ladybird/Userland/Libraries/LibCrypto/NumberTheory/ModularFunctions.cpp
Ali Mohammad Pur b05beb79d4 LibCrypto: Remove all uses of VLAs
This removes all uses of VLAs with either Vectors with inline capacity
for the expected soft upper bound, or the occasional heap allocation.
2021-05-13 17:53:32 +02:00

344 lines
11 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <LibCrypto/NumberTheory/ModularFunctions.h>
namespace Crypto {
namespace NumberTheory {
UnsignedBigInteger ModularInverse(const UnsignedBigInteger& a_, const UnsignedBigInteger& b)
{
if (b == 1)
return { 1 };
UnsignedBigInteger one { 1 };
UnsignedBigInteger temp_1;
UnsignedBigInteger temp_2;
UnsignedBigInteger temp_3;
UnsignedBigInteger temp_4;
UnsignedBigInteger temp_plus;
UnsignedBigInteger temp_minus;
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_remainder;
UnsignedBigInteger d;
auto a = a_;
auto u = a;
if (a.words()[0] % 2 == 0) {
// u += b
UnsignedBigInteger::add_without_allocation(u, b, temp_plus);
u.set_to(temp_plus);
}
auto v = b;
UnsignedBigInteger x { 0 };
// d = b - 1
UnsignedBigInteger::subtract_without_allocation(b, one, d);
while (!(v == 1)) {
while (v < u) {
// u -= v
UnsignedBigInteger::subtract_without_allocation(u, v, temp_minus);
u.set_to(temp_minus);
// d += x
UnsignedBigInteger::add_without_allocation(d, x, temp_plus);
d.set_to(temp_plus);
while (u.words()[0] % 2 == 0) {
if (d.words()[0] % 2 == 1) {
// d += b
UnsignedBigInteger::add_without_allocation(d, b, temp_plus);
d.set_to(temp_plus);
}
// u /= 2
UnsignedBigInteger::divide_u16_without_allocation(u, 2, temp_quotient, temp_remainder);
u.set_to(temp_quotient);
// d /= 2
UnsignedBigInteger::divide_u16_without_allocation(d, 2, temp_quotient, temp_remainder);
d.set_to(temp_quotient);
}
}
// v -= u
UnsignedBigInteger::subtract_without_allocation(v, u, temp_minus);
v.set_to(temp_minus);
// x += d
UnsignedBigInteger::add_without_allocation(x, d, temp_plus);
x.set_to(temp_plus);
while (v.words()[0] % 2 == 0) {
if (x.words()[0] % 2 == 1) {
// x += b
UnsignedBigInteger::add_without_allocation(x, b, temp_plus);
x.set_to(temp_plus);
}
// v /= 2
UnsignedBigInteger::divide_u16_without_allocation(v, 2, temp_quotient, temp_remainder);
v.set_to(temp_quotient);
// x /= 2
UnsignedBigInteger::divide_u16_without_allocation(x, 2, temp_quotient, temp_remainder);
x.set_to(temp_quotient);
}
}
// x % b
UnsignedBigInteger::divide_without_allocation(x, b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
return temp_remainder;
}
UnsignedBigInteger ModularPower(const UnsignedBigInteger& b, const UnsignedBigInteger& e, const UnsignedBigInteger& m)
{
if (m == 1)
return 0;
UnsignedBigInteger ep { e };
UnsignedBigInteger base { b };
UnsignedBigInteger exp { 1 };
UnsignedBigInteger temp_1;
UnsignedBigInteger temp_2;
UnsignedBigInteger temp_3;
UnsignedBigInteger temp_4;
UnsignedBigInteger temp_multiply;
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_remainder;
while (!(ep < 1)) {
if (ep.words()[0] % 2 == 1) {
// exp = (exp * base) % m;
UnsignedBigInteger::multiply_without_allocation(exp, base, temp_1, temp_2, temp_3, temp_4, temp_multiply);
UnsignedBigInteger::divide_without_allocation(temp_multiply, m, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
exp.set_to(temp_remainder);
}
// ep = ep / 2;
UnsignedBigInteger::divide_u16_without_allocation(ep, 2, temp_quotient, temp_remainder);
ep.set_to(temp_quotient);
// base = (base * base) % m;
UnsignedBigInteger::multiply_without_allocation(base, base, temp_1, temp_2, temp_3, temp_4, temp_multiply);
UnsignedBigInteger::divide_without_allocation(temp_multiply, m, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
base.set_to(temp_remainder);
// Note that not clamping here would cause future calculations (multiply, specifically) to allocate even more unused space
// which would then persist through the temp bigints, and significantly slow down later loops.
// To avoid that, we can clamp to a specific max size, or just clamp to the min needed amount of space.
ep.clamp_to_trimmed_length();
exp.clamp_to_trimmed_length();
base.clamp_to_trimmed_length();
}
return exp;
}
static void GCD_without_allocation(
const UnsignedBigInteger& a,
const UnsignedBigInteger& b,
UnsignedBigInteger& temp_a,
UnsignedBigInteger& temp_b,
UnsignedBigInteger& temp_1,
UnsignedBigInteger& temp_2,
UnsignedBigInteger& temp_3,
UnsignedBigInteger& temp_4,
UnsignedBigInteger& temp_quotient,
UnsignedBigInteger& temp_remainder,
UnsignedBigInteger& output)
{
temp_a.set_to(a);
temp_b.set_to(b);
for (;;) {
if (temp_a == 0) {
output.set_to(temp_b);
return;
}
// temp_b %= temp_a
UnsignedBigInteger::divide_without_allocation(temp_b, temp_a, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
temp_b.set_to(temp_remainder);
if (temp_b == 0) {
output.set_to(temp_a);
return;
}
// temp_a %= temp_b
UnsignedBigInteger::divide_without_allocation(temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
temp_a.set_to(temp_remainder);
}
}
UnsignedBigInteger GCD(const UnsignedBigInteger& a, const UnsignedBigInteger& b)
{
UnsignedBigInteger temp_a;
UnsignedBigInteger temp_b;
UnsignedBigInteger temp_1;
UnsignedBigInteger temp_2;
UnsignedBigInteger temp_3;
UnsignedBigInteger temp_4;
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_remainder;
UnsignedBigInteger output;
GCD_without_allocation(a, b, temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, output);
return output;
}
UnsignedBigInteger LCM(const UnsignedBigInteger& a, const UnsignedBigInteger& b)
{
UnsignedBigInteger temp_a;
UnsignedBigInteger temp_b;
UnsignedBigInteger temp_1;
UnsignedBigInteger temp_2;
UnsignedBigInteger temp_3;
UnsignedBigInteger temp_4;
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_remainder;
UnsignedBigInteger gcd_output;
UnsignedBigInteger output { 0 };
GCD_without_allocation(a, b, temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, gcd_output);
if (gcd_output == 0) {
dbgln_if(NT_DEBUG, "GCD is zero");
return output;
}
// output = (a / gcd_output) * b
UnsignedBigInteger::divide_without_allocation(a, gcd_output, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
UnsignedBigInteger::multiply_without_allocation(temp_quotient, b, temp_1, temp_2, temp_3, temp_4, output);
dbgln_if(NT_DEBUG, "quot: {} rem: {} out: {}", temp_quotient, temp_remainder, output);
return output;
}
static bool MR_primality_test(UnsignedBigInteger n, const Vector<UnsignedBigInteger, 256>& tests)
{
// Written using Wikipedia:
// https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Miller%E2%80%93Rabin_test
VERIFY(!(n < 4));
auto predecessor = n.minus({ 1 });
auto d = predecessor;
size_t r = 0;
{
auto div_result = d.divided_by(2);
while (div_result.remainder == 0) {
d = div_result.quotient;
div_result = d.divided_by(2);
++r;
}
}
if (r == 0) {
// n - 1 is odd, so n was even. But there is only one even prime:
return n == 2;
}
for (auto& a : tests) {
// Technically: VERIFY(2 <= a && a <= n - 2)
VERIFY(a < n);
auto x = ModularPower(a, d, n);
if (x == 1 || x == predecessor)
continue;
bool skip_this_witness = false;
// r 1 iterations.
for (size_t i = 0; i < r - 1; ++i) {
x = ModularPower(x, 2, n);
if (x == predecessor) {
skip_this_witness = true;
break;
}
}
if (skip_this_witness)
continue;
return false; // "composite"
}
return true; // "probably prime"
}
UnsignedBigInteger random_number(const UnsignedBigInteger& min, const UnsignedBigInteger& max_excluded)
{
VERIFY(min < max_excluded);
auto range = max_excluded.minus(min);
UnsignedBigInteger base;
auto size = range.trimmed_length() * sizeof(u32) + 2;
// "+2" is intentional (see below).
ByteBuffer buffer;
buffer.grow(size);
auto* buf = buffer.data();
fill_with_random(buf, size);
UnsignedBigInteger random { buf, size };
// At this point, `random` is a large number, in the range [0, 256^size).
// To get down to the actual range, we could just compute random % range.
// This introduces "modulo bias". However, since we added 2 to `size`,
// we know that the generated range is at least 65536 times as large as the
// required range! This means that the modulo bias is only 0.0015%, if all
// inputs are chosen adversarially. Let's hope this is good enough.
auto divmod = random.divided_by(range);
// The proper way to fix this is to restart if `divmod.quotient` is maximal.
return divmod.remainder.plus(min);
}
bool is_probably_prime(const UnsignedBigInteger& p)
{
// Is it a small number?
if (p < 49) {
u32 p_value = p.words()[0];
// Is it a very small prime?
if (p_value == 2 || p_value == 3 || p_value == 5 || p_value == 7)
return true;
// Is it the multiple of a very small prime?
if (p_value % 2 == 0 || p_value % 3 == 0 || p_value % 5 == 0 || p_value % 7 == 0)
return false;
// Then it must be a prime, but not a very small prime, like 37.
return true;
}
Vector<UnsignedBigInteger, 256> tests;
// Make some good initial guesses that are guaranteed to find all primes < 2^64.
tests.append(UnsignedBigInteger(2));
tests.append(UnsignedBigInteger(3));
tests.append(UnsignedBigInteger(5));
tests.append(UnsignedBigInteger(7));
tests.append(UnsignedBigInteger(11));
tests.append(UnsignedBigInteger(13));
UnsignedBigInteger seventeen { 17 };
for (size_t i = tests.size(); i < 256; ++i) {
tests.append(random_number(seventeen, p.minus(2)));
}
// Miller-Rabin's "error" is 8^-k. In adversarial cases, it's 4^-k.
// With 200 random numbers, this would mean an error of about 2^-400.
// So we don't need to worry too much about the quality of the random numbers.
return MR_primality_test(p, tests);
}
UnsignedBigInteger random_big_prime(size_t bits)
{
VERIFY(bits >= 33);
UnsignedBigInteger min = UnsignedBigInteger::from_base10("6074001000").shift_left(bits - 33);
UnsignedBigInteger max = UnsignedBigInteger { 1 }.shift_left(bits).minus(1);
for (;;) {
auto p = random_number(min, max);
if ((p.words()[0] & 1) == 0) {
// An even number is definitely not a large prime.
continue;
}
if (is_probably_prime(p))
return p;
}
}
}
}