.1 structure defined in [RFC5280] with the following properties:
// - Set the algorithm field to an AlgorithmIdentifier ASN.1 type with the following properties:
// - Set the algorithm field to the OID rsaEncryption defined in [RFC3447].
// - Set the params field to the ASN.1 type NULL.
// - Set the subjectPublicKey field to the result of DER-encoding an RSAPublicKey ASN.1 type, as defined in [RFC3447], Appendix A.1.1,
// that represents the RSA public key represented by the [[handle]] internal slot of key
auto maybe_data = handle.visit(
[&](::Crypto::PK::RSAPublicKey<> const& public_key) -> ErrorOr<ByteBuffer> {
auto rsa_encryption_oid = Array<int, 7> { 1, 2, 840, 113549, 1, 1, 1 };
return TRY(::Crypto::PK::wrap_in_subject_public_key_info(public_key, rsa_encryption_oid));
},
[](auto) -> ErrorOr<ByteBuffer> {
VERIFY_NOT_REACHED();
});
// FIXME: clang-format butchers the visit if we do the TRY inline
auto data = TRY_OR_THROW_OOM(vm, maybe_data);
// 3. Let result be the result of creating an ArrayBuffer containing data.
result = JS::ArrayBuffer::create(realm, data);
}
// If format is "pkcs8"
else if (format == Bindings::KeyFormat::Pkcs8) {
// 1. If the [[type]] internal slot of key is not "private", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Private)
return WebIDL::InvalidAccessError::create(realm, "Key is not private"_string);
// 2. Let data be the result of encoding a privateKeyInfo structure with the following properties:
// - Set the version field to 0.
// - Set the privateKeyAlgorithm field to an PrivateKeyAlgorithmIdentifier ASN.1 type with the following properties:
// - - Set the algorithm field to the OID rsaEncryption defined in [RFC3447].
// - - Set the params field to the ASN.1 type NULL.
// - Set the privateKey field to the result of DER-encoding an RSAPrivateKey ASN.1 type, as defined in [RFC3447], Appendix A.1.2,
// that represents the RSA private key represented by the [[handle]] internal slot of key
auto maybe_data = handle.visit(
[&](::Crypto::PK::RSAPrivateKey<> const& private_key) -> ErrorOr<ByteBuffer> {
auto rsa_encryption_oid = Array<int, 7> { 1, 2, 840, 113549, 1, 1, 1 };
return TRY(::Crypto::PK::wrap_in_private_key_info(private_key, rsa_encryption_oid));
},
[](auto) -> ErrorOr<ByteBuffer> {
VERIFY_NOT_REACHED();
});
// FIXME: clang-format butchers the visit if we do the TRY inline
auto data = TRY_OR_THROW_OOM(vm, maybe_data);
// 3. Let result be the result of creating an ArrayBuffer containing data.
result = JS::ArrayBuffer::create(realm, data);
}
// If format is "jwk"
else if (format == Bindings::KeyFormat::Jwk) {
// 1. Let jwk be a new JsonWebKey dictionary.
Bindings::JsonWebKey jwk = {};
// 2. Set the kty attribute of jwk to the string "RSA".
jwk.kty = "RSA"_string;
// 4. Let hash be the name attribute of the hash attribute of the [[algorithm]] internal slot of key.
auto hash = TRY(verify_cast<RsaHashedKeyAlgorithm>(*key->algorithm()).hash().name(vm));
// 4. If hash is "SHA-1":
// - Set the alg attribute of jwk to the string "RSA-OAEP".
if (hash == "SHA-1"sv) {
jwk.alg = "RSA-OAEP"_string;
}
// If hash is "SHA-256":
// - Set the alg attribute of jwk to the string "RSA-OAEP-256".
else if (hash == "SHA-256"sv) {
jwk.alg = "RSA-OAEP-256"_string;
}
// If hash is "SHA-384":
// - Set the alg attribute of jwk to the string "RSA-OAEP-384".
else if (hash == "SHA-384"sv) {
jwk.alg = "RSA-OAEP-384"_string;
}
// If hash is "SHA-512":
// - Set the alg attribute of jwk to the string "RSA-OAEP-512".
else if (hash == "SHA-512"sv) {
jwk.alg = "RSA-OAEP-512"_string;
} else {
// FIXME: Support 'other applicable specifications'
// - Perform any key export steps defined by other applicable specifications,
// passing format and the hash attribute of the [[algorithm]] internal slot of key and obtaining alg.
// - Set the alg attribute of jwk to alg.
return WebIDL::NotSupportedError::create(realm, TRY_OR_THROW_OOM(vm, String::formatted("Unsupported hash algorithm '{}'", hash)));
}
// 10. Set the attributes n and e of jwk according to the corresponding definitions in JSON Web Algorithms [JWA], Section 6.3.1.
auto maybe_error = handle.visit(
[&](::Crypto::PK::RSAPublicKey<> const& public_key) -> ErrorOr<void> {
jwk.n = TRY(base64_url_uint_encode(public_key.modulus()));
jwk.e = TRY(base64_url_uint_encode(public_key.public_exponent()));
return {};
},
[&](::Crypto::PK::RSAPrivateKey<> const& private_key) -> ErrorOr<void> {
jwk.n = TRY(base64_url_uint_encode(private_key.modulus()));
jwk.e = TRY(base64_url_uint_encode(private_key.public_exponent()));
// 11. If the [[type]] internal slot of key is "private":
// 1. Set the attributes named d, p, q, dp, dq, and qi of jwk according to the corresponding definitions in JSON Web Algorithms [JWA], Section 6.3.2.
jwk.d = TRY(base64_url_uint_encode(private_key.private_exponent()));
jwk.p = TRY(base64_url_uint_encode(private_key.prime1()));
jwk.q = TRY(base64_url_uint_encode(private_key.prime2()));
jwk.dp = TRY(base64_url_uint_encode(private_key.exponent1()));
jwk.dq = TRY(base64_url_uint_encode(private_key.exponent2()));
jwk.qi = TRY(base64_url_uint_encode(private_key.coefficient()));
// 12. If the underlying RSA private key represented by the [[handle]] internal slot of key is represented by more than two primes,
// set the attribute named oth of jwk according to the corresponding definition in JSON Web Algorithms [JWA], Section 6.3.2.7
// FIXME: We don't support more than 2 primes on RSA keys
return {};
},
[](auto) -> ErrorOr<void> {
VERIFY_NOT_REACHED();
});
// FIXME: clang-format butchers the visit if we do the TRY inline
TRY_OR_THROW_OOM(vm, maybe_error);
// 13. Set the key_ops attribute of jwk to the usages attribute of key.
jwk.key_ops = Vector<String> {};
jwk.key_ops->ensure_capacity(key->internal_usages().size());
for (auto const& usage : key->internal_usages()) {
jwk.key_ops->append(Bindings::idl_enum_to_string(usage));
}
// 14. Set the ext attribute of jwk to the [[extractable]] internal slot of key.
jwk.ext = key->extractable();
// 15. Let result be the result of converting jwk to an ECMAScript Object, as defined by [WebIDL].
result = TRY(jwk.to_object(realm));
}
// Otherwise throw a NotSupportedError.
else {
return WebIDL::NotSupportedError::create(realm, TRY_OR_THROW_OOM(vm, String::formatted("Exporting to format {} is not supported", Bindings::idl_enum_to_string(format))));
}
// 8. Return result
return JS::NonnullGCPtr { *result };
}
// https://w3c.github.io/webcrypto/#aes-cbc-operations
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> AesCbc::encrypt(AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, ByteBuffer const& plaintext)
{
auto const& normalized_algorithm = static_cast<AesCbcParams const&>(params);
// 1. If the iv member of normalizedAlgorithm does not have length 16 bytes, then throw an OperationError.
if (normalized_algorithm.iv.size() != 16)
return WebIDL::OperationError::create(m_realm, "IV to AES-CBC must be exactly 16 bytes"_string);
// 2. Let paddedPlaintext be the result of adding padding octets to the contents of plaintext according to the procedure defined in Section 10.3 of [RFC2315], step 2, with a value of k of 16.
// Note: This is identical to RFC 5652 Cryptographic Message Syntax (CMS).
// We do this during encryption, which avoid reallocating a potentially-large buffer.
auto mode = ::Crypto::Cipher::PaddingMode::CMS;
// 3. Let ciphertext be the result of performing the CBC Encryption operation described in Section 6.2 of [NIST-SP800-38A] using AES as the block cipher, the contents of the iv member of normalizedAlgorithm as the IV input parameter and paddedPlaintext as the input plaintext.
auto key_bytes = key->handle().get<ByteBuffer>();
auto key_bits = key_bytes.size() * 8;
::Crypto::Cipher::AESCipher::CBCMode cipher(key_bytes, key_bits, ::Crypto::Cipher::Intent::Encryption, mode);
auto iv = normalized_algorithm.iv;
auto ciphertext = TRY_OR_THROW_OOM(m_realm->vm(), cipher.create_aligned_buffer(plaintext.size() + 1));
auto ciphertext_view = ciphertext.bytes();
cipher.encrypt(plaintext, ciphertext_view, iv);
ciphertext.trim(ciphertext_view.size(), false);
// 4. Return the result of creating an ArrayBuffer containing ciphertext.
return JS::ArrayBuffer::create(m_realm, move(ciphertext));
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> AesCbc::decrypt(AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, ByteBuffer const& ciphertext)
{
auto const& normalized_algorithm = static_cast<AesCbcParams const&>(params);
// 1. If the iv member of normalizedAlgorithm does not have length 16 bytes, then throw an OperationError.
if (normalized_algorithm.iv.size() != 16)
return WebIDL::OperationError::create(m_realm, "IV to AES-CBC must be exactly 16 bytes"_string);
// Spec bug? TODO: https://github.com/w3c/webcrypto/issues/381
// If ciphertext does not have a length that is a multiple of 16 bytes, then throw an OperationError. (Note that a zero-length ciphertext will result in an OperationError in all cases.)
if (ciphertext.size() % 16 != 0)
return WebIDL::OperationError::create(m_realm, "Ciphertext length must be a multiple of 16 bytes"_string);
// 2. Let paddedPlaintext be the result of performing the CBC Decryption operation described in Section 6.2 of [NIST-SP800-38A] using AES as the block cipher, the contents of the iv member of normalizedAlgorithm as the IV input parameter and the contents of ciphertext as the input ciphertext.
auto mode = ::Crypto::Cipher::PaddingMode::CMS;
auto key_bytes = key->handle().get<ByteBuffer>();
auto key_bits = key_bytes.size() * 8;
::Crypto::Cipher::AESCipher::CBCMode cipher(key_bytes, key_bits, ::Crypto::Cipher::Intent::Decryption, mode);
auto iv = normalized_algorithm.iv;
auto plaintext = TRY_OR_THROW_OOM(m_realm->vm(), cipher.create_aligned_buffer(ciphertext.size()));
auto plaintext_view = plaintext.bytes();
cipher.decrypt(ciphertext, plaintext_view, iv);
plaintext.trim(plaintext_view.size(), false);
// 3. Let p be the value of the last octet of paddedPlaintext.
// 4. If p is zero or greater than 16, or if any of the last p octets of paddedPlaintext have a value which is not p, then throw an OperationError.
// 5. Let plaintext be the result of removing p octets from the end of paddedPlaintext.
// Note that LibCrypto already does the padding removal for us.
// In the case that any issues arise (e.g. inconsistent padding), the padding is instead not trimmed.
// This is *ONLY* meaningful for the specific case of PaddingMode::CMS, as this is the only padding mode that always appends a block.
if (plaintext.size() == ciphertext.size()) {
// Padding was not removed for an unknown reason. Apply Step 4:
return WebIDL::OperationError::create(m_realm, "Inconsistent padding"_string);
}
// 6. Return the result of creating an ArrayBuffer containing plaintext.
return JS::ArrayBuffer::create(m_realm, move(plaintext));
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<CryptoKey>> AesCbc::import_key(AlgorithmParams const&, Bindings::KeyFormat format, CryptoKey::InternalKeyData key_data, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
{
// 1. If usages contains an entry which is not one of "encrypt", "decrypt", "wrapKey" or "unwrapKey", then throw a SyntaxError.
for (auto& usage : key_usages) {
if (usage != Bindings::KeyUsage::Encrypt && usage != Bindings::KeyUsage::Decrypt && usage != Bindings::KeyUsage::Wrapkey && usage != Bindings::KeyUsage::Unwrapkey) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
// 2.
ByteBuffer data;
if (format == Bindings::KeyFormat::Raw) {
// -> If format is "raw":
// 1. Let data be the octet string contained in keyData.
// 2. If the length in bits of data is not 128, 192 or 256 then throw a DataError.
data = key_data.get<ByteBuffer>();
auto length_in_bits = data.size() * 8;
if (length_in_bits != 128 && length_in_bits != 192 && length_in_bits != 256) {
return WebIDL::DataError::create(m_realm, MUST(String::formatted("Invalid key length '{}' bits (must be either 128, 192, or 256 bits)", length_in_bits)));
}
} else if (format == Bindings::KeyFormat::Jwk) {
// -> If format is "jwk":
// 1. -> If keyData is a JsonWebKey dictionary:
// Let jwk equal keyData.
// -> Otherwise:
// Throw a DataError.
if (!key_data.has<Bindings::JsonWebKey>())
return WebIDL::DataError::create(m_realm, "keyData is not a JsonWebKey dictionary"_string);
auto& jwk = key_data.get<Bindings::JsonWebKey>();
// 2. If the kty field of jwk is not "oct", then throw a DataError.
if (jwk.kty != "oct"_string)
return WebIDL::DataError::create(m_realm, "Invalid key type"_string);
// 3. If jwk does not meet the requirements of Section 6.4 of JSON Web Algorithms [JWA], then throw a DataError.
// Specifically, those requirements are:
// - ".k" is a valid bas64url encoded octet stream, which we do by just parsing it, in step 4.
// - ".alg" is checked only in step 5.
// 4. Let data be the octet string obtained by decoding the k field of jwk.
data = TRY(parse_jwk_symmetric_key(m_realm, jwk));
// 5. -> If data has length 128 bits:
// If the alg field of jwk is present, and is not "A128CBC", then throw a DataError.
// -> If data has length 192 bits:
// If the alg field of jwk is present, and is not "A192CBC", then throw a DataError.
// -> If data has length 256 bits:
// If the alg field of jwk is present, and is not "A256CBC", then throw a DataError.
// -> Otherwise:
// throw a DataError.
auto data_bits = data.size() * 8;
auto const& alg = jwk.alg;
if (data_bits == 128) {
if (alg.has_value() && alg != "A128CBC") {
return WebIDL::DataError::create(m_realm, "Contradictory key size: key has 128 bits, but alg specifies non-128-bit algorithm"_string);
}
} else if (data_bits == 192) {
if (alg.has_value() && alg != "A192CBC") {
return WebIDL::DataError::create(m_realm, "Contradictory key size: key has 192 bits, but alg specifies non-192-bit algorithm"_string);
}
} else if (data_bits == 256) {
if (alg.has_value() && alg != "A256CBC") {
return WebIDL::DataError::create(m_realm, "Contradictory key size: key has 256 bits, but alg specifies non-256-bit algorithm"_string);
}
} else {
return WebIDL::DataError::create(m_realm, MUST(String::formatted("Invalid key size: {} bits", data_bits)));
}
// 6. If usages is non-empty and the use field of jwk is present and is not "enc", then throw a DataError.
if (!key_usages.is_empty() && jwk.use.has_value() && *jwk.use != "enc"_string)
return WebIDL::DataError::create(m_realm, "Invalid use field"_string);
// 7. If the key_ops field of jwk is present, and is invalid according to the
// requirements of JSON Web Key [JWK] or does not contain all of the specified usages
// values, then throw a DataError.
TRY(validate_jwk_key_ops(m_realm, jwk, key_usages));
// 8. If the ext field of jwk is present and has the value false and extractable is true, then throw a DataError.
if (jwk.ext.has_value() && !*jwk.ext && extractable)
return WebIDL::DataError::create(m_realm, "Invalid ext field"_string);
} else {
// Otherwise:
// throw a NotSupportedError
return WebIDL::NotSupportedError::create(m_realm, "Only raw and jwk formats are supported"_string);
}
// 3. Let key be a new CryptoKey object representing an AES key with value data.
auto data_bits = data.size() * 8;
auto key = CryptoKey::create(m_realm, move(data));
// 4. Set the [[type]] internal slot of key to "secret".
key->set_type(Bindings::KeyType::Secret);
// 5. Let algorithm be a new AesKeyAlgorithm.
auto algorithm = AesKeyAlgorithm::create(m_realm);
// 6. Set the name attribute of algorithm to "AES-CBC".
algorithm->set_name("AES-CBC"_string);
// 7. Set the length attribute of algorithm to the length, in bits, of data.
algorithm->set_length(data_bits);
// 8. Set the [[algorithm]] internal slot of key to algorithm.
key->set_algorithm(algorithm);
// 9. Return key.
return key;
}
WebIDL::ExceptionOr<Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>>> AesCbc::generate_key(AlgorithmParams const& params, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
{
// 1. If usages contains any entry which is not one of "encrypt", "decrypt", "wrapKey" or "unwrapKey", then throw a SyntaxError.
for (auto const& usage : key_usages) {
if (usage != Bindings::KeyUsage::Encrypt && usage != Bindings::KeyUsage::Decrypt && usage != Bindings::KeyUsage::Wrapkey && usage != Bindings::KeyUsage::Unwrapkey) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
auto const& normalized_algorithm = static_cast<AesKeyGenParams const&>(params);
// 2. If the length member of normalizedAlgorithm is not equal to one of 128, 192 or 256, then throw an OperationError.
auto const bits = normalized_algorithm.length;
if (bits != 128 && bits != 192 && bits != 256) {
return WebIDL::OperationError::create(m_realm, MUST(String::formatted("Cannot create AES-CBC key with unusual amount of {} bits", bits)));
}
// 3. Generate an AES key of length equal to the length member of normalizedAlgorithm.
auto key_buffer = TRY(generate_random_key(m_realm->vm(), bits));
// 4. If the key generation step fails, then throw an OperationError.
// Note: Cannot happen in our implementation; and if we OOM, then allocating the Exception is probably going to crash anyway.
// 5. Let key be a new CryptoKey object representing the generated AES key.
auto key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { key_buffer });
// 6. Let algorithm be a new AesKeyAlgorithm.
auto algorithm = AesKeyAlgorithm::create(m_realm);
// 7. Set the name attribute of algorithm to "AES-CBC".
algorithm->set_name("AES-CBC"_string);
// 8. Set the length attribute of algorithm to equal the length member of normalizedAlgorithm.
algorithm->set_length(bits);
// 9. Set the [[type]] internal slot of key to "secret".
key->set_type(Bindings::KeyType::Secret);
// 10. Set the [[algorithm]] internal slot of key to algorithm.
key->set_algorithm(algorithm);
// 11. Set the [[extractable]] internal slot of key to be extractable.
key->set_extractable(extractable);
// 12. Set the [[usages]] internal slot of key to be usages.
key->set_usages(key_usages);
// 13. Return key.
return { key };
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::Object>> AesCbc::export_key(Bindings::KeyFormat format, JS::NonnullGCPtr<CryptoKey> key)
{
// 1. If the underlying cryptographic key material represented by the [[handle]] internal slot of key cannot be accessed, then throw an OperationError.
// Note: In our impl this is always accessible
auto const& handle = key->handle();
JS::GCPtr<JS::Object> result = nullptr;
// 2. -> If format is "raw":
if (format == Bindings::KeyFormat::Raw) {
// 1. Let data be the raw octets of the key represented by [[handle]] internal slot of key.
auto data = handle.get<ByteBuffer>();
// 2. Let result be the result of creating an ArrayBuffer containing data.
result = JS::ArrayBuffer::create(m_realm, data);
}
// -> If format is "jwk":
else if (format == Bindings::KeyFormat::Jwk) {
// 1. Let jwk be a new JsonWebKey dictionary.
Bindings::JsonWebKey jwk = {};
// 2. Set the kty attribute of jwk to the string "oct".
jwk.kty = "oct"_string;
// 3. Set the k attribute of jwk to be a string containing the raw octets of the key represented by [[handle]] internal slot of key, encoded according to Section 6.4 of JSON Web Algorithms [JWA].
auto const& key_bytes = handle.get<ByteBuffer>();
jwk.k = TRY_OR_THROW_OOM(m_realm->vm(), encode_base64url(key_bytes, AK::OmitPadding::Yes));
// 4. -> If the length attribute of key is 128:
// Set the alg attribute of jwk to the string "A128CBC".
// -> If the length attribute of key is 192:
// Set the alg attribute of jwk to the string "A192CBC".
// -> If the length attribute of key is 256:
// Set the alg attribute of jwk to the string "A256CBC".
auto key_bits = key_bytes.size() * 8;
if (key_bits == 128) {
jwk.alg = "A128CBC"_string;
} else if (key_bits == 192) {
jwk.alg = "A192CBC"_string;
} else if (key_bits == 256) {
jwk.alg = "A256CBC"_string;
} else {
return WebIDL::OperationError::create(m_realm, "unclear key size"_string);
}
// 5. Set the key_ops attribute of jwk to equal the usages attribute of key.
jwk.key_ops = Vector<String> {};
jwk.key_ops->ensure_capacity(key->internal_usages().size());
for (auto const& usage : key->internal_usages()) {
jwk.key_ops->append(Bindings::idl_enum_to_string(usage));
}
// 6. Set the ext attribute of jwk to equal the [[extractable]] internal slot of key.
jwk.ext = key->extractable();
// 7. Let result be the result of converting jwk to an ECMAScript Object, as defined by [WebIDL].
result = TRY(jwk.to_object(m_realm));
}
// -> Otherwise:
else {
// throw a NotSupportedError.
return WebIDL::NotSupportedError::create(m_realm, "Cannot export to unsupported format"_string);
}
// 3. Return result.
return JS::NonnullGCPtr { *result };
}
WebIDL::ExceptionOr<JS::Value> AesCbc::get_key_length(AlgorithmParams const& params)
{
// 1. If the length member of normalizedDerivedKeyAlgorithm is not 128, 192 or 256, then throw an OperationError.
auto const& normalized_algorithm = static_cast<AesDerivedKeyParams const&>(params);
auto length = normalized_algorithm.length;
if (length != 128 && length != 192 && length != 256)
return WebIDL::OperationError::create(m_realm, "Invalid key length"_string);
// 2. Return the length member of normalizedDerivedKeyAlgorithm.
return JS::Value(length);
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<CryptoKey>> AesCtr::import_key(AlgorithmParams const&, Bindings::KeyFormat format, CryptoKey::InternalKeyData key_data, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
{
// 1. If usages contains an entry which is not one of "encrypt", "decrypt", "wrapKey" or "unwrapKey", then throw a SyntaxError.
for (auto& usage : key_usages) {
if (usage != Bindings::KeyUsage::Encrypt && usage != Bindings::KeyUsage::Decrypt && usage != Bindings::KeyUsage::Wrapkey && usage != Bindings::KeyUsage::Unwrapkey) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
ByteBuffer data;
// 2. If format is "raw":
if (format == Bindings::KeyFormat::Raw) {
// 1. Let data be the octet string contained in keyData.
data = key_data.get<ByteBuffer>();
// 2. If the length in bits of data is not 128, 192 or 256 then throw a DataError.
auto length_in_bits = data.size() * 8;
if (length_in_bits != 128 && length_in_bits != 192 && length_in_bits != 256) {
return WebIDL::DataError::create(m_realm, MUST(String::formatted("Invalid key length '{}' bits (must be either 128, 192, or 256 bits)", length_in_bits)));
}
}
// 2. If format is "jwk":
else if (format == Bindings::KeyFormat::Jwk) {
// 1. -> If keyData is a JsonWebKey dictionary:
// Let jwk equal keyData.
// -> Otherwise:
// Throw a DataError.
if (!key_data.has<Bindings::JsonWebKey>())
return WebIDL::DataError::create(m_realm, "keyData is not a JsonWebKey dictionary"_string);
auto& jwk = key_data.get<Bindings::JsonWebKey>();
// 2. If the kty field of jwk is not "oct", then throw a DataError.
if (jwk.kty != "oct"_string)
return WebIDL::DataError::create(m_realm, "Invalid key type"_string);
// 3. If jwk does not meet the requirements of Section 6.4 of JSON Web Algorithms [JWA], then throw a DataError.
// Specifically, those requirements are:
// * the member "k" is used to represent a symmetric key (or another key whose value is a single octet sequence).
// * An "alg" member SHOULD also be present to identify the algorithm intended to be used with the key,
// unless the application uses another means or convention to determine the algorithm used.
if (!jwk.k.has_value())
return WebIDL::DataError::create(m_realm, "Missing 'k' field"_string);
if (!jwk.alg.has_value())
return WebIDL::DataError::create(m_realm, "Missing 'alg' field"_string);
// 4. Let data be the octet string obtained by decoding the k field of jwk.
data = TRY(parse_jwk_symmetric_key(m_realm, jwk));
// 5. -> If data has length 128 bits:
// If the alg field of jwk is present, and is not "A128CTR", then throw a DataError.
// -> If data has length 192 bits:
// If the alg field of jwk is present, and is not "A192CTR", then throw a DataError.
// -> If data has length 256 bits:
// If the alg field of jwk is present, and is not "A256CTR", then throw a DataError.
// -> Otherwise:
// throw a DataError.
auto data_bits = data.size() * 8;
auto const& alg = jwk.alg;
if (data_bits == 128 && alg != "A128CTR") {
return WebIDL::DataError::create(m_realm, "Contradictory key size: key has 128 bits, but alg specifies non-128-bit algorithm"_string);
} else if (data_bits == 192 && alg != "A192CTR") {
return WebIDL::DataError::create(m_realm, "Contradictory key size: key has 192 bits, but alg specifies non-192-bit algorithm"_string);
} else if (data_bits == 256 && alg != "A256CTR") {
return WebIDL::DataError::create(m_realm, "Contradictory key size: key has 256 bits, but alg specifies non-256-bit algorithm"_string);
} else {
return WebIDL::DataError::create(m_realm, MUST(String::formatted("Invalid key size: {} bits", data_bits)));
}
// 6. If usages is non-empty and the use field of jwk is present and is not "enc", then throw a DataError.
if (!key_usages.is_empty() && jwk.use.has_value() && *jwk.use != "enc"_string)
return WebIDL::DataError::create(m_realm, "Invalid use field"_string);
// 7. If the key_ops field of jwk is present, and is invalid according to the requirements of JSON Web Key [JWK]
// or does not contain all of the specified usages values, then throw a DataError.
TRY(validate_jwk_key_ops(m_realm, jwk, key_usages));
// 8. If the ext field of jwk is present and has the value false and extractable is true, then throw a DataError.
if (jwk.ext.has_value() && !*jwk.ext && extractable)
return WebIDL::DataError::create(m_realm, "Invalid ext field"_string);
}
// 2. Otherwise:
else {
// 1. throw a NotSupportedError.
return WebIDL::NotSupportedError::create(m_realm, "Only raw and jwk formats are supported"_string);
}
auto data_bits = data.size() * 8;
// 3. Let key be a new CryptoKey object representing an AES key with value data.
auto key = CryptoKey::create(m_realm, move(data));
// 4. Set the [[type]] internal slot of key to "secret".
key->set_type(Bindings::KeyType::Secret);
// 5. Let algorithm be a new AesKeyAlgorithm.
auto algorithm = AesKeyAlgorithm::create(m_realm);
// 6. Set the name attribute of algorithm to "AES-CTR".
algorithm->set_name("AES-CTR"_string);
// 7. Set the length attribute of algorithm to the length, in bits, of data.
algorithm->set_length(data_bits);
// 8. Set the [[algorithm]] internal slot of key to algorithm.
key->set_algorithm(algorithm);
// 9. Return key.
return key;
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::Object>> AesCtr::export_key(Bindings::KeyFormat format, JS::NonnullGCPtr<CryptoKey> key)
{
// 1. If the underlying cryptographic key material represented by the [[handle]] internal slot of key cannot be accessed, then throw an OperationError.
// Note: In our impl this is always accessible
JS::GCPtr<JS::Object> result = nullptr;
// 2. If format is "raw":
if (format == Bindings::KeyFormat::Raw) {
// 1. Let data be the raw octets of the key represented by [[handle]] internal slot of key.
auto data = key->handle().get<ByteBuffer>();
// 2. Let result be the result of creating an ArrayBuffer containing data.
result = JS::ArrayBuffer::create(m_realm, data);
}
// 2. If format is "jwk":
else if (format == Bindings::KeyFormat::Jwk) {
// 1. Let jwk be a new JsonWebKey dictionary.
Bindings::JsonWebKey jwk = {};
// 2. Set the kty attribute of jwk to the string "oct".
jwk.kty = "oct"_string;
// 3. Set the k attribute of jwk to be a string containing the raw octets of the key represented by [[handle]] internal slot of key,
// encoded according to Section 6.4 of JSON Web Algorithms [JWA].
auto const& key_bytes = key->handle().get<ByteBuffer>();
jwk.k = TRY_OR_THROW_OOM(m_realm->vm(), encode_base64url(key_bytes, AK::OmitPadding::Yes));
// 4. -> If the length attribute of key is 128:
// Set the alg attribute of jwk to the string "A128CTR".
// -> If the length attribute of key is 192:
// Set the alg attribute of jwk to the string "A192CTR".
// -> If the length attribute of key is 256:
// Set the alg attribute of jwk to the string "A256CTR".
auto key_bits = key_bytes.size() * 8;
if (key_bits == 128) {
jwk.alg = "A128CTR"_string;
} else if (key_bits == 192) {
jwk.alg = "A192CTR"_string;
} else if (key_bits == 256) {
jwk.alg = "A256CTR"_string;
}
// 5. Set the key_ops attribute of jwk to the usages attribute of key.
jwk.key_ops = Vector<String> {};
jwk.key_ops->ensure_capacity(key->internal_usages().size());
for (auto const& usage : key->internal_usages()) {
jwk.key_ops->append(Bindings::idl_enum_to_string(usage));
}
// 6. Set the ext attribute of jwk to equal the [[extractable]] internal slot of key.
jwk.ext = key->extractable();
// 7. Let result be the result of converting jwk to an ECMAScript Object, as defined by [WebIDL].
result = TRY(jwk.to_object(m_realm));
}
// 2. Otherwise:
else {
// 1. throw a NotSupportedError.
return WebIDL::NotSupportedError::create(m_realm, "Cannot export to unsupported format"_string);
}
// 3. Return result.
return JS::NonnullGCPtr { *result };
}
WebIDL::ExceptionOr<JS::Value> AesCtr::get_key_length(AlgorithmParams const& params)
{
// 1. If the length member of normalizedDerivedKeyAlgorithm is not 128, 192 or 256, then throw a OperationError.
auto const& normalized_algorithm = static_cast<AesDerivedKeyParams const&>(params);
auto length = normalized_algorithm.length;
if (length != 128 && length != 192 && length != 256)
return WebIDL::OperationError::create(m_realm, "Invalid key length"_string);
// 2. Return the length member of normalizedDerivedKeyAlgorithm.
return JS::Value(length);
}
WebIDL::ExceptionOr<Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>>> AesCtr::generate_key(AlgorithmParams const& params, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
{
// 1. If usages contains any entry which is not one of "encrypt", "decrypt", "wrapKey" or "unwrapKey", then throw a SyntaxError.
for (auto const& usage : key_usages) {
if (usage != Bindings::KeyUsage::Encrypt && usage != Bindings::KeyUsage::Decrypt && usage != Bindings::KeyUsage::Wrapkey && usage != Bindings::KeyUsage::Unwrapkey) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
// 2. If the length member of normalizedAlgorithm is not equal to one of 128, 192 or 256, then throw an OperationError.
auto const& normalized_algorithm = static_cast<AesKeyGenParams const&>(params);
auto const bits = normalized_algorithm.length;
if (bits != 128 && bits != 192 && bits != 256) {
return WebIDL::OperationError::create(m_realm, MUST(String::formatted("Cannot create AES-CTR key with unusual amount of {} bits", bits)));
}
// 3. Generate an AES key of length equal to the length member of normalizedAlgorithm.
// 4. If the key generation step fails, then throw an OperationError.
auto key_buffer = TRY(generate_random_key(m_realm->vm(), bits));
// 5. Let key be a new CryptoKey object representing the generated AES key.
auto key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { key_buffer });
// 6. Let algorithm be a new AesKeyAlgorithm.
auto algorithm = AesKeyAlgorithm::create(m_realm);
// 7. Set the name attribute of algorithm to "AES-CTR".
algorithm->set_name("AES-CTR"_string);
// 8. Set the length attribute of algorithm to equal the length member of normalizedAlgorithm.
algorithm->set_length(bits);
// 9. Set the [[type]] internal slot of key to "secret".
key->set_type(Bindings::KeyType::Secret);
// 10. Set the [[algorithm]] internal slot of key to algorithm.
key->set_algorithm(algorithm);
// 11. Set the [[extractable]] internal slot of key to be extractable.
key->set_extractable(extractable);
// 12. Set the [[usages]] internal slot of key to be usages.
key->set_usages(key_usages);
// 13. Return key.
return { key };
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> AesCtr::encrypt(AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, ByteBuffer const& plaintext)
{
// 1. If the counter member of normalizedAlgorithm does not have length 16 bytes, then throw an OperationError.
auto const& normalized_algorithm = static_cast<AesCtrParams const&>(params);
auto const& counter = normalized_algorithm.counter;
if (counter.size() != 16)
return WebIDL::OperationError::create(m_realm, "Invalid counter length"_string);
// 2. If the length member of normalizedAlgorithm is zero or is greater than 128, then throw an OperationError.
auto const& length = normalized_algorithm.length;
if (length == 0 || length > 128)
return WebIDL::OperationError::create(m_realm, "Invalid length"_string);
// 3. Let ciphertext be the result of performing the CTR Encryption operation described in Section 6.5 of [NIST-SP800-38A] using
// AES as the block cipher,
// the contents of the counter member of normalizedAlgorithm as the initial value of the counter block,
// the length member of normalizedAlgorithm as the input parameter m to the standard counter block incrementing function defined in Appendix B.1 of [NIST-SP800-38A]
// and the contents of plaintext as the input plaintext.
auto& aes_algorithm = static_cast<AesKeyAlgorithm const&>(*key->algorithm());
auto key_length = aes_algorithm.length();
auto key_bytes = key->handle().get<ByteBuffer>();
::Crypto::Cipher::AESCipher::CTRMode cipher(key_bytes, key_length, ::Crypto::Cipher::Intent::Encryption);
ByteBuffer ciphertext = TRY_OR_THROW_OOM(m_realm->vm(), ByteBuffer::create_zeroed(plaintext.size()));
Bytes ciphertext_span = ciphertext.bytes();
cipher.encrypt(plaintext, ciphertext_span, counter);
// 4. Return the result of creating an ArrayBuffer containing plaintext.
return JS::ArrayBuffer::create(m_realm, ciphertext);
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> AesCtr::decrypt(AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, ByteBuffer const& ciphertext)
{
// 1. If the counter member of normalizedAlgorithm does not have length 16 bytes, then throw an OperationError.
auto const& normalized_algorithm = static_cast<AesCtrParams const&>(params);
auto const& counter = normalized_algorithm.counter;
if (counter.size() != 16)
return WebIDL::OperationError::create(m_realm, "Invalid counter length"_string);
// 2. If the length member of normalizedAlgorithm is zero or is greater than 128, then throw an OperationError.
auto const& length = normalized_algorithm.length;
if (length == 0 || length > 128)
return WebIDL::OperationError::create(m_realm, "Invalid length"_string);
// 3. Let plaintext be the result of performing the CTR Decryption operation described in Section 6.5 of [NIST-SP800-38A] using
// AES as the block cipher,
// the contents of the counter member of normalizedAlgorithm as the initial value of the counter block,
// the length member of normalizedAlgorithm as the input parameter m to the standard counter block incrementing function defined in Appendix B.1 of [NIST-SP800-38A]
// and the contents of ciphertext as the input ciphertext.
auto& aes_algorithm = static_cast<AesKeyAlgorithm const&>(*key->algorithm());
auto key_length = aes_algorithm.length();
auto key_bytes = key->handle().get<ByteBuffer>();
::Crypto::Cipher::AESCipher::CTRMode cipher(key_bytes, key_length, ::Crypto::Cipher::Intent::Decryption);
ByteBuffer plaintext = TRY_OR_THROW_OOM(m_realm->vm(), ByteBuffer::create_zeroed(ciphertext.size()));
Bytes plaintext_span = plaintext.bytes();
cipher.decrypt(ciphertext, plaintext_span, counter);
// 4. Return the result of creating an ArrayBuffer containing plaintext.
return JS::ArrayBuffer::create(m_realm, plaintext);
}
WebIDL::ExceptionOr<JS::Value> AesGcm::get_key_length(AlgorithmParams const& params)
{
// 1. If the length member of normalizedDerivedKeyAlgorithm is not 128, 192 or 256, then throw a OperationError.
auto const& normalized_algorithm = static_cast<AesDerivedKeyParams const&>(params);
auto length = normalized_algorithm.length;
if (length != 128 && length != 192 && length != 256)
return WebIDL::OperationError::create(m_realm, "Invalid key length"_string);
// 2. Return the length member of normalizedDerivedKeyAlgorithm.
return JS::Value(length);
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<CryptoKey>> AesGcm::import_key(AlgorithmParams const&, Bindings::KeyFormat format, CryptoKey::InternalKeyData key_data, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
{
// 1. If usages contains an entry which is not one of "encrypt", "decrypt", "wrapKey" or "unwrapKey", then throw a SyntaxError.
for (auto& usage : key_usages) {
if (usage != Bindings::KeyUsage::Encrypt && usage != Bindings::KeyUsage::Decrypt && usage != Bindings::KeyUsage::Wrapkey && usage != Bindings::KeyUsage::Unwrapkey) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
ByteBuffer data;
// 2. If format is "raw":
if (format == Bindings::KeyFormat::Raw) {
// 1. Let data be the octet string contained in keyData.
data = key_data.get<ByteBuffer>();
// 2. If the length in bits of data is not 128, 192 or 256 then throw a DataError.
auto length_in_bits = data.size() * 8;
if (length_in_bits != 128 && length_in_bits != 192 && length_in_bits != 256) {
return WebIDL::DataError::create(m_realm, MUST(String::formatted("Invalid key length '{}' bits (must be either 128, 192, or 256 bits)", length_in_bits)));
}
}
// 2. If format is "jwk":
else if (format == Bindings::KeyFormat::Jwk) {
// 1. -> If keyData is a JsonWebKey dictionary:
// Let jwk equal keyData.
// -> Otherwise:
// Throw a DataError.
if (!key_data.has<Bindings::JsonWebKey>())
return WebIDL::DataError::create(m_realm, "keyData is not a JsonWebKey dictionary"_string);
auto& jwk = key_data.get<Bindings::JsonWebKey>();
// 2. If the kty field of jwk is not "oct", then throw a DataError.
if (jwk.kty != "oct"_string)
return WebIDL::DataError::create(m_realm, "Invalid key type"_string);
// 3. If jwk does not meet the requirements of Section 6.4 of JSON Web Algorithms [JWA], then throw a DataError.
// Specifically, those requirements are:
// * the member "k" is used to represent a symmetric key (or another key whose value is a single octet sequence).
// * An "alg" member SHOULD also be present to identify the algorithm intended to be used with the key,
// unless the application uses another means or convention to determine the algorithm used.
if (!jwk.k.has_value())
return WebIDL::DataError::create(m_realm, "Missing 'k' field"_string);
if (!jwk.alg.has_value())
return WebIDL::DataError::create(m_realm, "Missing 'alg' field"_string);
// 4. Let data be the octet string obtained by decoding the k field of jwk.
data = TRY(parse_jwk_symmetric_key(m_realm, jwk));
// 5. -> If data has length 128 bits:
// If the alg field of jwk is present, and is not "A128GCM", then throw a DataError.
// -> If data has length 192 bits:
// If the alg field of jwk is present, and is not "A192GCM", then throw a DataError.
// -> If data has length 256 bits:
// If the alg field of jwk is present, and is not "A256GCM", then throw a DataError.
// -> Otherwise:
// throw a DataError.
auto data_bits = data.size() * 8;
auto const& alg = jwk.alg;
if (data_bits == 128 && alg != "A128GCM") {
return WebIDL::DataError::create(m_realm, "Contradictory key size: key has 128 bits, but alg specifies non-128-bit algorithm"_string);
} else if (data_bits == 192 && alg != "A192GCM") {
return WebIDL::DataError::create(m_realm, "Contradictory key size: key has 192 bits, but alg specifies non-192-bit algorithm"_string);
} else if (data_bits == 256 && alg != "A256GCM") {
return WebIDL::DataError::create(m_realm, "Contradictory key size: key has 256 bits, but alg specifies non-256-bit algorithm"_string);
} else {
return WebIDL::DataError::create(m_realm, MUST(String::formatted("Invalid key size: {} bits", data_bits)));
}
// 6. If usages is non-empty and the use field of jwk is present and is not "enc", then throw a DataError.
if (!key_usages.is_empty() && jwk.use.has_value() && *jwk.use != "enc"_string)
return WebIDL::DataError::create(m_realm, "Invalid use field"_string);
// 7. If the key_ops field of jwk is present, and is invalid according to the requirements of JSON Web Key [JWK]
// or does not contain all of the specified usages values, then throw a DataError.
TRY(validate_jwk_key_ops(m_realm, jwk, key_usages));
// 8. If the ext field of jwk is present and has the value false and extractable is true, then throw a DataError.
if (jwk.ext.has_value() && !*jwk.ext && extractable)
return WebIDL::DataError::create(m_realm, "Invalid ext field"_string);
}
// 2. Otherwise:
else {
// 1. throw a NotSupportedError.
return WebIDL::NotSupportedError::create(m_realm, "Only raw and jwk formats are supported"_string);
}
auto data_bits = data.size() * 8;
// 3. Let key be a new CryptoKey object representing an AES key with value data.
auto key = CryptoKey::create(m_realm, move(data));
// 4. Set the [[type]] internal slot of key to "secret".
key->set_type(Bindings::KeyType::Secret);
// 5. Let algorithm be a new AesKeyAlgorithm.
auto algorithm = AesKeyAlgorithm::create(m_realm);
// 6. Set the name attribute of algorithm to "AES-GCM".
algorithm->set_name("AES-GCM"_string);
// 7. Set the length attribute of algorithm to the length, in bits, of data.
algorithm->set_length(data_bits);
// 8. Set the [[algorithm]] internal slot of key to algorithm.
key->set_algorithm(algorithm);
// 9. Return key.
return key;
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::Object>> AesGcm::export_key(Bindings::KeyFormat format, JS::NonnullGCPtr<CryptoKey> key)
{
// 1. If the underlying cryptographic key material represented by the [[handle]] internal slot of key cannot be accessed, then throw an OperationError.
// Note: In our impl this is always accessible
JS::GCPtr<JS::Object> result = nullptr;
// 2. If format is "raw":
if (format == Bindings::KeyFormat::Raw) {
// 1. Let data be the raw octets of the key represented by [[handle]] internal slot of key.
auto data = key->handle().get<ByteBuffer>();
// 2. Let result be the result of creating an ArrayBuffer containing data.
result = JS::ArrayBuffer::create(m_realm, data);
}
// 2. If format is "jwk":
else if (format == Bindings::KeyFormat::Jwk) {
// 1. Let jwk be a new JsonWebKey dictionary.
Bindings::JsonWebKey jwk = {};
// 2. Set the kty attribute of jwk to the string "oct".
jwk.kty = "oct"_string;
// 3. Set the k attribute of jwk to be a string containing the raw octets of the key represented by [[handle]] internal slot of key,
// encoded according to Section 6.4 of JSON Web Algorithms [JWA].
auto const& key_bytes = key->handle().get<ByteBuffer>();
jwk.k = TRY_OR_THROW_OOM(m_realm->vm(), encode_base64url(key_bytes, AK::OmitPadding::Yes));
// 4. -> If the length attribute of key is 128:
// Set the alg attribute of jwk to the string "A128GCM".
// -> If the length attribute of key is 192:
// Set the alg attribute of jwk to the string "A192GCM".
// -> If the length attribute of key is 256:
// Set the alg attribute of jwk to the string "A256GCM".
auto key_bits = key_bytes.size() * 8;
if (key_bits == 128) {
jwk.alg = "A128GCM"_string;
} else if (key_bits == 192) {
jwk.alg = "A192GCM"_string;
} else if (key_bits == 256) {
jwk.alg = "A256GCM"_string;
}
// 5. Set the key_ops attribute of jwk to the usages attribute of key.
jwk.key_ops = Vector<String> {};
jwk.key_ops->ensure_capacity(key->internal_usages().size());
for (auto const& usage : key->internal_usages()) {
jwk.key_ops->append(Bindings::idl_enum_to_string(usage));
}
// 6. Set the ext attribute of jwk to equal the [[extractable]] internal slot of key.
jwk.ext = key->extractable();
// 7. Let result be the result of converting jwk to an ECMAScript Object, as defined by [WebIDL].
result = TRY(jwk.to_object(m_realm));
}
// 2. Otherwise:
else {
// 1. throw a NotSupportedError.
return WebIDL::NotSupportedError::create(m_realm, "Cannot export to unsupported format"_string);
}
// 3. Return result.
return JS::NonnullGCPtr { *result };
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> AesGcm::encrypt(AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, ByteBuffer const& plaintext)
{
auto const& normalized_algorithm = static_cast<AesGcmParams const&>(params);
// FIXME: 1. If plaintext has a length greater than 2^39 - 256 bytes, then throw an OperationError.
// FIXME: 2. If the iv member of normalizedAlgorithm has a length greater than 2^64 - 1 bytes, then throw an OperationError.
// FIXME: 3. If the additionalData member of normalizedAlgorithm is present and has a length greater than 2^64 - 1 bytes, then throw an OperationError.
// 4. If the tagLength member of normalizedAlgorithm is not present: Let tagLength be 128.
auto tag_length = 0;
auto to_compare_against = Vector<int> { 32, 64, 96, 104, 112, 120, 128 };
if (!normalized_algorithm.tag_length.has_value())
tag_length = 128;
// If the tagLength member of normalizedAlgorithm is one of 32, 64, 96, 104, 112, 120 or 128: Let tagLength be equal to the tagLength member of normalizedAlgorithm
else if (to_compare_against.contains_slow(normalized_algorithm.tag_length.value()))
tag_length = normalized_algorithm.tag_length.value();
// Otherwise: throw an OperationError.
else
return WebIDL::OperationError::create(m_realm, "Invalid tag length"_string);
// 5. Let additionalData be the contents of the additionalData member of normalizedAlgorithm if present or the empty octet string otherwise.
auto additional_data = normalized_algorithm.additional_data.value_or(ByteBuffer {});
// 6. Let C and T be the outputs that result from performing the Authenticated Encryption Function described in Section 7.1 of [NIST-SP800-38D] using
// AES as the block cipher,
// the contents of the iv member of normalizedAlgorithm as the IV input parameter,
// the contents of additionalData as the A input parameter,
// tagLength as the t pre-requisite
// and the contents of plaintext as the input plaintext.
auto& aes_algorithm = static_cast<AesKeyAlgorithm const&>(*key->algorithm());
auto key_length = aes_algorithm.length();
auto key_bytes = key->handle().get<ByteBuffer>();
::Crypto::Cipher::AESCipher::GCMMode cipher(key_bytes, key_length, ::Crypto::Cipher::Intent::Encryption);
ByteBuffer ciphertext = TRY_OR_THROW_OOM(m_realm->vm(), ByteBuffer::create_zeroed(plaintext.size()));
ByteBuffer tag = TRY_OR_THROW_OOM(m_realm->vm(), ByteBuffer::create_zeroed(tag_length / 8));
[[maybe_unused]] Bytes ciphertext_span = ciphertext.bytes();
[[maybe_unused]] Bytes tag_span = tag.bytes();
// FIXME: cipher.encrypt(plaintext, ciphertext_span, normalized_algorithm.iv, additional_data, tag_span);
// 7. Let ciphertext be equal to C | T, where '|' denotes concatenation.
TRY_OR_THROW_OOM(m_realm->vm(), ciphertext.try_append(tag));
// 8. Return the result of creating an ArrayBuffer containing ciphertext.
return JS::ArrayBuffer::create(m_realm, ciphertext);
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> AesGcm::decrypt(AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, ByteBuffer const& ciphertext)
{
auto const& normalized_algorithm = static_cast<AesGcmParams const&>(params);
// 1. If the tagLength member of normalizedAlgorithm is not present: Let tagLength be 128.
u32 tag_length = 0;
auto to_compare_against = Vector<u32> { 32, 64, 96, 104, 112, 120, 128 };
if (!normalized_algorithm.tag_length.has_value())
tag_length = 128;
// If the tagLength member of normalizedAlgorithm is one of 32, 64, 96, 104, 112, 120 or 128: Let tagLength be equal to the tagLength member of normalizedAlgorithm
else if (to_compare_against.contains_slow(normalized_algorithm.tag_length.value()))
tag_length = normalized_algorithm.tag_length.value();
// Otherwise: throw an OperationError.
else
return WebIDL::OperationError::create(m_realm, "Invalid tag length"_string);
// 2. If ciphertext has a length less than tagLength bits, then throw an OperationError.
if (ciphertext.size() < tag_length / 8)
return WebIDL::OperationError::create(m_realm, "Invalid ciphertext length"_string);
// FIXME: 3. If the iv member of normalizedAlgorithm has a length greater than 2^64 - 1 bytes, then throw an OperationError.
// FIXME: 4. If the additionalData member of normalizedAlgorithm is present and has a length greater than 2^64 - 1 bytes, then throw an OperationError.
// 5. Let tag be the last tagLength bits of ciphertext.
auto tag_bits = tag_length / 8;
auto tag = TRY_OR_THROW_OOM(m_realm->vm(), ciphertext.slice(ciphertext.size() - tag_bits, tag_bits));
// 6. Let actualCiphertext be the result of removing the last tagLength bits from ciphertext.
auto actual_ciphertext = TRY_OR_THROW_OOM(m_realm->vm(), ciphertext.slice(0, ciphertext.size() - tag_bits));
// 7. Let additionalData be the contents of the additionalData member of normalizedAlgorithm if present or the empty octet string otherwise.
auto additional_data = normalized_algorithm.additional_data.value_or(ByteBuffer {});
// 8. Perform the Authenticated Decryption Function described in Section 7.2 of [NIST-SP800-38D] using
// AES as the block cipher,
// the contents of the iv member of normalizedAlgorithm as the IV input parameter,
// the contents of additionalData as the A input parameter,
// tagLength as the t pre-requisite,
// the contents of actualCiphertext as the input ciphertext, C
// and the contents of tag as the authentication tag, T.
auto& aes_algorithm = static_cast<AesKeyAlgorithm const&>(*key->algorithm());
auto key_length = aes_algorithm.length();
auto key_bytes = key->handle().get<ByteBuffer>();
::Crypto::Cipher::AESCipher::GCMMode cipher(key_bytes, key_length, ::Crypto::Cipher::Intent::Decryption);
ByteBuffer plaintext = TRY_OR_THROW_OOM(m_realm->vm(), ByteBuffer::create_zeroed(actual_ciphertext.size()));
[[maybe_unused]] Bytes plaintext_span = plaintext.bytes();
[[maybe_unused]] Bytes actual_ciphertext_span = actual_ciphertext.bytes();
[[maybe_unused]] Bytes tag_span = tag.bytes();
// FIXME: auto result = cipher.decrypt(ciphertext, plaintext_span, normalized_algorithm.iv, additional_data, tag_span);
auto result = ::Crypto::VerificationConsistency::Inconsistent;
// If the result of the algorithm is the indication of inauthenticity, "FAIL": throw an OperationError
if (result == ::Crypto::VerificationConsistency::Inconsistent)
return WebIDL::OperationError::create(m_realm, "Decryption failed"_string);
// Otherwise: Let plaintext be the output P of the Authenticated Decryption Function.
// 9. Return the result of creating an ArrayBuffer containing plaintext.
return JS::ArrayBuffer::create(m_realm, plaintext);
}
WebIDL::ExceptionOr<Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>>> AesGcm::generate_key(AlgorithmParams const& params, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
{
// 1. If usages contains any entry which is not one of "encrypt", "decrypt", "wrapKey" or "unwrapKey", then throw a SyntaxError.
for (auto const& usage : key_usages) {
if (usage != Bindings::KeyUsage::Encrypt && usage != Bindings::KeyUsage::Decrypt && usage != Bindings::KeyUsage::Wrapkey && usage != Bindings::KeyUsage::Unwrapkey) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
// 2. If the length member of normalizedAlgorithm is not equal to one of 128, 192 or 256, then throw an OperationError.
auto const& normalized_algorithm = static_cast<AesKeyGenParams const&>(params);
auto const bits = normalized_algorithm.length;
if (bits != 128 && bits != 192 && bits != 256) {
return WebIDL::OperationError::create(m_realm, MUST(String::formatted("Cannot create AES-GCM key with unusual amount of {} bits", bits)));
}
// 3. Generate an AES key of length equal to the length member of normalizedAlgorithm.
// 4. If the key generation step fails, then throw an OperationError.
auto key_buffer = TRY(generate_random_key(m_realm->vm(), bits));
// 5. Let key be a new CryptoKey object representing the generated AES key.
auto key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { key_buffer });
// 6. Let algorithm be a new AesKeyAlgorithm.
auto algorithm = AesKeyAlgorithm::create(m_realm);
// 7. Set the name attribute of algorithm to "AES-GCM".
algorithm->set_name("AES-GCM"_string);
// 8. Set the length attribute of algorithm to equal the length member of normalizedAlgorithm.
algorithm->set_length(bits);
// 9. Set the [[type]] internal slot of key to "secret".
key->set_type(Bindings::KeyType::Secret);
// 10. Set the [[algorithm]] internal slot of key to algorithm.
key->set_algorithm(algorithm);
// 11. Set the [[extractable]] internal slot of key to be extractable.
key->set_extractable(extractable);
// 12. Set the [[usages]] internal slot of key to be usages.
key->set_usages(key_usages);
// 13. Return key.
return { key };
}
// https://w3c.github.io/webcrypto/#hkdf-operations
WebIDL::ExceptionOr<JS::NonnullGCPtr<CryptoKey>> HKDF::import_key(AlgorithmParams const&, Bindings::KeyFormat format, CryptoKey::InternalKeyData key_data, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
{
// 1. Let keyData be the key data to be imported.
// 2. If format is "raw":
// (… see below …)
// Otherwise:
// throw a NotSupportedError.
if (format != Bindings::KeyFormat::Raw) {
return WebIDL::NotSupportedError::create(m_realm, "Only raw format is supported"_string);
}
// 1. If usages contains a value that is not "deriveKey" or "deriveBits", then throw a SyntaxError.
for (auto& usage : key_usages) {
if (usage != Bindings::KeyUsage::Derivekey && usage != Bindings::KeyUsage::Derivebits) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
// 2. If extractable is not false, then throw a SyntaxError.
if (extractable)
return WebIDL::SyntaxError::create(m_realm, "extractable must be false"_string);
// 3. Let key be a new CryptoKey representing the key data provided in keyData.
auto key = CryptoKey::create(m_realm, move(key_data));
// 4. Set the [[type]] internal slot of key to "secret".
key->set_type(Bindings::KeyType::Secret);
// 5. Let algorithm be a new KeyAlgorithm object.
auto algorithm = KeyAlgorithm::create(m_realm);
// 6. Set the name attribute of algorithm to "HKDF".
algorithm->set_name("HKDF"_string);
// 7. Set the [[algorithm]] internal slot of key to algorithm.
key->set_algorithm(algorithm);
// 8. Return key.
return key;
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> SHA::digest(AlgorithmParams const& algorithm, ByteBuffer const& data)
{
auto& algorithm_name = algorithm.name;
::Crypto::Hash::HashKind hash_kind;
if (algorithm_name.equals_ignoring_ascii_case("SHA-1"sv)) {
hash_kind = ::Crypto::Hash::HashKind::SHA1;
} else if (algorithm_name.equals_ignoring_ascii_case("SHA-256"sv)) {
hash_kind = ::Crypto::Hash::HashKind::SHA256;
} else if (algorithm_name.equals_ignoring_ascii_case("SHA-384"sv)) {
hash_kind = ::Crypto::Hash::HashKind::SHA384;
} else if (algorithm_name.equals_ignoring_ascii_case("SHA-512"sv)) {
hash_kind = ::Crypto::Hash::HashKind::SHA512;
} else {
return WebIDL::NotSupportedError::create(m_realm, MUST(String::formatted("Invalid hash function '{}'", algorithm_name)));
}
::Crypto::Hash::Manager hash { hash_kind };
hash.update(data);
auto digest = hash.digest();
auto result_buffer = ByteBuffer::copy(digest.immutable_data(), hash.digest_size());
if (result_buffer.is_error())
return WebIDL::OperationError::create(m_realm, "Failed to create result buffer"_string);
return JS::ArrayBuffer::create(m_realm, result_buffer.release_value());
}
// https://w3c.github.io/webcrypto/#ecdsa-operations
WebIDL::ExceptionOr<Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>>> ECDSA::generate_key(AlgorithmParams const& params, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
{
// 1. If usages contains a value which is not one of "sign" or "verify", then throw a SyntaxError.
for (auto const& usage : key_usages) {
if (usage != Bindings::KeyUsage::Sign && usage != Bindings::KeyUsage::Verify) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
auto const& normalized_algorithm = static_cast<EcKeyGenParams const&>(params);
// 2. If the namedCurve member of normalizedAlgorithm is "P-256", "P-384" or "P-521":
// Generate an Elliptic Curve key pair, as defined in [RFC6090]
// with domain parameters for the curve identified by the namedCurve member of normalizedAlgorithm.
Variant<Empty, ::Crypto::Curves::SECP256r1, ::Crypto::Curves::SECP384r1> curve;
if (normalized_algorithm.named_curve.is_one_of("P-256"sv, "P-384"sv, "P-521"sv)) {
if (normalized_algorithm.named_curve.equals_ignoring_ascii_case("P-256"sv))
curve = ::Crypto::Curves::SECP256r1 {};
if (normalized_algorithm.named_curve.equals_ignoring_ascii_case("P-384"sv))
curve = ::Crypto::Curves::SECP384r1 {};
// FIXME: Support P-521
if (normalized_algorithm.named_curve.equals_ignoring_ascii_case("P-521"sv))
return WebIDL::NotSupportedError::create(m_realm, "'P-521' is not supported yet"_string);
} else {
// If the namedCurve member of normalizedAlgorithm is a value specified in an applicable specification:
// Perform the ECDSA generation steps specified in that specification,
// passing in normalizedAlgorithm and resulting in an elliptic curve key pair.
// Otherwise: throw a NotSupportedError
return WebIDL::NotSupportedError::create(m_realm, "Only 'P-256', 'P-384' and 'P-521' is supported"_string);
}
// NOTE: Spec jumps to 6 here for some reason
// 6. If performing the key generation operation results in an error, then throw an OperationError.
auto maybe_private_key_data = curve.visit(
[](Empty const&) -> ErrorOr<ByteBuffer> { return Error::from_string_literal("noop error"); },
[](auto instance) { return instance.generate_private_key(); });
if (maybe_private_key_data.is_error())
return WebIDL::OperationError::create(m_realm, "Failed to create valid crypto instance"_string);
auto private_key_data = maybe_private_key_data.release_value();
auto maybe_public_key_data = curve.visit(
[](Empty const&) -> ErrorOr<ByteBuffer> { return Error::from_string_literal("noop error"); },
[&](auto instance) { return instance.generate_public_key(private_key_data); });
if (maybe_public_key_data.is_error())
return WebIDL::OperationError::create(m_realm, "Failed to create valid crypto instance"_string);
auto public_key_data = maybe_public_key_data.release_value();
// 7. Let algorithm be a new EcKeyAlgorithm object.
auto algorithm = EcKeyAlgorithm::create(m_realm);
// 8. Set the name attribute of algorithm to "ECDSA".
algorithm->set_name("ECDSA"_string);
// 9. Set the namedCurve attribute of algorithm to equal the namedCurve member of normalizedAlgorithm.
algorithm->set_named_curve(normalized_algorithm.named_curve);
// 10. Let publicKey be a new CryptoKey representing the public key of the generated key pair.
auto public_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { public_key_data });
// 11. Set the [[type]] internal slot of publicKey to "public"
public_key->set_type(Bindings::KeyType::Public);
// 12. Set the [[algorithm]] internal slot of publicKey to algorithm.
public_key->set_algorithm(algorithm);
// 13. Set the [[extractable]] internal slot of publicKey to true.
public_key->set_extractable(true);
// 14. Set the [[usages]] internal slot of publicKey to be the usage intersection of usages and [ "verify" ].
public_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Verify } }));
// 15. Let privateKey be a new CryptoKey representing the private key of the generated key pair.
auto private_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { private_key_data });
// 16. Set the [[type]] internal slot of privateKey to "private"
private_key->set_type(Bindings::KeyType::Private);
// 17. Set the [[algorithm]] internal slot of privateKey to algorithm.
private_key->set_algorithm(algorithm);
// 18. Set the [[extractable]] internal slot of privateKey to extractable.
private_key->set_extractable(extractable);
// 19. Set the [[usages]] internal slot of privateKey to be the usage intersection of usages and [ "sign" ].
private_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Sign } }));
// 20. Let result be a new CryptoKeyPair dictionary.
// 21. Set the publicKey attribute of result to be publicKey.
// 22. Set the privateKey attribute of result to be privateKey.
// 23. Return the result of converting result to an ECMAScript Object, as defined by [WebIDL].
return Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>> { CryptoKeyPair::create(m_realm, public_key, private_key) };
}
// https://w3c.github.io/webcrypto/#ecdsa-operations
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> ECDSA::sign(AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, ByteBuffer const& message)
{
auto& realm = *m_realm;
auto& vm = realm.vm();
auto const& normalized_algorithm = static_cast<EcdsaParams const&>(params);
(void)vm;
(void)message;
// 1. If the [[type]] internal slot of key is not "private", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Private)
return WebIDL::InvalidAccessError::create(realm, "Key is not a private key"_string);
// 2. Let hashAlgorithm be the hash member of normalizedAlgorithm.
[[maybe_unused]] auto const& hash_algorithm = normalized_algorithm.hash;
// NOTE: We dont have sign() on the SECPxxxr1 curves, so we can't implement this yet
// FIXME: 3. Let M be the result of performing the digest operation specified by hashAlgorithm using message.
// FIXME: 4. Let d be the ECDSA private key associated with key.
// FIXME: 5. Let params be the EC domain parameters associated with key.
// FIXME: 6. If the namedCurve attribute of the [[algorithm]] internal slot of key is "P-256", "P-384" or "P-521":
// FIXME: 1. Perform the ECDSA signing process, as specified in [RFC6090], Section 5.4, with M as the message, using params as the EC domain parameters, and with d as the private key.
// FIXME: 2. Let r and s be the pair of integers resulting from performing the ECDSA signing process.
// FIXME: 3. Let result be an empty byte sequence.
// FIXME: 4. Let n be the smallest integer such that n * 8 is greater than the logarithm to base 2 of the order of the base point of the elliptic curve identified by params.
// FIXME: 5. Convert r to an octet string of length n and append this sequence of bytes to result.
// FIXME: 6. Convert s to an octet string of length n and append this sequence of bytes to result.
// FIXME: Otherwise, the namedCurve attribute of the [[algorithm]] internal slot of key is a value specified in an applicable specification:
// FIXME: Perform the ECDSA signature steps specified in that specification, passing in M, params and d and resulting in result.
// NOTE: The spec jumps to 9 here for some reason
// FIXME: 9. Return the result of creating an ArrayBuffer containing result.
return WebIDL::NotSupportedError::create(realm, "ECDSA signing is not supported yet"_string);
}
// https://w3c.github.io/webcrypto/#ecdsa-operations
WebIDL::ExceptionOr<JS::Value> ECDSA::verify(AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, ByteBuffer const& signature, ByteBuffer const& message)
{
auto& realm = *m_realm;
auto const& normalized_algorithm = static_cast<EcdsaParams const&>(params);
// 1. If the [[type]] internal slot of key is not "public", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Public)
return WebIDL::InvalidAccessError::create(realm, "Key is not a public key"_string);
// 2. Let hashAlgorithm be the hash member of normalizedAlgorithm.
[[maybe_unused]] auto const& hash_algorithm = TRY(normalized_algorithm.hash.name(realm.vm()));
// 3. Let M be the result of performing the digest operation specified by hashAlgorithm using message.
::Crypto::Hash::HashKind hash_kind;
if (hash_algorithm.equals_ignoring_ascii_case("SHA-1"sv)) {
hash_kind = ::Crypto::Hash::HashKind::SHA1;
} else if (hash_algorithm.equals_ignoring_ascii_case("SHA-256"sv)) {
hash_kind = ::Crypto::Hash::HashKind::SHA256;
} else if (hash_algorithm.equals_ignoring_ascii_case("SHA-384"sv)) {
hash_kind = ::Crypto::Hash::HashKind::SHA384;
} else if (hash_algorithm.equals_ignoring_ascii_case("SHA-512"sv)) {
hash_kind = ::Crypto::Hash::HashKind::SHA512;
} else {
return WebIDL::NotSupportedError::create(m_realm, MUST(String::formatted("Invalid hash function '{}'", hash_algorithm)));
}
::Crypto::Hash::Manager hash { hash_kind };
hash.update(message);
auto digest = hash.digest();
auto result_buffer = ByteBuffer::copy(digest.immutable_data(), hash.digest_size());
if (result_buffer.is_error())
return WebIDL::OperationError::create(m_realm, "Failed to create result buffer"_string);
auto M = result_buffer.release_value();
// 4. Let Q be the ECDSA public key associated with key.
auto Q = key->handle().get<ByteBuffer>();
// FIXME: 5. Let params be the EC domain parameters associated with key.
// 6. If the namedCurve attribute of the [[algorithm]] internal slot of key is "P-256", "P-384" or "P-521":
auto const& internal_algorithm = static_cast<EcKeyAlgorithm const&>(*key->algorithm());
auto const& named_curve = internal_algorithm.named_curve();
auto result = false;
Variant<Empty, ::Crypto::Curves::SECP256r1, ::Crypto::Curves::SECP384r1> curve;
if (named_curve.is_one_of("P-256"sv, "P-384"sv, "P-521"sv)) {
if (named_curve.equals_ignoring_ascii_case("P-256"sv))
curve = ::Crypto::Curves::SECP256r1 {};
if (named_curve.equals_ignoring_ascii_case("P-384"sv))
curve = ::Crypto::Curves::SECP384r1 {};
// FIXME: Support P-521
if (named_curve.equals_ignoring_ascii_case("P-521"sv))
return WebIDL::NotSupportedError::create(m_realm, "'P-521' is not supported yet"_string);
// Perform the ECDSA verifying process, as specified in [RFC6090], Section 5.3,
// with M as the received message,
// signature as the received signature
// and using params as the EC domain parameters,
// and Q as the public key.
// NOTE: verify() takes the signature in X.509 format but JS uses IEEE P1363 format, so we need to convert it
// FIXME: Dont construct an ASN1 object here just to pass it to verify
auto half_size = signature.size() / 2;
auto r = ::Crypto::UnsignedBigInteger::import_data(signature.data(), half_size);
auto s = ::Crypto::UnsignedBigInteger::import_data(signature.data() + half_size, half_size);
::Crypto::ASN1::Encoder encoder;
(void)encoder.write_constructed(::Crypto::ASN1::Class::Universal, ::Crypto::ASN1::Kind::Sequence, [&] {
(void)encoder.write(r);
(void)encoder.write(s);
});
auto encoded_signature = encoder.finish();
auto maybe_result = curve.visit(
[](Empty const&) -> ErrorOr<bool> { return Error::from_string_literal("Failed to create valid crypto instance"); },
[&](auto instance) { return instance.verify(M, Q, encoded_signature); });
if (maybe_result.is_error()) {
auto error_message = MUST(String::from_utf8(maybe_result.error().string_literal()));
return WebIDL::OperationError::create(m_realm, error_message);
}
result = maybe_result.release_value();
} else {
// FIXME: Otherwise, the namedCurve attribute of the [[algorithm]] internal slot of key is a value specified in an applicable specification:
// FIXME: Perform the ECDSA verification steps specified in that specification passing in M, signature, params and Q and resulting in an indication of whether or not the purported signature is valid.
}
// 9. Let result be a boolean with the value true if the signature is valid and the value false otherwise.
// 10. Return result.
return JS::Value(result);
}
// https://wicg.github.io/webcrypto-secure-curves/#ed25519-operations
WebIDL::ExceptionOr<Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>>> ED25519::generate_key([[maybe_unused]] AlgorithmParams const& params, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
{
// 1. If usages contains a value which is not one of "sign" or "verify", then throw a SyntaxError.
for (auto const& usage : key_usages) {
if (usage != Bindings::KeyUsage::Sign && usage != Bindings::KeyUsage::Verify) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
// 2. Generate an Ed25519 key pair, as defined in [RFC8032], section 5.1.5.
::Crypto::Curves::Ed25519 curve;
auto maybe_private_key = curve.generate_private_key();
if (maybe_private_key.is_error())
return WebIDL::OperationError::create(m_realm, "Failed to generate private key"_string);
auto private_key_data = maybe_private_key.release_value();
auto maybe_public_key = curve.generate_public_key(private_key_data);
if (maybe_public_key.is_error())
return WebIDL::OperationError::create(m_realm, "Failed to generate public key"_string);
auto public_key_data = maybe_public_key.release_value();
// 3. Let algorithm be a new KeyAlgorithm object.
auto algorithm = KeyAlgorithm::create(m_realm);
// 4. Set the name attribute of algorithm to "Ed25519".
algorithm->set_name("Ed25519"_string);
// 5. Let publicKey be a new CryptoKey associated with the relevant global object of this [HTML],
// and representing the public key of the generated key pair.
auto public_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { public_key_data });
// 6. Set the [[type]] internal slot of publicKey to "public"
public_key->set_type(Bindings::KeyType::Public);
// 7. Set the [[algorithm]] internal slot of publicKey to algorithm.
public_key->set_algorithm(algorithm);
// 8. Set the [[extractable]] internal slot of publicKey to true.
public_key->set_extractable(true);
// 9. Set the [[usages]] internal slot of publicKey to be the usage intersection of usages and [ "verify" ].
public_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Verify } }));
// 10. Let privateKey be a new CryptoKey associated with the relevant global object of this [HTML],
// and representing the private key of the generated key pair.
auto private_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { private_key_data });
// 11. Set the [[type]] internal slot of privateKey to "private"
private_key->set_type(Bindings::KeyType::Private);
// 12. Set the [[algorithm]] internal slot of privateKey to algorithm.
private_key->set_algorithm(algorithm);
// 13. Set the [[extractable]] internal slot of privateKey to extractable.
private_key->set_extractable(extractable);
// 14. Set the [[usages]] internal slot of privateKey to be the usage intersection of usages and [ "sign" ].
private_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Sign } }));
// 15. Let result be a new CryptoKeyPair dictionary.
// 16. Set the publicKey attribute of result to be publicKey.
// 17. Set the privateKey attribute of result to be privateKey.
// 18. Return the result of converting result to an ECMAScript Object, as defined by [WebIDL].
return Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>> { CryptoKeyPair::create(m_realm, public_key, private_key) };
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> ED25519::sign([[maybe_unused]] AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, ByteBuffer const& message)
{
auto& realm = *m_realm;
auto& vm = realm.vm();
// 1. If the [[type]] internal slot of key is not "private", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Private)
return WebIDL::InvalidAccessError::create(realm, "Key is not a private key"_string);
// 2. Perform the Ed25519 signing process, as specified in [RFC8032], Section 5.1.6,
// with message as M, using the Ed25519 private key associated with key.
auto private_key = key->handle().get<ByteBuffer>();
::Crypto::Curves::Ed25519 curve;
auto maybe_public_key = curve.generate_public_key(private_key);
if (maybe_public_key.is_error())
return WebIDL::OperationError::create(realm, "Failed to generate public key"_string);
auto public_key = maybe_public_key.release_value();
auto maybe_signature = curve.sign(public_key, private_key, message);
if (maybe_signature.is_error())
return WebIDL::OperationError::create(realm, "Failed to sign message"_string);
auto signature = maybe_signature.release_value();
// 3. Return a new ArrayBuffer associated with the relevant global object of this [HTML],
// and containing the bytes of the signature resulting from performing the Ed25519 signing process.
auto result = TRY_OR_THROW_OOM(vm, ByteBuffer::copy(signature));
return JS::ArrayBuffer::create(realm, move(result));
}
WebIDL::ExceptionOr<JS::Value> ED25519::verify([[maybe_unused]] AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, ByteBuffer const& signature, ByteBuffer const& message)
{
auto& realm = *m_realm;
// 1. If the [[type]] internal slot of key is not "public", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Public)
return WebIDL::InvalidAccessError::create(realm, "Key is not a public key"_string);
// NOTE: this is checked by ED25519::verify()
// 2. If the key data of key represents an invalid point or a small-order element on the Elliptic Curve of Ed25519, return false.
// 3. If the point R, encoded in the first half of signature, represents an invalid point or a small-order element on the Elliptic Curve of Ed25519, return false.
// 4. Perform the Ed25519 verification steps, as specified in [RFC8032], Section 5.1.7,
// using the cofactorless (unbatched) equation, [S]B = R + [k]A', on the signature,
// with message as M, using the Ed25519 public key associated with key.
auto public_key = key->handle().get<ByteBuffer>();
// 9. Let result be a boolean with the value true if the signature is valid and the value false otherwise.
::Crypto::Curves::Ed25519 curve;
auto result = curve.verify(public_key, signature, message);
// 10. Return result.
return JS::Value(result);
}
// https://w3c.github.io/webcrypto/#hkdf-operations
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> HKDF::derive_bits(AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, Optional<u32> length_optional)
{
auto& realm = *m_realm;
auto const& normalized_algorithm = static_cast<HKDFParams const&>(params);
// 1. If length is null or zero, or is not a multiple of 8, then throw an OperationError.
auto length = length_optional.value_or(0);
if (length == 0 || length % 8 != 0)
return WebIDL::OperationError::create(realm, "Length must be greater than 0 and divisible by 8"_string);
// 2. Let keyDerivationKey be the secret represented by [[handle]] internal slot of key as the message.
auto key_derivation_key = key->handle().get<ByteBuffer>();
// 3. Let result be the result of performing the HKDF extract and then the HKDF expand step described in Section 2 of [RFC5869] using:
// * the hash member of normalizedAlgorithm as Hash,
// * keyDerivationKey as the input keying material, IKM,
// * the contents of the salt member of normalizedAlgorithm as salt,
// * the contents of the info member of normalizedAlgorithm as info,
// * length divided by 8 as the value of L,
// Note: Although HKDF technically supports absent salt (treating it as hashLen many NUL bytes),
// all major browsers instead raise a TypeError, for example:
// "Failed to execute 'deriveBits' on 'SubtleCrypto': HkdfParams: salt: Not a BufferSource"
// Because we are forced by neither peer pressure nor the spec, we don't support it either.
auto const& hash_algorithm = TRY(normalized_algorithm.hash.name(realm.vm()));
ErrorOr<ByteBuffer> result = Error::from_string_literal("noop error");
if (hash_algorithm.equals_ignoring_ascii_case("SHA-1"sv)) {
result = ::Crypto::Hash::HKDF<::Crypto::Hash::SHA1>::derive_key(Optional<ReadonlyBytes>(normalized_algorithm.salt), key_derivation_key, normalized_algorithm.info, length / 8);
} else if (hash_algorithm.equals_ignoring_ascii_case("SHA-256"sv)) {
result = ::Crypto::Hash::HKDF<::Crypto::Hash::SHA256>::derive_key(Optional<ReadonlyBytes>(normalized_algorithm.salt), key_derivation_key, normalized_algorithm.info, length / 8);
} else if (hash_algorithm.equals_ignoring_ascii_case("SHA-384"sv)) {
result = ::Crypto::Hash::HKDF<::Crypto::Hash::SHA384>::derive_key(Optional<ReadonlyBytes>(normalized_algorithm.salt), key_derivation_key, normalized_algorithm.info, length / 8);
} else if (hash_algorithm.equals_ignoring_ascii_case("SHA-512"sv)) {
result = ::Crypto::Hash::HKDF<::Crypto::Hash::SHA512>::derive_key(Optional<ReadonlyBytes>(normalized_algorithm.salt), key_derivation_key, normalized_algorithm.info, length / 8);
} else {
return WebIDL::NotSupportedError::create(m_realm, MUST(String::formatted("Invalid hash function '{}'", hash_algorithm)));
}
// 4. If the key derivation operation fails, then throw an OperationError.
if (result.is_error())
return WebIDL::OperationError::create(realm, "Failed to derive key"_string);
// 5. Return result
return JS::ArrayBuffer::create(realm, result.release_value());
}
WebIDL::ExceptionOr<JS::Value> HKDF::get_key_length(AlgorithmParams const&)
{
// 1. Return null.
return JS::js_null();
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> PBKDF2::derive_bits(AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, Optional<u32> length_optional)
{
auto& realm = *m_realm;
auto const& normalized_algorithm = static_cast<PBKDF2Params const&>(params);
// 1. If length is null or zero, or is not a multiple of 8, then throw an OperationError.
auto length = length_optional.value_or(0);
if (length == 0 || length % 8 != 0)
return WebIDL::OperationError::create(realm, "Length must be greater than 0 and divisible by 8"_string);
// 2. If the iterations member of normalizedAlgorithm is zero, then throw an OperationError.
if (normalized_algorithm.iterations == 0)
return WebIDL::OperationError::create(realm, "Iterations must be greater than 0"_string);
// 3. Let prf be the MAC Generation function described in Section 4 of [FIPS-198-1] using the hash function described by the hash member of normalizedAlgorithm.
auto const& hash_algorithm = TRY(normalized_algorithm.hash.name(realm.vm()));
// 4. Let result be the result of performing the PBKDF2 operation defined in Section 5.2 of [RFC8018]
// using prf as the pseudo-random function, PRF,
// the password represented by [[handle]] internal slot of key as the password, P,
// the contents of the salt attribute of normalizedAlgorithm as the salt, S,
// the value of the iterations attribute of normalizedAlgorithm as the iteration count, c,
// and length divided by 8 as the intended key length, dkLen.
ErrorOr<ByteBuffer> result = Error::from_string_literal("noop error");
auto password = key->handle().get<ByteBuffer>();
auto salt = normalized_algorithm.salt;
auto iterations = normalized_algorithm.iterations;
auto derived_key_length_bytes = length / 8;
if (hash_algorithm.equals_ignoring_ascii_case("SHA-1"sv)) {
result = ::Crypto::Hash::PBKDF2::derive_key<::Crypto::Authentication::HMAC<::Crypto::Hash::SHA1>>(password, salt, iterations, derived_key_length_bytes);
} else if (hash_algorithm.equals_ignoring_ascii_case("SHA-256"sv)) {
result = ::Crypto::Hash::PBKDF2::derive_key<::Crypto::Authentication::HMAC<::Crypto::Hash::SHA256>>(password, salt, iterations, derived_key_length_bytes);
} else if (hash_algorithm.equals_ignoring_ascii_case("SHA-384"sv)) {
result = ::Crypto::Hash::PBKDF2::derive_key<::Crypto::Authentication::HMAC<::Crypto::Hash::SHA384>>(password, salt, iterations, derived_key_length_bytes);
} else if (hash_algorithm.equals_ignoring_ascii_case("SHA-512"sv)) {
result = ::Crypto::Hash::PBKDF2::derive_key<::Crypto::Authentication::HMAC<::Crypto::Hash::SHA512>>(password, salt, iterations, derived_key_length_bytes);
} else {
return WebIDL::NotSupportedError::create(m_realm, MUST(String::formatted("Invalid hash function '{}'", hash_algorithm)));
}
// 5. If the key derivation operation fails, then throw an OperationError.
if (result.is_error())
return WebIDL::OperationError::create(realm, "Failed to derive key"_string);
// 6. Return result
return JS::ArrayBuffer::create(realm, result.release_value());
}
WebIDL::ExceptionOr<JS::Value> PBKDF2::get_key_length(AlgorithmParams const&)
{
// 1. Return null.
return JS::js_null();
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<CryptoKey>> PBKDF2::import_key(AlgorithmParams const&, Bindings::KeyFormat format, CryptoKey::InternalKeyData key_data, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
{
// 1. If format is not "raw", throw a NotSupportedError
if (format != Bindings::KeyFormat::Raw) {
return WebIDL::NotSupportedError::create(m_realm, "Only raw format is supported"_string);
}
// 2. If usages contains a value that is not "deriveKey" or "deriveBits", then throw a SyntaxError.
for (auto& usage : key_usages) {
if (usage != Bindings::KeyUsage::Derivekey && usage != Bindings::KeyUsage::Derivebits) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
// 3. If extractable is not false, then throw a SyntaxError.
if (extractable)
return WebIDL::SyntaxError::create(m_realm, "extractable must be false"_string);
// 4. Let key be a new CryptoKey representing keyData.
auto key = CryptoKey::create(m_realm, move(key_data));
// 5. Set the [[type]] internal slot of key to "secret".
key->set_type(Bindings::KeyType::Secret);
// 6. Let algorithm be a new KeyAlgorithm object.
auto algorithm = KeyAlgorithm::create(m_realm);
// 7. Set the name attribute of algorithm to "PBKDF2".
algorithm->set_name("PBKDF2"_string);
// 8. Set the [[algorithm]] internal slot of key to algorithm.
key->set_algorithm(algorithm);
// 9. Return key.
return key;
}
// https://wicg.github.io/webcrypto-secure-curves/#x25519-operations
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> X25519::derive_bits(AlgorithmParams const& params, JS::NonnullGCPtr<CryptoKey> key, Optional<u32> length_optional)
{
auto& realm = *m_realm;
auto const& normalized_algorithm = static_cast<EcdhKeyDerivePrams const&>(params);
// 1. If the [[type]] internal slot of key is not "private", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Private)
return WebIDL::InvalidAccessError::create(realm, "Key is not a private key"_string);
// 2. Let publicKey be the public member of normalizedAlgorithm.
auto& public_key = normalized_algorithm.public_key;
// 3. If the [[type]] internal slot of publicKey is not "public", then throw an InvalidAccessError.
if (public_key->type() != Bindings::KeyType::Public)
return WebIDL::InvalidAccessError::create(realm, "Public key is not a public key"_string);
// 4. If the name attribute of the [[algorithm]] internal slot of publicKey is not equal to
// the name property of the [[algorithm]] internal slot of key, then throw an InvalidAccessError.
auto& internal_algorithm = static_cast<KeyAlgorithm const&>(*key->algorithm());
auto& public_internal_algorithm = static_cast<KeyAlgorithm const&>(*public_key->algorithm());
if (internal_algorithm.name() != public_internal_algorithm.name())
return WebIDL::InvalidAccessError::create(realm, "Algorithm mismatch"_string);
// 5. Let secret be the result of performing the X25519 function specified in [RFC7748] Section 5 with
// key as the X25519 private key k and
// the X25519 public key represented by the [[handle]] internal slot of publicKey as the X25519 public key u.
auto private_key = key->handle().get<ByteBuffer>();
auto public_key_data = public_key->handle().get<ByteBuffer>();
::Crypto::Curves::X25519 curve;
auto maybe_secret = curve.compute_coordinate(private_key, public_key_data);
if (maybe_secret.is_error())
return WebIDL::OperationError::create(realm, "Failed to compute secret"_string);
auto secret = maybe_secret.release_value();
// 6. If secret is the all-zero value, then throw a OperationError.
// This check must be performed in constant-time, as per [RFC7748] Section 6.1.
// NOTE: The check may be performed by ORing all the bytes together and checking whether the result is zero,
// as this eliminates standard side-channels in software implementations.
auto or_bytes = 0;
for (auto byte : secret.bytes()) {
or_bytes |= byte;
}
if (or_bytes == 0)
return WebIDL::OperationError::create(realm, "Secret is the all-zero value"_string);
// 7. If length is null: Return secret
if (!length_optional.has_value()) {
auto result = TRY_OR_THROW_OOM(realm.vm(), ByteBuffer::copy(secret));
return JS::ArrayBuffer::create(realm, move(result));
}
// Otherwise: If the length of secret in bits is less than length: throw an OperationError.
auto length = length_optional.value();
if (secret.size() * 8 < length)
return WebIDL::OperationError::create(realm, "Secret is too short"_string);
// Otherwise: Return an octet string containing the first length bits of secret.
auto slice = TRY_OR_THROW_OOM(realm.vm(), secret.slice(0, length / 8));
return JS::ArrayBuffer::create(realm, move(slice));
}
WebIDL::ExceptionOr<Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>>> X25519::generate_key([[maybe_unused]] AlgorithmParams const& params, bool extractable, Vector<Bindings::KeyUsage> const& key_usages)
{
// 1. If usages contains an entry which is not "deriveKey" or "deriveBits" then throw a SyntaxError.
for (auto const& usage : key_usages) {
if (usage != Bindings::KeyUsage::Derivekey && usage != Bindings::KeyUsage::Derivebits) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
// 2. Generate an X25519 key pair, with the private key being 32 random bytes,
// and the public key being X25519(a, 9), as defined in [RFC7748], section 6.1.
::Crypto::Curves::X25519 curve;
auto maybe_private_key = curve.generate_private_key();
if (maybe_private_key.is_error())
return WebIDL::OperationError::create(m_realm, "Failed to generate private key"_string);
auto private_key_data = maybe_private_key.release_value();
auto maybe_public_key = curve.generate_public_key(private_key_data);
if (maybe_public_key.is_error())
return WebIDL::OperationError::create(m_realm, "Failed to generate public key"_string);
auto public_key_data = maybe_public_key.release_value();
// 3. Let algorithm be a new KeyAlgorithm object.
auto algorithm = KeyAlgorithm::create(m_realm);
// 4. Set the name attribute of algorithm to "X25519".
algorithm->set_name("X25519"_string);
// 5. Let publicKey be a new CryptoKey associated with the relevant global object of this [HTML],
// and representing the public key of the generated key pair.
auto public_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { public_key_data });
// 6. Set the [[type]] internal slot of publicKey to "public"
public_key->set_type(Bindings::KeyType::Public);
// 7. Set the [[algorithm]] internal slot of publicKey to algorithm.
public_key->set_algorithm(algorithm);
// 8. Set the [[extractable]] internal slot of publicKey to true.
public_key->set_extractable(true);
// 9. Set the [[usages]] internal slot of publicKey to be the empty list.
public_key->set_usages({});
// 10. Let privateKey be a new CryptoKey associated with the relevant global object of this [HTML],
// and representing the private key of the generated key pair.
auto private_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { private_key_data });
// 11. Set the [[type]] internal slot of privateKey to "private"
private_key->set_type(Bindings::KeyType::Private);
// 12. Set the [[algorithm]] internal slot of privateKey to algorithm.
private_key->set_algorithm(algorithm);
// 13. Set the [[extractable]] internal slot of privateKey to extractable.
private_key->set_extractable(extractable);
// 14. Set the [[usages]] internal slot of privateKey to be the usage intersection of usages and [ "deriveKey", "deriveBits" ].
private_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Derivekey, Bindings::KeyUsage::Derivebits } }));
// 15. Let result be a new CryptoKeyPair dictionary.
// 16. Set the publicKey attribute of result to be publicKey.
// 17. Set the privateKey attribute of result to be privateKey.
// 18. Return the result of converting result to an ECMAScript Object, as defined by [WebIDL].
return Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>> { CryptoKeyPair::create(m_realm, public_key, private_key) };
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<CryptoKey>> X25519::import_key([[maybe_unused]] Web::Crypto::AlgorithmParams const& params, Bindings::KeyFormat key_format, CryptoKey::InternalKeyData key_data, bool extractable, Vector<Bindings::KeyUsage> const& usages)
{
// NOTE: This is a parameter to the function
// 1. Let keyData be the key data to be imported.
auto& vm = m_realm->vm();
JS::GCPtr<CryptoKey> key = nullptr;
// 2. If format is "spki":
if (key_format == Bindings::KeyFormat::Spki) {
// 1. If usages is not empty then throw a SyntaxError.
if (!usages.is_empty())
return WebIDL::SyntaxError::create(m_realm, "Usages must be empty"_string);
// 2. Let spki be the result of running the parse a subjectPublicKeyInfo algorithm over keyData.
// 3. If an error occurred while parsing, then throw a DataError.
auto spki = TRY(parse_a_subject_public_key_info(m_realm, key_data.get<ByteBuffer>()));
// 4. If the algorithm object identifier field of the algorithm AlgorithmIdentifier field of spki
// is not equal to the id-X25519 object identifier defined in [RFC8410], then throw a DataError.
if (spki.algorithm.identifier != TLS::x25519_oid)
return WebIDL::DataError::create(m_realm, "Invalid algorithm"_string);
// 5. If the parameters field of the algorithm AlgorithmIdentifier field of spki is present, then throw a DataError.
if (static_cast<u16>(spki.algorithm.ec_parameters) != 0)
return WebIDL::DataError::create(m_realm, "Invalid algorithm parameters"_string);
// 6. Let publicKey be the X25519 public key identified by the subjectPublicKey field of spki.
auto public_key = spki.raw_key;
// 7. Let key be a new CryptoKey associated with the relevant global object of this [HTML], and that represents publicKey.
key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { public_key });
// 8. Set the [[type]] internal slot of key to "public"
key->set_type(Bindings::KeyType::Public);
// 9. Let algorithm be a new KeyAlgorithm.
auto algorithm = KeyAlgorithm::create(m_realm);
// 10. Set the name attribute of algorithm to "X25519".
algorithm->set_name("X25519"_string);
// 11. Set the [[algorithm]] internal slot of key to algorithm.
key->set_algorithm(algorithm);
}
// 2. If format is "pkcs8":
else if (key_format == Bindings::KeyFormat::Pkcs8) {
// 1. If usages contains an entry which is not "deriveKey" or "deriveBits" then throw a SyntaxError.
for (auto const& usage : usages) {
if (usage != Bindings::KeyUsage::Derivekey && usage != Bindings::KeyUsage::Derivebits) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
// 2. Let privateKeyInfo be the result of running the parse a privateKeyInfo algorithm over keyData.
// 3. If an error occurred while parsing, then throw a DataError.
auto private_key_info = TRY(parse_a_private_key_info(m_realm, key_data.get<ByteBuffer>()));
// 4. If the algorithm object identifier field of the privateKeyAlgorithm PrivateKeyAlgorithm field of privateKeyInfo
// is not equal to the id-X25519 object identifier defined in [RFC8410], then throw a DataError.
if (private_key_info.algorithm.identifier != TLS::x25519_oid)
return WebIDL::DataError::create(m_realm, "Invalid algorithm"_string);
// 5. If the parameters field of the privateKeyAlgorithm PrivateKeyAlgorithmIdentifier field of privateKeyInfo is present, then throw a DataError.
if (static_cast<u16>(private_key_info.algorithm.ec_parameters) != 0)
return WebIDL::DataError::create(m_realm, "Invalid algorithm parameters"_string);
// 6. Let curvePrivateKey be the result of performing the parse an ASN.1 structure algorithm,
// with data as the privateKey field of privateKeyInfo,
// structure as the ASN.1 CurvePrivateKey structure specified in Section 7 of [RFC8410], and
// exactData set to true.
// 7. If an error occurred while parsing, then throw a DataError.
auto curve_private_key = TRY(parse_an_ASN1_structure<StringView>(m_realm, private_key_info.raw_key, true));
auto curve_private_key_bytes = TRY_OR_THROW_OOM(vm, ByteBuffer::copy(curve_private_key.bytes()));
// 8. Let key be a new CryptoKey associated with the relevant global object of this [HTML],
// and that represents the X25519 private key identified by curvePrivateKey.
key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { curve_private_key_bytes });
// 9. Set the [[type]] internal slot of key to "private"
key->set_type(Bindings::KeyType::Private);
// 10. Let algorithm be a new KeyAlgorithm.
auto algorithm = KeyAlgorithm::create(m_realm);
// 11. Set the name attribute of algorithm to "X25519".
algorithm->set_name("X25519"_string);
// 12. Set the [[algorithm]] internal slot of key to algorithm.
key->set_algorithm(algorithm);
}
// 2. If format is "jwk":
else if (key_format == Bindings::KeyFormat::Jwk) {
// 1. If keyData is a JsonWebKey dictionary: Let jwk equal keyData.
// Otherwise: Throw a DataError.
if (!key_data.has<Bindings::JsonWebKey>())
return WebIDL::DataError::create(m_realm, "keyData is not a JsonWebKey dictionary"_string);
auto& jwk = key_data.get<Bindings::JsonWebKey>();
// 2. If the d field is present and if usages contains an entry which is not "deriveKey" or "deriveBits" then throw a SyntaxError.
if (jwk.d.has_value() && !usages.is_empty()) {
for (auto const& usage : usages) {
if (usage != Bindings::KeyUsage::Derivekey && usage != Bindings::KeyUsage::Derivebits) {
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
}
}
// 3. If the d field is not present and if usages is not empty then throw a SyntaxError.
if (!jwk.d.has_value() && !usages.is_empty())
return WebIDL::SyntaxError::create(m_realm, "Usages must be empty if d is missing"_string);
// 4. If the kty field of jwk is not "OKP", then throw a DataError.
if (jwk.kty != "OKP"sv)
return WebIDL::DataError::create(m_realm, "Invalid key type"_string);
// 5. If the crv field of jwk is not "X25519", then throw a DataError.
if (jwk.crv != "X25519"sv)
return WebIDL::DataError::create(m_realm, "Invalid curve"_string);
// 6. If usages is non-empty and the use field of jwk is present and is not equal to "enc" then throw a DataError.
if (!usages.is_empty() && jwk.use.has_value() && jwk.use.value() != "enc"sv)
return WebIDL::DataError::create(m_realm, "Invalid use"_string);
// 7. If the key_ops field of jwk is present, and is invalid according to the requirements of JSON Web Key [JWK],
// or it does not contain all of the specified usages values, then throw a DataError.
TRY(validate_jwk_key_ops(m_realm, jwk, usages));
// 8. If the ext field of jwk is present and has the value false and extractable is true, then throw a DataError.
if (jwk.ext.has_value() && !jwk.ext.value() && extractable)
return WebIDL::DataError::create(m_realm, "Invalid extractable"_string);
// 9. If the d field is present:
if (jwk.d.has_value()) {
// 1. If jwk does not meet the requirements of the JWK private key format described in Section 2 of [RFC8037], then throw a DataError.
// o The parameter "kty" MUST be "OKP".
if (jwk.kty != "OKP"sv)
return WebIDL::DataError::create(m_realm, "Invalid key type"_string);
// // https://www.iana.org/assignments/jose/jose.xhtml#web-key-elliptic-curve
// o The parameter "crv" MUST be present and contain the subtype of the key (from the "JSON Web Elliptic Curve" registry).
if (jwk.crv != "X25519"sv)
return WebIDL::DataError::create(m_realm, "Invalid curve"_string);
// o The parameter "x" MUST be present and contain the public key encoded using the base64url [RFC4648] encoding.
if (!jwk.x.has_value())
return WebIDL::DataError::create(m_realm, "Missing x field"_string);
// o The parameter "d" MUST be present for private keys and contain the private key encoded using the base64url encoding.
// This parameter MUST NOT be present for public keys.
if (!jwk.d.has_value())
return WebIDL::DataError::create(m_realm, "Missing d field"_string);
// 2. Let key be a new CryptoKey object that represents the X25519 private key identified by interpreting jwk according to Section 2 of [RFC8037].
auto private_key_base_64 = jwk.d.value();
auto private_key = TRY_OR_THROW_OOM(vm, decode_base64(private_key_base_64));
key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { private_key });
// 3. Set the [[type]] internal slot of Key to "private".
key->set_type(Bindings::KeyType::Private);
}
// 9. Otherwise:
else {
// 1. If jwk does not meet the requirements of the JWK public key format described in Section 2 of [RFC8037], then throw a DataError.
// o The parameter "kty" MUST be "OKP".
if (jwk.kty != "OKP"sv)
return WebIDL::DataError::create(m_realm, "Invalid key type"_string);
// https://www.iana.org/assignments/jose/jose.xhtml#web-key-elliptic-curve
// o The parameter "crv" MUST be present and contain the subtype of the key (from the "JSON Web Elliptic Curve" registry).
if (jwk.crv != "X25519"sv)
return WebIDL::DataError::create(m_realm, "Invalid curve"_string);
// o The parameter "x" MUST be present and contain the public key encoded using the base64url [RFC4648] encoding.
if (!jwk.x.has_value())
return WebIDL::DataError::create(m_realm, "Missing x field"_string);
// o The parameter "d" MUST be present for private keys and contain the private key encoded using the base64url encoding.
// This parameter MUST NOT be present for public keys.
if (jwk.d.has_value())
return WebIDL::DataError::create(m_realm, "Present d field"_string);
// 2. Let key be a new CryptoKey object that represents the X25519 public key identified by interpreting jwk according to Section 2 of [RFC8037].
auto public_key_base_64 = jwk.x.value();
auto public_key = TRY_OR_THROW_OOM(vm, decode_base64(public_key_base_64));
key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { public_key });
// 3. Set the [[type]] internal slot of Key to "public".
key->set_type(Bindings::KeyType::Public);
}
// 10. Let algorithm be a new instance of a KeyAlgorithm object.
auto algorithm = KeyAlgorithm::create(m_realm);
// 11. Set the name attribute of algorithm to "X25519".
algorithm->set_name("X25519"_string);
// 12. Set the [[algorithm]] internal slot of key to algorithm.
key->set_algorithm(algorithm);
}
// 2. If format is "raw":
else if (key_format == Bindings::KeyFormat::Raw) {
// 1. If usages is not empty then throw a SyntaxError.
if (!usages.is_empty())
return WebIDL::SyntaxError::create(m_realm, "Usages must be empty"_string);
// 2. Let algorithm be a new KeyAlgorithm object.
auto algorithm = KeyAlgorithm::create(m_realm);
// 3. Set the name attribute of algorithm to "X25519".
algorithm->set_name("X25519"_string);
// 4. Let key be a new CryptoKey associated with the relevant global object of this [HTML], and representing the key data provided in keyData.
key = CryptoKey::create(m_realm, key_data);
// 5. Set the [[type]] internal slot of key to "public"
key->set_type(Bindings::KeyType::Public);
// 6. Set the [[algorithm]] internal slot of key to algorithm.
key->set_algorithm(algorithm);
}
// 2. Otherwise: throw a NotSupportedError.
else {
return WebIDL::NotSupportedError::create(m_realm, "Invalid key format"_string);
}
// 3. Return key
return JS::NonnullGCPtr { *key };
}
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::Object>> X25519::export_key(Bindings::KeyFormat format, JS::NonnullGCPtr<CryptoKey> key)
{
auto& vm = m_realm->vm();
// NOTE: This is a parameter to the function
// 1. Let key be the CryptoKey to be exported.
// 2. If the underlying cryptographic key material represented by the [[handle]] internal slot of key cannot be accessed, then throw an OperationError.
// Note: In our impl this is always accessible
auto const& handle = key->handle();
JS::GCPtr<JS::Object> result = nullptr;
// 3. If format is "spki":
if (format == Bindings::KeyFormat::Spki) {
// 1. If the [[type]] internal slot of key is not "public", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Public)
return WebIDL::InvalidAccessError::create(m_realm, "Key is not a public key"_string);
// 2. Let data be an instance of the subjectPublicKeyInfo ASN.1 structure defined in [RFC5280] with the following properties:
// Set the algorithm field to an AlgorithmIdentifier ASN.1 type with the following properties:
// Set the algorithm object identifier to the id-X25519 OID defined in [RFC8410].
// Set the subjectPublicKey field to keyData.
auto public_key = handle.get<ByteBuffer>();
auto x25519_oid = Array<int, 7> { 1, 3, 101, 110 };
auto data = TRY_OR_THROW_OOM(vm, ::Crypto::PK::wrap_in_subject_public_key_info(public_key, x25519_oid));
// 3. Let result be a new ArrayBuffer associated with the relevant global object of this [HTML], and containing data.
result = JS::ArrayBuffer::create(m_realm, data);
}
// 3. If format is "pkcs8":
else if (format == Bindings::KeyFormat::Pkcs8) {
// 1. If the [[type]] internal slot of key is not "private", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Private)
return WebIDL::InvalidAccessError::create(m_realm, "Key is not a private key"_string);
// 2. Let data be an instance of the privateKeyInfo ASN.1 structure defined in [RFC5208] with the following properties:
// Set the version field to 0.
// Set the privateKeyAlgorithm field to a PrivateKeyAlgorithmIdentifier ASN.1 type with the following properties:
// Set the algorithm object identifier to the id-X25519 OID defined in [RFC8410].
// Set the privateKey field to the result of DER-encoding a CurvePrivateKey ASN.1 type, as defined in Section 7 of [RFC8410],
// that represents the X25519 private key represented by the [[handle]] internal slot of key
auto private_key = handle.get<ByteBuffer>();
auto x25519_oid = Array<int, 7> { 1, 3, 101, 110 };
auto data = TRY_OR_THROW_OOM(vm, ::Crypto::PK::wrap_in_private_key_info(private_key, x25519_oid));
// 3. Let result be a new ArrayBuffer associated with the relevant global object of this [HTML], and containing data.
result = JS::ArrayBuffer::create(m_realm, data);
}
// 3. If format is "jwt":
else if (format == Bindings::KeyFormat::Jwk) {
// 1. Let jwk be a new JsonWebKey dictionar1y.
Bindings::JsonWebKey jwk = {};
// 2. Set the kty attribute of jwk to "OKP".
jwk.kty = "OKP"_string;
// 3. Set the crv attribute of jwk to "X25519".
jwk.crv = "X25519"_string;
// 4. Set the x attribute of jwk according to the definition in Section 2 of [RFC8037].
if (key->type() == Bindings::KeyType::Public) {
auto public_key = handle.get<ByteBuffer>();
jwk.x = TRY_OR_THROW_OOM(vm, encode_base64url(public_key));
} else {
// The "x" parameter of the "epk" field is set as follows:
// Apply the appropriate ECDH function to the ephemeral private key (as scalar input)
// and the standard base point (as u-coordinate input).
// The base64url encoding of the output is the value for the "x" parameter of the "epk" field.
::Crypto::Curves::X25519 curve;
auto public_key = TRY_OR_THROW_OOM(vm, curve.generate_public_key(handle.get<ByteBuffer>()));
jwk.x = TRY_OR_THROW_OOM(vm, encode_base64url(public_key));
}
// 5. If the [[type]] internal slot of key is "private"
if (key->type() == Bindings::KeyType::Private) {
// 1. Set the d attribute of jwk according to the definition in Section 2 of [RFC8037].
auto private_key = handle.get<ByteBuffer>();
jwk.d = TRY_OR_THROW_OOM(vm, encode_base64url(private_key));
}
// 6. Set the key_ops attribute of jwk to the usages attribute of key.
jwk.key_ops = Vector<String> {};
jwk.key_ops->ensure_capacity(key->internal_usages().size());
for (auto const& usage : key->internal_usages())
jwk.key_ops->append(Bindings::idl_enum_to_string(usage));
// 7. Set the ext attribute of jwk to the [[extractable]] internal slot of key.
jwk.ext = key->extractable();
// 8. Let result be the result of converting jwk to an ECMAScript Object, as defined by [WebIDL].
result = TRY(jwk.to_object(m_realm));
}
// 3. If format is "raw":
else if (format == Bindings::KeyFormat::Raw) {
// 1. If the [[type]] internal slot of key is not "public", then throw an InvalidAccessError.
if (key->type() != Bindings::KeyType::Public)
return WebIDL::InvalidAccessError::create(m_realm, "Key is not a public key"_string);
// 2. Let data be an octet string representing the X25519 public key represented by the [[handle]] internal slot of key.
auto public_key = handle.get<ByteBuffer>();
// 3. Let result be a new ArrayBuffer associated with the relevant global object of this [HTML], and containing data.
result = JS::ArrayBuffer::create(m_realm, public_key);
}
// 3. Otherwise:
else {
return WebIDL::NotSupportedError::create(m_realm, "Invalid key format"_string);
}
// 4. Return result.
return JS::NonnullGCPtr { *result };
}
static WebIDL::ExceptionOr<ByteBuffer> hmac_calculate_message_digest(JS::Realm& realm, JS::GCPtr<KeyAlgorithm> hash, ReadonlyBytes key, ReadonlyBytes message)
{
auto calculate_digest = [&]<typename T>() -> ByteBuffer {
::Crypto::Authentication::HMAC<T> hmac(key);
auto digest = hmac.process(message);
return MUST(ByteBuffer::copy(digest.bytes()));
};
auto hash_name = hash->name();
if (hash_name.equals_ignoring_ascii_case("SHA-1"sv))
return calculate_digest.operator()<::Crypto::Hash::SHA1>();
if (hash_name.equals_ignoring_ascii_case("SHA-256"sv))
return calculate_digest.operator()<::Crypto::Hash::SHA256>();
if (hash_name.equals_ignoring_ascii_case("SHA-384"sv))
return calculate_digest.operator()<::Crypto::Hash::SHA384>();
if (hash_name.equals_ignoring_ascii_case("SHA-512"sv))
return calculate_digest.operator()<::Crypto::Hash::SHA512>();
return WebIDL::NotSupportedError::create(realm, "Invalid algorithm"_string);
}
static WebIDL::ExceptionOr<WebIDL::UnsignedLong> hmac_hash_block_size(JS::Realm& realm, HashAlgorithmIdentifier hash)
{
auto hash_name = TRY(hash.name(realm.vm()));
if (hash_name.equals_ignoring_ascii_case("SHA-1"sv))
return ::Crypto::Hash::SHA1::digest_size();
if (hash_name.equals_ignoring_ascii_case("SHA-256"sv))
return ::Crypto::Hash::SHA256::digest_size();
if (hash_name.equals_ignoring_ascii_case("SHA-384"sv))
return ::Crypto::Hash::SHA384::digest_size();
if (hash_name.equals_ignoring_ascii_case("SHA-512"sv))
return ::Crypto::Hash::SHA512::digest_size();
return WebIDL::NotSupportedError::create(realm, MUST(String::formatted("Invalid hash function '{}'", hash_name)));
}
// https://w3c.github.io/webcrypto/#hmac-operations
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::ArrayBuffer>> HMAC::sign(AlgorithmParams const&, JS::NonnullGCPtr<CryptoKey> key, ByteBuffer const& message)
{
// 1. Let mac be the result of performing the MAC Generation operation described in Section 4 of
// [FIPS-198-1] using the key represented by [[handle]] internal slot of key, the hash
// function identified by the hash attribute of the [[algorithm]] internal slot of key and
// message as the input data text.
auto const& key_data = key->handle().get<ByteBuffer>();
auto const& algorithm = verify_cast<HmacKeyAlgorithm>(*key->algorithm());
auto mac = TRY(hmac_calculate_message_digest(m_realm, algorithm.hash(), key_data.bytes(), message.bytes()));
// 2. Return the result of creating an ArrayBuffer containing mac.
return JS::ArrayBuffer::create(m_realm, move(mac));
}
// https://w3c.github.io/webcrypto/#hmac-operations
WebIDL::ExceptionOr<JS::Value> HMAC::verify(AlgorithmParams const&, JS::NonnullGCPtr<CryptoKey> key, ByteBuffer const& signature, ByteBuffer const& message)
{
// 1. Let mac be the result of performing the MAC Generation operation described in Section 4 of
// [FIPS-198-1] using the key represented by [[handle]] internal slot of key, the hash
// function identified by the hash attribute of the [[algorithm]] internal slot of key and
// message as the input data text.
auto const& key_data = key->handle().get<ByteBuffer>();
auto const& algorithm = verify_cast<HmacKeyAlgorithm>(*key->algorithm());
auto mac = TRY(hmac_calculate_message_digest(m_realm, algorithm.hash(), key_data.bytes(), message.bytes()));
// 2. Return true if mac is equal to signature and false otherwise.
return mac == signature;
}
// https://w3c.github.io/webcrypto/#hmac-operations
WebIDL::ExceptionOr<Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>>> HMAC::generate_key(AlgorithmParams const& params, bool extractable, Vector<Bindings::KeyUsage> const& usages)
{
// 1. If usages contains any entry which is not "sign" or "verify", then throw a SyntaxError.
for (auto const& usage : usages) {
if (usage != Bindings::KeyUsage::Sign && usage != Bindings::KeyUsage::Verify)
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
// 2. If the length member of normalizedAlgorithm is not present:
auto const& normalized_algorithm = static_cast<HmacKeyGenParams const&>(params);
WebIDL::UnsignedLong length;
if (!normalized_algorithm.length.has_value()) {
// Let length be the block size in bits of the hash function identified by the hash member
// of normalizedAlgorithm.
length = TRY(hmac_hash_block_size(m_realm, normalized_algorithm.hash));
}
// Otherwise, if the length member of normalizedAlgorithm is non-zero:
else if (normalized_algorithm.length.value() != 0) {
// Let length be equal to the length member of normalizedAlgorithm.
length = normalized_algorithm.length.value();
}
// Otherwise:
else {
// throw an OperationError.
return WebIDL::OperationError::create(m_realm, "Invalid length"_string);
}
// 3. Generate a key of length length bits.
auto key_data = MUST(generate_random_key(m_realm->vm(), length));
// 4. If the key generation step fails, then throw an OperationError.
// NOTE: Currently key generation must succeed
// 5. Let key be a new CryptoKey object representing the generated key.
auto key = CryptoKey::create(m_realm, move(key_data));
// 6. Let algorithm be a new HmacKeyAlgorithm.
auto algorithm = HmacKeyAlgorithm::create(m_realm);
// 7. Set the name attribute of algorithm to "HMAC".
algorithm->set_name("HMAC"_string);
// 8. Let hash be a new KeyAlgorithm.
auto hash = KeyAlgorithm::create(m_realm);
// 9. Set the name attribute of hash to equal the name member of the hash member of normalizedAlgorithm.
hash->set_name(TRY(normalized_algorithm.hash.name(m_realm->vm())));
// 10. Set the hash attribute of algorithm to hash.
algorithm->set_hash(hash);
// 11. Set the [[type]] internal slot of key to "secret".
key->set_type(Bindings::KeyType::Secret);
// 12. Set the [[algorithm]] internal slot of key to algorithm.
key->set_algorithm(algorithm);
// 13. Set the [[extractable]] internal slot of key to be extractable.
key->set_extractable(extractable);
// 14. Set the [[usages]] internal slot of key to be usages.
key->set_usages(usages);
// 15. Return key.
return Variant<JS::NonnullGCPtr<CryptoKey>, JS::NonnullGCPtr<CryptoKeyPair>> { key };
}
// https://w3c.github.io/webcrypto/#hmac-operations
WebIDL::ExceptionOr<JS::NonnullGCPtr<CryptoKey>> HMAC::import_key(Web::Crypto::AlgorithmParams const& params, Bindings::KeyFormat key_format, CryptoKey::InternalKeyData key_data, bool extractable, Vector<Bindings::KeyUsage> const& usages)
{
auto& vm = m_realm->vm();
auto const& normalized_algorithm = static_cast<HmacImportParams const&>(params);
// 1. Let keyData be the key data to be imported.
// 2. If usages contains an entry which is not "sign" or "verify", then throw a SyntaxError.
for (auto const& usage : usages) {
if (usage != Bindings::KeyUsage::Sign && usage != Bindings::KeyUsage::Verify)
return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage))));
}
// 3. Let hash be a new KeyAlgorithm.
auto hash = KeyAlgorithm::create(m_realm);
// 4. If format is "raw":
AK::ByteBuffer data;
if (key_format == Bindings::KeyFormat::Raw) {
// 4.1. Let data be the octet string contained in keyData.
data = key_data.get<ByteBuffer>();
// 4.2. Set hash to equal the hash member of normalizedAlgorithm.
hash->set_name(TRY(normalized_algorithm.hash.name(vm)));
}
// If format is "jwk":
else if (key_format == Bindings::KeyFormat::Jwk) {
// 1. If keyData is a JsonWebKey dictionary:
// Let jwk equal keyData.
// Otherwise:
// Throw a DataError.
if (!key_data.has<Bindings::JsonWebKey>())
return WebIDL::DataError::create(m_realm, "Data is not a JsonWebKey dictionary"_string);
auto jwk = key_data.get<Bindings::JsonWebKey>();
// 2. If the kty field of jwk is not "oct", then throw a DataError.
if (jwk.kty != "oct"sv)
return WebIDL::DataError::create(m_realm, "Invalid key type"_string);
// 3. If jwk does not meet the requirements of Section 6.4 of JSON Web Algorithms [JWA],
// then throw a DataError.
// 4. Let data be the octet string obtained by decoding the k field of jwk.
data = TRY(parse_jwk_symmetric_key(m_realm, jwk));
// 5. Set the hash to equal the hash member of normalizedAlgorithm.
hash->set_name(TRY(normalized_algorithm.hash.name(vm)));
// 6. If the name attribute of hash is "SHA-1":
auto hash_name = hash->name();
if (hash_name.equals_ignoring_ascii_case("SHA-1"sv)) {
// If the alg field of jwk is present and is not "HS1", then throw a DataError.
if (jwk.alg.has_value() && jwk.alg != "HS1"sv)
return WebIDL::DataError::create(m_realm, "Invalid algorithm"_string);
}
// If the name attribute of hash is "SHA-256":
else if (hash_name.equals_ignoring_ascii_case("SHA-256"sv)) {
// If the alg field of jwk is present and is not "HS256", then throw a DataError.
if (jwk.alg.has_value() && jwk.alg != "HS256"sv)
return WebIDL::DataError::create(m_realm, "Invalid algorithm"_string);
}
// If the name attribute of hash is "SHA-384":
else if (hash_name.equals_ignoring_ascii_case("SHA-384"sv)) {
// If the alg field of jwk is present and is not "HS384", then throw a DataError.
if (jwk.alg.has_value() && jwk.alg != "HS384"sv)
return WebIDL::DataError::create(m_realm, "Invalid algorithm"_string);
}
// If the name attribute of hash is "SHA-512":
else if (hash_name.equals_ignoring_ascii_case("SHA-512"sv)) {
// If the alg field of jwk is present and is not "HS512", then throw a DataError.
if (jwk.alg.has_value() && jwk.alg != "HS512"sv)
return WebIDL::DataError::create(m_realm, "Invalid algorithm"_string);
}
// FIXME: Otherwise, if the name attribute of hash is defined in another applicable specification:
else {
// FIXME: Perform any key import steps defined by other applicable specifications, passing format,
// jwk and hash and obtaining hash.
dbgln("Hash algorithm '{}' not supported", hash_name);
return WebIDL::DataError::create(m_realm, "Invalid algorithm"_string);
}
// 7. If usages is non-empty and the use field of jwk is present and is not "sign", then
// throw a DataError.
if (!usages.is_empty() && jwk.use.has_value() && jwk.use != "sign"sv)
return WebIDL::DataError::create(m_realm, "Invalid use in JsonWebKey"_string);
// 8. If the key_ops field of jwk is present, and is invalid according to the requirements
// of JSON Web Key [JWK] or does not contain all of the specified usages values, then
// throw a DataError.
TRY(validate_jwk_key_ops(m_realm, jwk, usages));
// 9. If the ext field of jwk is present and has the value false and extractable is true,
// then throw a DataError.
if (jwk.ext.has_value() && !*jwk.ext && extractable)
return WebIDL::DataError::create(m_realm, "Invalid ext field"_string);
}
// Otherwise:
else {
// throw a NotSupportedError.
return WebIDL::NotSupportedError::create(m_realm, "Invalid key format"_string);
}
// 5. Let length be equivalent to the length, in octets, of data, multiplied by 8.
auto length = data.size() * 8;
// 6. If length is zero then throw a DataError.
if (length == 0)
return WebIDL::DataError::create(m_realm, "No data provided"_string);
// 7. If the length member of normalizedAlgorithm is present:
if (normalized_algorithm.length.has_value()) {
// If the length member of normalizedAlgorithm is greater than length:
auto normalized_algorithm_length = normalized_algorithm.length.value();
if (normalized_algorithm_length > length) {
// throw a DataError.
return WebIDL::DataError::create(m_realm, "Invalid data size"_string);
}
// If the length member of normalizedAlgorithm, is less than or equal to length minus eight:
if (normalized_algorithm_length <= length - 8) {
// throw a DataError.
return WebIDL::DataError::create(m_realm, "Invalid data size"_string);
}
// Otherwise:
// Set length equal to the length member of normalizedAlgorithm.
length = normalized_algorithm_length;
}
// 8. Let key be a new CryptoKey object representing an HMAC key with the first length bits of data.
auto length_in_bytes = length / 8;
if (data.size() > length_in_bytes)
data = MUST(data.slice(0, length_in_bytes));
auto key = CryptoKey::create(m_realm, move(data));
// 9. Set the [[type]] internal slot of key to "secret".
key->set_type(Bindings::KeyType::Secret);
// 10. Let algorithm be a new HmacKeyAlgorithm.
auto algorithm = HmacKeyAlgorithm::create(m_realm);
// 11. Set the name attribute of algorithm to "HMAC".
algorithm->set_name("HMAC"_string);
// 12. Set the length attribute of algorithm to length.
algorithm->set_length(length);
// 13. Set the hash attribute of algorithm to hash.
algorithm->set_hash(hash);
// 14. Set the [[algorithm]] internal slot of key to algorithm.
key->set_algorithm(algorithm);
// 15. Return key.
return key;
}
// https://w3c.github.io/webcrypto/#hmac-operations
WebIDL::ExceptionOr<JS::NonnullGCPtr<JS::Object>> HMAC::export_key(Bindings::KeyFormat format, JS::NonnullGCPtr<CryptoKey> key)
{
// 1. If the underlying cryptographic key material represented by the [[handle]] internal slot
// of key cannot be accessed, then throw an OperationError.
// NOTE: In our impl this is always accessible
// 2. Let bits be the raw bits of the key represented by [[handle]] internal slot of key.
// 3. Let data be an octet string containing bits.
auto data = key->handle().get<ByteBuffer>();
// 4. If format is "raw":
JS::GCPtr<JS::Object> result;
if (format == Bindings::KeyFormat::Raw) {
// Let result be the result of creating an ArrayBuffer containing data.
result = JS::ArrayBuffer::create(m_realm, data);
}
// If format is "jwk":
else if (format == Bindings::KeyFormat::Jwk) {
// Let jwk be a new JsonWebKey dictionary.
Bindings::JsonWebKey jwk {};
// Set the kty attribute of jwk to the string "oct".
jwk.kty = "oct"_string;
// Set the k attribute of jwk to be a string containing data, encoded according to Section
// 6.4 of JSON Web Algorithms [JWA].
jwk.k = MUST(encode_base64url(data, AK::OmitPadding::Yes));
// Let algorithm be the [[algorithm]] internal slot of key.
auto const& algorithm = verify_cast<HmacKeyAlgorithm>(*key->algorithm());
// Let hash be the hash attribute of algorithm.
auto hash = algorithm.hash();
// If the name attribute of hash is "SHA-1":
auto hash_name = hash->name();
if (hash_name.equals_ignoring_ascii_case("SHA-1"sv)) {
// Set the alg attribute of jwk to the string "HS1".
jwk.alg = "HS1"_string;
}
// If the name attribute of hash is "SHA-256":
else if (hash_name.equals_ignoring_ascii_case("SHA-256"sv)) {
// Set the alg attribute of jwk to the string "HS256".
jwk.alg = "HS256"_string;
}
// If the name attribute of hash is "SHA-384":
else if (hash_name.equals_ignoring_ascii_case("SHA-384"sv)) {
// Set the alg attribute of jwk to the string "HS384".
jwk.alg = "HS384"_string;
}
// If the name attribute of hash is "SHA-512":
else if (hash_name.equals_ignoring_ascii_case("SHA-512"sv)) {
// Set the alg attribute of jwk to the string "HS512".
jwk.alg = "HS512"_string;
}
// FIXME: Otherwise, the name attribute of hash is defined in another applicable
// specification:
else {
// FIXME: Perform any key export steps defined by other applicable specifications,
// passing format and key and obtaining alg.
// FIXME: Set the alg attribute of jwk to alg.
dbgln("Hash algorithm '{}' not supported", hash_name);
return WebIDL::DataError::create(m_realm, "Invalid algorithm"_string);
}
// Set the key_ops attribute of jwk to equal the usages attribute of key.
jwk.key_ops = Vector<String> {};
jwk.key_ops->ensure_capacity(key->internal_usages().size());
for (auto const& usage : key->internal_usages()) {
jwk.key_ops->append(Bindings::idl_enum_to_string(usage));
}
// Set the ext attribute of jwk to equal the [[extractable]] internal slot of key.
jwk.ext = key->extractable();
// Let result be the result of converting jwk to an ECMAScript Object, as defined by [WebIDL].
result = TRY(jwk.to_object(m_realm));
}
// Otherwise:
else {
// throw a NotSupportedError.
return WebIDL::NotSupportedError::create(m_realm, "Invalid key format"_string);
}
// 5. Return result.
return JS::NonnullGCPtr { *result };
}
// https://w3c.github.io/webcrypto/#hmac-operations
WebIDL::ExceptionOr<JS::Value> HMAC::get_key_length(AlgorithmParams const& params)
{
auto const& normalized_derived_key_algorithm = static_cast<HmacImportParams const&>(params);
WebIDL::UnsignedLong length;
// 1. If the length member of normalizedDerivedKeyAlgorithm is not present:
if (!normalized_derived_key_algorithm.length.has_value()) {
// Let length be the block size in bits of the hash function identified by the hash member of
// normalizedDerivedKeyAlgorithm.
length = TRY(hmac_hash_block_size(m_realm, normalized_derived_key_algorithm.hash));
}
// Otherwise, if the length member of normalizedDerivedKeyAlgorithm is non-zero:
else if (normalized_derived_key_algorithm.length.value() > 0) {
// Let length be equal to the length member of normalizedDerivedKeyAlgorithm.
length = normalized_derived_key_algorithm.length.value();
}
// Otherwise:
else {
// throw a TypeError.
return WebIDL::SimpleException { WebIDL::SimpleExceptionType::TypeError, "Invalid key length"sv };
}
// 2. Return length.
return JS::Value(length);
}
}